Global Insights into Micro- and Nanoplastic Pollution in Surface Water: A Review
Abstract
1. Introduction
2. Search Strategy and Literature Evaluation
3. Categories, Composition and Properties of MPs and NPs
3.1. Categories of MPs and NPs
3.1.1. Primary: Direct Sources of Contamination
3.1.2. Secondary: The Lingering Legacy of Plastic Waste
3.2. Composition and Properties of MPs and NPs
3.2.1. Shapes
3.2.2. Size
3.2.3. Polymer Type
3.2.4. Color
4. Analytical Methodologies for MP and NP Analysis and Characterization
4.1. Sampling Techniques
4.1.1. Sampling Techniques for Seawater (Trawl-Net and Bulk/Pump Methods)
4.1.2. Sampling Techniques for Freshwater (Grab Sampling)
4.1.3. Sampling Techniques for Wastewater (Electric Pumping)
4.2. Pretreatment Methods for Isolation: Digestion and Density Separation
4.3. Methods of Identification and Quantification (Microscopic Examination)
4.3.1. Macroscopic Visual Identification
4.3.2. Optical Characterization
4.3.3. Fourier Transform Infrared (FT-IR) Spectroscopy
4.3.4. Raman Spectroscopy
4.3.5. Scanning Electron Microscopy (SEM)
4.3.6. Pyrolysis Method
4.3.7. Other Technologies
5. Environmental Distribution
5.1. MPs and NPs in Aquatic Environments
5.1.1. Marine Environments
Prevalence and Distribution in Oceans and Seas
Sources and Pathways
5.1.2. Freshwater Systems
Presence in Rivers, Lakes, and Streams
Sources and Pathways
5.1.3. Presence in Wastewater System
Wastewater Treatment Plants
Sources and Pathways
6. Dynamics of MP and NP Transport and Fate in Aquatic Environments
6.1. Transport Mechanisms
6.1.1. Transport of Floating Particles via Surface Drift
6.1.2. Transport Through Vertical Mixing
6.1.3. Settling of High-Density Plastic Particles
6.1.4. Inland Waters and Water Colum Mixing
6.1.5. Marine Aggregates as Vectors for Other Pollutants
6.1.6. Riverine Surface Current and Outflow
6.1.7. Urban Sources as Anthropogenic Inputs
6.1.8. Atmospheric Deposition
6.1.9. Sea Ice Melting
6.2. Morphological Properties of Plastic Particles (Size, Shape and Polymer Type)
6.3. Chemical Properties of Plastic Particles
6.4. Degradation Process
7. Ecotoxicological Effects of MPs and NPs Exposure
7.1. Ecotoxicological Scenario in a Marine Environment
7.2. Ecotoxicological Scenario in Freshwater Systems
7.3. Human Health Risks Associated with MPs and NPs Exposure
7.3.1. Pathways to Humans
7.3.2. Potential Health Risk Implications of Micro- and NPs in the Human Body
8. Current Mitigation and Management Strategies
8.1. Technological Approaches for MPs and NPs Removal and Recycling
8.1.1. Advancement and Technology Used in the Removal Process
Membrane Filtration
Adsorption
Chemical-Induced Coagulation-Flocculation-Sedimentation
Bioremediation
Advanced Oxidation Processes (AOPs)
8.1.2. Innovations in Plastic Waste Management and Recycling
8.2. Regulatory Approaches for Mitigation
8.2.1. Existing Regulations and Policies
8.2.2. Effectiveness and Enforcement Challenges
8.3. Public Awareness and Behavioral Changes
9. Future Perspective
9.1. Interactions with Contaminants and Long-Term Climatic Impact
9.2. Ecotoxicological Effects of Direct and Indirect Exposure on Living Biota
9.3. Social and Cultural Factors Influencing Research
9.4. Technological and Methodological Advancements
9.5. Interdisciplinary Approaches for Collaborative Research and Policymaking and Regular Monitoring
10. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Jaganmohan. Annual Production of Plastics Worldwide from 1950 to 2022. Statista. 2024. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950 (accessed on 2 April 2025).
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Moteallemi, A.; Dehghani, M.H.; Momeniha, F.; Azizi, S. Nanoplastics as Emerging Contaminants: A Systematic Review of Analytical Processes, Removal Strategies from Water Environments, Challenges and Perspective. Microchem. J. 2024, 207, 111884. [Google Scholar] [CrossRef]
- Kihara, S.; Köper, I.; Mata, J.P.; McGillivray, D.J. Reviewing Nanoplastic Toxicology: It’s an Interface Problem. Adv. Colloid Interface Sci. 2021, 288, 102337. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental Exposure to Microplastics: An Overview on Possible Human Health Effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Lett, Z.; Hall, A.; Skidmore, S.; Alves, N.J. Environmental Microplastic and Nanoplastic: Exposure Routes and Effects on Coagulation and the Cardiovascular System. Environ. Pollut. 2021, 291, 118190. [Google Scholar] [CrossRef]
- Pilapitiya, P.G.C.N.T.; Ratnayake, A.S. The World of Plastic Waste: A Review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N.; Hardesty, B.D.; van Franeker, J.A.; Eriksen, M.; Siegel, D.; Galgani, F.; Law, K.L. A Global Inventory of Small Floating Plastic Debris. Environ. Res. Lett. 2015, 10, 124006. [Google Scholar] [CrossRef]
- Ahmed, A.S.S.; Billah, M.M.; Ali, M.M.; Bhuiyan, M.K.A.; Guo, L.; Mohinuzzaman, M.; Hossain, M.B.; Rahman, M.S.; Islam, M.S.; Yan, M.; et al. Microplastics in Aquatic Environments: A Comprehensive Review of Toxicity, Removal, and Remediation Strategies. Sci. Total Environ. 2023, 876, 162414. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Adu, F.A.; Oyebamiji, A.K.; Bamisaye, A.; Adigun, R.A.; Olasoji, S.O.; Ogunjinmi, O.E. Microplastics Toxicity, Detection, and Removal from Water/Wastewater. Mar. Pollut. Bull. 2023, 187, 114546. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of Antibiotics on Microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, Y.; Shi, Z.; Li, Z.; Liang, X. Ecotoxicoproteomic Assessment of Microplastics and Plastic Additives in Aquatic Organisms: A Review. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 36, 100713. [Google Scholar] [CrossRef] [PubMed]
- Fendall, L.S.; Sewell, M.A. Contributing to Marine Pollution by Washing Your Face: Microplastics in Facial Cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef]
- Lai, Y.; Dong, L.; Li, Q.; Li, P.; Liu, J. Sampling of Micro- and Nanoplastics in Environmental Matrices. TrAC Trends Anal. Chem. 2021, 145, 116461. [Google Scholar] [CrossRef]
- Fiore, M.; Fraterrigo Garofalo, S.; Migliavacca, A.; Tommasi, T. Tackling Marine Microplastics Pollution: An Overview of Existing Solutions. Water Air Soil Pollut. 2022, 233, 276. [Google Scholar] [CrossRef]
- Chen, M.; Jin, M.; Tao, P.; Wang, Z.; Xie, W.; Yu, X.; Wang, K. Assessment of Microplastics Derived from Mariculture in Xiangshan Bay, China. Environ. Pollut. 2018, 242 Pt B, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- McEachern, K.; Alegria, H.A.; Kalagher, A.L.; Hansen, C.; Morrison, S.; Hastings, D. Microplastics in Tampa Bay, Florida: Abundance and Variability in Estuarine Waters and Sediments. Mar. Pollut. Bull. 2019, 148, 97–107. [Google Scholar] [CrossRef]
- Wan Mohd Khalik, W.M.A.; Ibrahim, Y.S.; Tuan Anuar, S.; Govindasamy, S.; Baharuddin, N.F. Microplastics Analysis in Malaysian Marine Waters: A Field Study of Kuala Nerus and Kuantan. Mar. Pollut. Bull. 2018, 135, 451–457. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Wang, J.; Zhang, M.; Jia, W.; Qin, X. LDPE Microplastic Films Alter Microbial Community Composition and Enzymatic Activities in Soil. Environ. Pollut. 2019, 254, 112983. [Google Scholar] [CrossRef] [PubMed]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Ubeda, B.; Hernández-León, S.; Palma, A.T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A.; et al. Plastic Debris in the Open Ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef]
- Fernández-González, V.; Andrade-Garda, J.M.; López-Mahía, P.; Muniategui-Lorenzo, S. Impact of Weathering on the Chemical Identification of Microplastics from Usual Packaging Polymers in the Marine Environment. Anal. Chim. Acta 2021, 1142, 179–188. [Google Scholar] [CrossRef]
- Gerritse, J.; Leslie, H.A.; de Tender, C.A.; Devriese, L.I.; Vethaak, A.D. Fragmentation of Plastic Objects in a Laboratory Seawater Microcosm. Sci. Rep. 2020, 10, 10945. [Google Scholar] [CrossRef]
- Pan, Z.; Guo, H.; Chen, H.; Wang, S.; Sun, X.; Zou, Q.; Zhang, Y.; Lin, H.; Cai, S.; Huang, J. Microplastics in the Northwestern Pacific: Abundance, Distribution, and Characteristics. Sci. Total Environ. 2019, 650, 1913–1922. [Google Scholar] [CrossRef]
- Silvestrova, K.; Stepanova, N. The Distribution of Microplastics in the Surface Layer of the Atlantic Ocean from the Subtropics to the Equator According to Visual Analysis. Mar. Pollut. Bull. 2021, 162, 111836. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Zhou, X.; Tian, Y.; Lin, C.; Wang, W.; Zhou, K.; Zhang, Y.; Lin, H. Microplastic Abundance, Distribution, and Composition in the Mid-West Pacific Ocean. Environ. Pollut. 2020, 264, 114125. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Webster, L. Microplastics in Sea Surface Waters around Scotland. Mar. Pollut. Bull. 2021, 166, 112210. [Google Scholar] [CrossRef] [PubMed]
- Covernton, G.A.; Pearce, C.M.; Gurney-Smith, H.J.; Chastain, S.G.; Ross, P.S.; Dower, J.F.; Dudas, S.E. Size and Shape Matter: A Preliminary Analysis of Microplastic Sampling Technique in Seawater Studies with Implications for Ecological Risk Assessment. Sci. Total Environ. 2019, 667, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Poli, V.; Litti, L.; Lavagnolo, M.C. Microplastic Pollution in the Northeast Atlantic Ocean Surface Water: How the Sampling Approach Influences the Extent of the Issue. Sci. Total Environ. 2024, 912, 174561. [Google Scholar] [CrossRef] [PubMed]
- Zong, C.; Zhu, L.; Jabeen, K.; Li, C.; Wei, N.; Wang, X.; Dong, X.; Li, D. Vertical Distribution of Microplastics in the Western Pacific Warm Pool: In Situ Results Comparison of Different Sampling Method. J. Hazard. Mater. 2024, 403, 135722. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Hildebrandt, L.; Zimmermann, T.; El Gareb, F.; Fischer, E.K.; Pröfrock, D. Quantification and Characterization of Microplastics in Surface Water Samples from the Northeast Atlantic Ocean Using Laser Direct Infrared Imaging. Mar. Pollut. Bull. 2023, 190, 114880. [Google Scholar] [CrossRef]
- Buhhalko, N.; Kuddithamby, G.; Vianello, A.; Rotander, A.; Vidal Liñán, L.; Beiras, R.; Falcou Préfol, M.; Town, R.M.; Hylland, K.; Morin, B.; et al. Microplastics (10 µm–5 mm) in European Atlantic Coastal Waters. Environ. Adv. 2025, 21, 100644. [Google Scholar] [CrossRef]
- Ugwu, K.; Vianello, A.; Almeda, R.; Iordachescu, L.; Rotander, A. Comparison of Two Pump-Based Systems for Sampling Small Microplastics (>10 μm) in Coastal Waters. Environ. Pollut. 2024, 363, 125192. [Google Scholar] [CrossRef] [PubMed]
- Uurasjärvi, E.; Pääkkönen, M.; Setälä, O.; Koistinen, A.; Lehtiniemi, M. Microplastics Accumulate to Thin Layers in the Stratified Baltic Sea. Environ. Pollut. 2021, 268, 115700. [Google Scholar] [CrossRef] [PubMed]
- Schönlau, C.; Karlsson, T.M.; Rotander, A.; Nilsson, H.; Engwall, M.; van Bavel, B.; Kärrman, A. Microplastics in Sea-Surface Waters Surrounding Sweden Sampled by Manta Trawl and In Situ Pump. Mar. Pollut. Bull. 2020, 153, 111019. [Google Scholar] [CrossRef] [PubMed]
- Chae, D.-H.; Kim, I.-S.; Kim, S.-K.; Song, Y.K.; Shim, W.J. Abundance and Distribution Characteristics of Microplastics in Surface Seawaters of the Incheon/Kyeonggi Coastal Region. Arch. Environ. Contam. Toxicol. 2015, 69, 269–278. [Google Scholar] [CrossRef]
- Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D.W.; Law, K.L. The Effect of Wind Mixing on the Vertical Distribution of Buoyant Plastic Debris. Geophys. Res. Lett. 2012, 39, L07601. [Google Scholar] [CrossRef]
- de Deus, B.C.T.; Costa, T.C.; Altomari, L.N.; Brovini, E.M.; Duque de Brito, P.S.; Cardoso, S.J. Coastal Plastic Pollution: A Global Perspective. Mar. Pollut. Bull. 2024, 203, 116478. [Google Scholar] [CrossRef]
- Han, M.; Niu, X.; Tang, M.; Zhang, B.-T.; Wang, G.; Yue, W.; Kong, X.; Zhu, J. Distribution of Microplastics in Surface Water of the Lower Yellow River Near Estuary. Sci. Total Environ. 2020, 707, 135601. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Kooi, M.; Erich, M.W.; Primpke, S.; Redondo-Hasselerharm, P.E.; Dekker, S.C.; Koelmans, A.A.; van Wezel, A.P. A Systems Approach to Understand Microplastic Occurrence and Variability in Dutch Riverine Surface Waters. Water Res. 2020, 176, 115723. [Google Scholar] [CrossRef]
- Barone, M.; Svipsta, S.; Bikse, J.; Dimante-Deimantovica, I. Microplastics in FLOW: Seasonal Patterns in Major Latvian Rivers. Case Stud. Chem. Environ. Eng. 2025, 11, 101202. [Google Scholar] [CrossRef]
- Hashmi, S.I.; Barrick, A.; Hoang, T.C. Discovery of Microplastics in the Alabama River: Distributions, Transport and Loads, Sources, and Relative Comparison with World Rivers. J. Hazard. Mater. 2025, 495, 138813. [Google Scholar] [CrossRef]
- Varol, M.; Karakaya, G.; Arısoy, G.; Çelik, B. Comprehensive Analysis of Microplastics in Water, Sediment and Fish from a Large Recreational Lake. Environ. Res. 2025, 279 Pt 1, 121799. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhine, M.G.; Tekle, S.G.; Terfie, T.A.; Aragaw, T.A. Occurrence of Microplastics in Water and Sediment of a Highly Urbanized Lake Ecosystem in Addis Ababa, Ethiopia. J. Hazard. Mater. Adv. 2025, 18, 100756. [Google Scholar] [CrossRef]
- Leterme, S.C.; Tuuria, E.M.; Drummond, W.J.; Jones, R.; Gascooke, J.R. Microplastics in Urban Freshwater Streams in Adelaide, Australia: A Source of Plastic Pollution in the Gulf St Vincent. Sci. Total Environ. 2023, 856, 158672. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, V.; Anusree, S.; Shaikh, I.; D’Costa, P.M.; Chandran, T.; Valsan, G.; Vandana, T.U.; Tamrakar, A.; Paul, M.M.; Rangel-Buitrago, N.; et al. Insights into the Seasonal Distribution of Microplastics and Their Associated Biofilms in the Water Column of Two Tropical Estuaries. Mar. Pollut. Bull. 2024, 206, 116750. [Google Scholar] [CrossRef]
- Bordós, G.; Urbányi, B.; Micsinai, A.; Kriszt, B.; Palotai, Z.; Szabó, I.; Hantosi, Z.; Szoboszlay, S. Identification of Micro-Plastics in Fishponds and Natural Freshwater Environments of the Carpathian Basin, Europe. Chemosphere 2019, 216, 110–116. [Google Scholar] [CrossRef]
- Baldwin, A.K.; Corsi, S.R.; Mason, S.A. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology. Environ. Sci. Technol. 2016, 50, 10377–10385. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D.L. Wastewater Treatment Plants as a Pathway for Microplastics: Development of a New Approach to Sample Wastewater-Based Microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- Masura, J.; Baker, J.; Foster, G.; Arthur, C.; Herring, C. (Eds.) Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying Synthetic Particles in Waters and Sediments; NOAA Technical Memorandum NOS-OR&R-48; National Oceanic and Atmospheric Administration, Marine Debris Division: Silver Spring, MD, USA, 2015. [Google Scholar]
- Munno, K.; Helm, P.A.; Jackson, D.A.; Rochman, C.; Sims, A. Impacts of Temperature and Selected Chemical Digestion Methods on Microplastic Particles. Environ. Toxicol. Chem. 2018, 37, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front. Toxicol. 2021, 3, 636640. [Google Scholar] [CrossRef]
- Asamoah, B.O.; Kanyathare, B.; Roussey, M.; Peiponen, K.-E. A Prototype of a Portable Optical Sensor for the Detection of Transparent and Translucent Microplastics in Freshwater. Chemosphere 2019, 231, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, E.; Pizzoferrato, R.; Li, Y.; Frattegiani, S.; Nucara, A.; Costa, G. A New Optical Method for Quantitative Detection of Microplastics in Water Based on Real-Time Fluorescence Analysis. Sensors 2022, 22, 5652. [Google Scholar] [CrossRef]
- Iri, A.H.; Shahrah, M.H.A.; Ali, A.M.; Qadri, S.A.; Erdem, T.; Ozdur, I.T.; Icoz, K. Optical Detection of Microplastics in Water. Environ. Sci. Pollut. Res. Int. 2021, 28, 63860–63866. [Google Scholar] [CrossRef]
- Huppertsberg, S.; Knepper, T.P. Validation of an FT-IR Microscopy Method for the Determination of Microplastic Particles in Surface Waters. MethodsX 2020, 7, 100874. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, D.; Pei, J.; Fei, Y.; Ouyang, D.; Zhang, H.; Luo, Y. Identification and Quantification of Microplastics Using Fourier Transform Infrared Spectroscopy: Current Status and Future Prospects. Curr. Opin. Environ. Sci. Health 2020, 18, 14–19. [Google Scholar] [CrossRef]
- Renner, G.; Sauerbier, P.; Schmidt, T.C.; Schram, J. Robust Automatic Identification of Microplastics in Environmental Samples Using FTIR Microscopy. Anal. Chem. 2019, 91, 9656–9664. [Google Scholar] [CrossRef] [PubMed]
- Mikac, L.; Rigó, I.; Himics, L.; Tolić, A.; Ivanda, M.; Veres, M. Surface-Enhanced Raman Spectroscopy for the Detection of Microplastics. Appl. Surf. Sci. 2023, 608, 155239. [Google Scholar] [CrossRef]
- Sobhani, Z.; Zhang, X.; Gibson, C.; Naidu, R.; Megharaj, M.; Fang, C. Identification and Visualization of Microplastics/Nanoplastics by Raman Imaging (I): Down to 100 nm. Water Res. 2020, 174, 115658. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Wang, N.; Yang, H.; Yang, J.; Bai, H. Detection of Microplastics Based on Spatial Heterodyne Raman Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 283, 121712. [Google Scholar] [CrossRef] [PubMed]
- Gniadek, M.; Dąbrowska, A. The Marine Nano- and Microplastics Characterization by SEM-EDX: The Potential of the Method in Comparison with Various Physical and Chemical Approaches. Mar. Pollut. Bull. 2019, 148, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, A.; Mielańczuk, M.; Syczewski, M. The Raman Spectroscopy and SEM/EDS Investigation of the Primary Sources of Microplastics from Cosmetics Available in Poland. Chemosphere 2022, 308, 136407. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Bai, Q.; Zheng, R.; Li, P.; Liu, R.; Yu, S.; Liu, J. Mass Concentration, Spatial Distribution, and Risk Assessment of Small Microplastics (1–100 μm) and Nanoplastics (<1 μm) in the Surface Water of Taihu Lake, China. Environ. Res. 2025, 285, 122214. [Google Scholar] [CrossRef] [PubMed]
- Okoffo, E.D.; Thomas, K.V. Mass Quantification of Nanoplastics at Wastewater Treatment Plants by Pyrolysis–Gas Chromatography–Mass Spectrometry. Water Res. 2024, 254, 121397. [Google Scholar] [CrossRef]
- Nijenhuis, W.; Houthuijs, K.J.; Brits, M.; van Velzen, M.J.M.; Brandsma, S.H.; Lamoree, M.H.; Béen, F.M. Improved Multivariate Quantification of Plastic Particles in Human Blood Using Nontargeted Pyrolysis GC–MS. J. Hazard. Mater. 2025, 489, 137584. [Google Scholar] [CrossRef]
- Shruti, V.C.; Pérez-Guevara, F.; Roy, P.D.; Kutralam-Muniasamy, G. Analyzing Microplastics with Nile Red: Emerging Trends, Challenges, and Prospects. J. Hazard. Mater. 2022, 423 Pt B, 127171. [Google Scholar] [CrossRef]
- Hengstmann, E.; Fischer, E.K. Nile Red Staining in Microplastic Analysis: Proposal for a Reliable and Fast Identification Approach for Large Microplastics. Environ. Monit. Assess. 2019, 191, 612. [Google Scholar] [CrossRef]
- Leonard, J.; Koydemir, H.C.; Koutnik, V.S.; Tseng, D.; Ozcan, A.; Mohanty, S.K. Smartphone-Enabled Rapid Quantification of Microplastics. J. Hazard. Mater. Lett. 2022, 3, 100052. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Zhang, Y.; Fan, Y. Integrated Sample Processing and Counting Microfluidic Device for Microplastics Analysis. Anal. Chim. Acta 2023, 1261, 341237. [Google Scholar] [CrossRef]
- Jeon, C.; Kim, H. Microplastics and Nanoplastics in Groundwater: Occurrence, Analysis, and Identification. Trends Environ. Anal. Chem. 2024, 44, e00246. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, F.; Kazmi, S.S.U.H.; Zhao, Y.; Chen, M.; Wang, J. A Review of Microplastic Pollution in Seawater, Sediments and Organisms of the Chinese Coastal and Marginal Seas. Chemosphere 2022, 286, 131677. [Google Scholar] [CrossRef]
- Shen, A.; Wei, Y.; Pan, Y.; Li, X.; Gong, L.; Pan, Y.; Jeppesen, E.; Duan, C. Current Status of Microplastic Pollution in China’s Aquatic Environment and Its Interactions with Metal Pollutants on Aquatic Organisms. Water Res. X 2025, 28, 100392. [Google Scholar] [CrossRef]
- Santucci, L.; Fernández Severini, M.D.; Rimondino, G.N.; Colombo, C.V.; Prieto, G.; Forero López, A.D.; Carol, E.S. Assessment of Meso- and Microplastics Distribution in Coastal Sediments and Waters at the Middle Estuary of the Río de la Plata, Argentina (SW Atlantic Ocean). Sci. Total Environ. 2024, 914, 170026. [Google Scholar] [CrossRef] [PubMed]
- Piskuła, P.; Astel, A.; Pawlik, M. Microplastics in Seawater and Fish Acquired from the Corresponding Fishing Zones of the Baltic Sea. Mar. Pollut. Bull. 2025, 211, 117485. [Google Scholar] [CrossRef]
- Papadimitriu, M.; Allinson, G. Microplastics in the Mediterranean Marine Environment: A Combined Bibliometric and Systematic Analysis to Identify Current Trends and Challenges. Microplast. Nanoplast. 2022, 2, 8. [Google Scholar] [CrossRef]
- Gajšt, T.; Bizjak, T.; Palatinus, A.; Liubartseva, S.; Kržan, A. Sea Surface Microplastics in Slovenian Part of the Northern Adriatic. Mar. Pollut. Bull. 2016, 113, 392–399. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Liu, K.; Zhu, L.; Wei, N.; Zong, C.; Li, D. Pelagic Microplastics in Surface Water of the Eastern Indian Ocean during Monsoon Transition Period: Abundance, Distribution, and Characteristics. Sci. Total Environ. 2021, 755, 142629. [Google Scholar] [CrossRef]
- Naidu, S.; Mawii, L.; Rao, V.R.; Anitha, G.; Mishra, P.; Narayanaswamy, B.E.; Kumar, V.A.; Murthy, M.R.; Gvm, G. Characterization of Plastic Debris from Surface Waters of the Eastern Arabian Sea–Indian Ocean. Mar. Pollut. Bull. 2021, 169, 112468. [Google Scholar] [CrossRef] [PubMed]
- Fatema, K.; Sumon, K.A.; Moon, S.M.; Alam, J.; Hasan, S.J.; Uddin, H.; Arakawa, H.; Rashid, H. Microplastics and Mesoplastics in Surface Water, Beach Sediment, and Crude Salt from the Northern Bay of Bengal, Bangladesh Coast. J. Sediment. Environ. 2023, 8, 231–246. [Google Scholar] [CrossRef]
- Emberson-Marl, H.; Coppock, R.L.; Cole, M.; Godley, B.J.; Mimpriss, N.; Nelms, S.E.; Lindeque, P.K. Microplastics in the Arctic: A Transect through the Barents Sea. Front. Mar. Sci. 2023, 10, 1241829. [Google Scholar] [CrossRef]
- Pakhomova, S.; Berezina, A.; Zhdanov, I.; Yakushev, E. Microplastic Fate in Arctic Coastal Waters: Accumulation Hotspots and Role of Rivers in Svalbard. Front. Mar. Sci. 2024, 11, 1392680. [Google Scholar] [CrossRef]
- Jones-Williams, K.; Cole, M.; Rowlands, E.; Waluda, C.; Manno, C.; Primpke, S.; Galloway, T. Microplastics in Antarctica—A Plastic Legacy in the Antarctic Snow? Environ. Sci. Technol. 2020, 54, 15976–15986. [Google Scholar] [CrossRef]
- Bernard, N.; Metian, M.; Oberhaensli, F.; Sznaider, F.; Ruberto, L.; Vodopivez, C.; Mac Cormack, W.; Alonso Hernandez, C. Identification and Quantification of Microplastics in the Antarctic Coastal Waters Using Laser Direct Infrared (LDIR). Mar. Pollut. Bull. 2025, 221, 118534. [Google Scholar] [CrossRef]
- Bergmann, M.; Collard, F.; Fabres, J.; Gabrielsen, G.W.; Provencher, J.F.; Rochman, C.M.; van Sebille, E.; Tekman, M.B. Plastic Pollution in the Arctic. Nat. Rev. Earth Environ. 2022, 3, 323–337. [Google Scholar] [CrossRef]
- Pakhomova, S.; Berezina, A.; Lusher, A.L.; Zhdanov, I.; Silvestrova, K.; Zavialov, P.; van Bavel, B.; Yakushev, E. Microplastic Variability in Subsurface Water from the Arctic to Antarctica. Environ. Pollut. 2022, 298, 118808. [Google Scholar] [CrossRef]
- Davranche, M.; Lory, C.; Le Juge, C.; Blancho, F.; Dia, A.; Grassl, B.; El Hadri, H.; Pascal, P.-Y.; Gigault, J. Nanoplastics on the Coast Exposed to the North Atlantic Gyre: Evidence and Traceability. NanoImpact 2020, 20, 100262. [Google Scholar] [CrossRef]
- Jamieson, A.J.; Brooks, L.S.R.; Reid, W.D.K.; Piertney, S.B.; Narayanaswamy, B.E.; Linley, T.D. Microplastics and Synthetic Particles Ingested by Deep-Sea Amphipods in Six of the Deepest Marine Ecosystems on Earth. R. Soc. Open Sci. 2019, 6, 180667. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Mei, X.; Mi, B.-B.; Yang, H.; Han, Z.-Z.; Zhang, Y.; Lü, W.-C. Current Status and Cause Analysis of Microplastic Pollution in Sea Areas in China. China Geol. 2022, 5, 160–170. [Google Scholar] [CrossRef]
- UNEP. Picking Up Litter: Pointless Exercise or Powerful Tool in the Battle to Beat Plastic Pollution? United Nations Environment Programme. 2023. Available online: https://www.unep.org/news-and-stories/story/picking-litter-pointless-exercise-or-powerful-tool-battle-beat-plastic (accessed on 15 August 2024).
- Jang, M.; Shim, W.J.; Cho, Y.; Han, G.M.; Song, Y.K.; Hong, S.H. A Close Relationship between Microplastic Contamination and Coastal Area Use Pattern. Water Res. 2020, 171, 115400. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.C.; Allen, D.; Allen, S.; Maselli, V.; LeBlanc, A.; Kelleher, L.; Krause, S.; Walker, T.R.; Cohen, M. Transport and Deposition of Ocean-Sourced Microplastic Particles by a North Atlantic Hurricane. Commun. Earth Environ. 2023, 4, 442. [Google Scholar] [CrossRef]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in Freshwater Eco-Systems: What We Know and What We Need to Know. Environ. Sci. Eur. 2017, 29, 12. [Google Scholar] [CrossRef]
- Grbić, J.; Helm, P.; Athey, S.; Rochman, C.M. Microplastics Entering Northwestern Lake Ontario Are Diverse and Linked to Urban Sources. Water Res. 2020, 174, 115623. [Google Scholar] [CrossRef]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in Freshwater Systems: A Review of the Emerging Threats, Identification of Knowledge Gaps and Prioritization of Research Needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef]
- Li, K.; Zhao, R.; Meng, X. Spatiotemporal Distribution of Microplastics in Surface Water of Typical Urban Rivers in North China, Risk Assessment and Influencing Factors. J. Contam. Hydrol. 2025, 273, 104626. [Google Scholar] [CrossRef]
- Junaid, M.; Liu, S.; Liao, H.; Yue, Q.; Wang, J. Environmental Nanoplastics Quantification by Pyrolysis-Gas Chromatography–Mass Spectrometry in the Pearl River, China: First Insights into Spatiotemporal Distributions, Compositions, Sources and Risks. J. Hazard. Mater. 2024, 476, 135055. [Google Scholar] [CrossRef]
- Joshi, C.; Phyllei, S.W.E.; Bhatt, S.; Chatterjee, S. Microplastic Surge in the Ariyankuppam River, Puducherry, India: A Study on Abundance, Characterization, and Pollution Load Index. J. Contam. Hydrol. 2025, 274, 104669. [Google Scholar] [CrossRef]
- Owowenu, E.K.; Nnadozie, C.F.; Akamagwuna, F.; Siwe-Noundou, X.; Odume, O.N. Occurrence and Distribution of Microplastics in Functionally Delineated Hydraulic Zones in Selected Rivers, Eastern Cape, South Africa. Environ. Pollut. 2025, 379, 126544. [Google Scholar] [CrossRef] [PubMed]
- Barrows, A.P.W.; Christiansen, K.S.; Bode, E.T.; Hoellein, T.J. A Watershed-Scale, Citizen Science Approach to Quantifying Microplastic Concentration in a Mixed Land-Use River. Water Res. 2018, 147, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Nan, B.; Su, L.; Kellar, C.; Craig, N.J.; Keough, M.J.; Pettigrove, V. Identification of Microplastics in Surface Water and Australian Freshwater Shrimp Paratya australiensis in Victoria, Australia. Environ. Pollut. 2020, 259, 113865. [Google Scholar] [CrossRef] [PubMed]
- Ansoar-Rodríguez, Y.; Rimondino, G.N.; Bertrand, L.; Rivetti, N.; Colombo, C.V.; Bistoni, M.A.; Amé, M.V. Microplastic Distribution and Potential Ecological Risk Index in a South American Sparsely Urbanized River Basin: Focus on Abiotic Matrices and the Native Fish Jenynsia lineata. J. Hazard. Mater. Adv. 2025, 18, 100685. [Google Scholar] [CrossRef]
- Pierdomenico, M.; Morgana, S.; Latino Chiocci, F. First Report of Microplastics in Water and Sediments of the Alkaline Bagno dell’Acqua Lake (Pantelleria Island, Southern Italy). Environ. Pollut. 2024, 362, 124962. [Google Scholar] [CrossRef]
- Baldwin, A.K.; Spanjer, A.R.; Rosen, M.R.; Thom, T. Microplastics in Lake Mead National Recreation Area, USA: Occurrence and Biological Uptake. PLoS ONE 2020, 15, e0228896. [Google Scholar] [CrossRef]
- Luo, W.; Su, L.; Craig, N.J.; Du, F.; Wu, C.; Shi, H. Comparison of Microplastic Pollution in Different Water Bodies from Urban Creeks to Coastal Waters. Environ. Pollut. 2019, 246, 174–182. [Google Scholar] [CrossRef]
- Kukkola, A.; Runkel, R.L.; Schneidewind, U.; Murphy, S.F.; Kelleher, L.; Sambrook Smith, G.H.; Nel, H.A.; Lynch, I.; Krause, S. Prevailing Impacts of River Management on Microplastic Transport in Contrasting US Streams: Rethinking Global Microplastic Flux Estimations. Water Res. 2023, 240, 120112. [Google Scholar] [CrossRef] [PubMed]
- Onyena, A.P.; Tekeme, M.E.; Uwakwe, J.C.; Aderibigbe, D.; Sam, K. Baseline Characterization of Microplastics in Surface Water, Sediment, and Seafood from the Escravos Estuary, Nigeria. Sci. Afr. 2025, 27, e02591. [Google Scholar] [CrossRef]
- Gilbert, D.S.; Hayhurst, B.A.; Grubisich, S.; Schneider, N.; Martin, O.; DeNyse, C.; Chomiak, K.M.; Tyler, A.C.; Eddingsaas, N.C. A Bellwether for Microplastic in Wetland Catchments in the Great Lakes Region. J. Great Lakes Res. 2024, 50, 102411. [Google Scholar] [CrossRef]
- Bydalek, F.; Ifayemi, D.; Reynolds, L.; Barden, R.; Kasprzyk-Hordern, B.; Wenk, J. Microplastic Dynamics in a Free Water Surface Constructed Wetland. Sci. Total Environ. 2023, 858 Pt 3, 160113. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Y.; Wang, B.; Hu, J.; Zhao, C.; Yu, D.; Wang, J.; Liu, Z. Coexposure of Microplastics with Heavy Metals Increases Environmental Pressure in the Endangered and Rare Wildlife Reserve: A Case Study of the Zhalong Wetland Red-Crowned Crane Nature Reserve, Northeast China. Environ. Pollut. 2024, 363 Pt 2, 125287. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Dixon, S.J. Microplastics: An Introduction to Environmental Transport Processes. WIREs Water 2018, 5, e1268. [Google Scholar] [CrossRef]
- Yano, K.A.; Geronimo, F.K.; Reyes, N.J.; Kim, L.H. Characterization and Comparison of Microplastic Occurrence in Point and Nonpoint Pollution Sources. Sci. Total Environ. 2021, 797, 148939. [Google Scholar] [CrossRef]
- Ertel, B.M.; Weinstein, J.E.; Gray, A.D. Rising Seas and Roadway Debris: Microplastic and Low-Density Tire Wear Particles in Street-Associated Tidal Floodwater. Mar. Pollut. Bull. 2023, 195, 115502. [Google Scholar] [CrossRef]
- Raju, S.; Carbery, M.; Kuttykattil, A.; Senthirajah, K.; Lundmark, A.; Rogers, Z.; Suresh, S.C.B.; Evans, G.; Palanisami, T. Improved Methodology to Determine the Fate and Transport of Microplastics in a Secondary Wastewater Treatment Plant. Water Res. 2020, 173, 115549. [Google Scholar] [CrossRef] [PubMed]
- Kieu-Le, T.-C.; Nguyen, N.-B.-T.; Ngo, T.-P.; Lai, M.-T.; Nguyen, P.-D.; Pham, N.-H.; Le, T.-M.-T. Microplastics in Wastewater and Sludge from Centralized Industrial Wastewater Treatment Plants in Ho Chi Minh City, Vietnam. Case Stud. Chem. Environ. Eng. 2025, 12, 101276. [Google Scholar] [CrossRef]
- Viitala, M.; Tsering, T.; Hyvönen, M.; Reinikainen, S.-P.; Mänttäri, M. Microplastic Budgets and Discharges to Lake Saimaa from Three Finnish Wastewater Treatment Plants. J. Environ. Manag. 2025, 389, 126093. [Google Scholar] [CrossRef]
- Wolff, S.; Kerpen, J.; Prediger, J.; Barkmann, L.; Müller, L. Determination of the Microplastics Emission in the Effluent of a Municipal Wastewater Treatment Plant Using Raman Microspectroscopy. Water Res. X 2019, 2, 100014. [Google Scholar] [CrossRef]
- Angel Jessieleena, A.; Premkumar, R.; Iniyan, K.E.; Nambi, I.M. Distribution of Microplastics in Domestic Wastewater Treatment Plant: Exploring Ferrofluid Assisted Magnetic Separation for Microplastics Removal. J. Water Process Eng. 2025, 76, 108186. [Google Scholar] [CrossRef]
- Roy, I.R.W.; Raj, A.S.; Viaroli, S. Microplastic Removal, Identification and Characterization in Chennai Sewage Treatment Plants. J. Environ. Manag. 2025, 380, 125120. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Huo, M.; Coulon, F.; Ali, M.; Tang, Z.; Liu, X.; Ying, Z.; Wang, B.; Song, X. Understanding Microplastic Presence in Different Wastewater Treatment Processes: Removal Efficiency and Source Identification. Sci. Total Environ. 2024, 929, 172680. [Google Scholar] [CrossRef] [PubMed]
- Ridall, A.; Farrar, E.; Dansby, M.; Ingels, J. Influence of Wastewater Treatment Plants and Water Input Sources on Size, Shape, and Polymer Distributions of Microplastics in St. Andrew Bay, Florida, USA. Mar. Pollut. Bull. 2023, 187, 114552. [Google Scholar] [CrossRef]
- Feng, L.-J.; Wang, J.-J.; Liu, S.-C.; Sun, X.-D.; Yuan, X.-Z.; Wang, S.-G. Role of extracellular polymeric substances in the acute inhibition of activated sludge by polystyrene nanoparticles. Environ. Pollut. 2018, 238, 859–865. [Google Scholar] [CrossRef]
- Reddy, A.S.; Nair, A.T. The Fate of Microplastics in Wastewater Treatment Plants: An Overview of Source and Remediation Technologies. Environ. Technol. Innov. 2022, 28, 102815. [Google Scholar] [CrossRef]
- Law, K.L.; Morét-Ferguson, S.; Maximenko, N.A.; Proskurowski, G.; Peacock, E.E.; Hafner, J.; Reddy, C.M. Plastic Accumulation in the North Atlantic Subtropical Gyre. Science 2010, 329, 1185–1188. [Google Scholar] [CrossRef]
- Permana, R.; Chakraborty, S.; Valsami-Jones, E. Nanoplastics in Aquatic Environments: The Hidden Impact of Aging on Fate and Toxicity. Environ. Chem. Ecotoxicol. 2025, 7, 429–444. [Google Scholar] [CrossRef]
- Meijer, L.J.J.; van Emmerik, T.; van der Ent, R.; Schmidt, C.; Lebreton, L. More than 1,000 Rivers Account for 80% of Global Riverine Plastic Emissions into the Ocean. Sci. Adv. 2021, 7, eaaz5803. [Google Scholar] [CrossRef] [PubMed]
- Garello, N.A.; Blettler, M.C.M.; Espínola, L.A.; Rodrigues, S.; Rimondino, G.N.; Wantzen, K.M.; Rabuffetti, A.P.; Girard, P.; Malanca, F.E. Microplastics Distribution in River Side Bars: The Combined Effects of Water Level and Wind Intensity. Sci. Total Environ. 2023, 878, 16540. [Google Scholar] [CrossRef] [PubMed]
- Amelia, T.S.M.; Wan Mohd Khalik, W.M.A.; Ong, M.C.; Shao, Y.T.; Pan, H.-J.; Bhubalan, K. Marine Microplastics as Vectors of Major Ocean Pollutants and Its Hazards to the Marine Ecosystem and Humans. Prog. Earth Planet. Sci. 2021, 8, 12. [Google Scholar] [CrossRef]
- Obbard, R.W.; Sadri, S.; Wong, Y.Q.; Khitun, A.A.; Baker, I.; Thompson, R.C. Global Warming Releases Microplastic Legacy Frozen in Arctic Sea Ice. Earth’s Future 2014, 2, 315–320. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Worldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Pradel, A.; Catrouillet, C.; Gigault, J. The Environmental Fate of Nanoplastics: What We Know and What We Need to Know about Aggregation. NanoImpact 2023, 29, 100453. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and Fate of Microplastic Particles in Wastewater Treatment Plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N. Mechanistic Implications of Plastic Degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Su, J.; Ruan, J.; Luo, D.; Wang, J.; Huang, Z.; Yang, X.; Zhang, Y.; Zeng, Q.; Li, Y.; Huang, W.; et al. Differential Photoaging Effects on Colored Nanoplastics in Aquatic Environments: Physicochemical Properties and Aggregation Kinetics. Environ. Sci. Technol. 2023, 57, 15656–15666. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, Z.; Yesilay, G.; Cetin, D.; Suludere, Z.; Rashdan, S.; Hazeem, L.; Bououdina, M.; Kyzas, G.Z. Photodegradation of Polystyrene Microplastics Exposed to Natural Sunlight. J. Photochem. Photobiol. A Chem. 2025, 468, 116462. [Google Scholar] [CrossRef]
- Shilpa; Basak, N.; Meena, S.S. Microbial Biodegradation of Plastics: Challenges, Opportunities, and a Critical Perspective. Front. Environ. Sci. Eng. 2022, 16, 161. [Google Scholar] [CrossRef]
- Cole, M.; Galloway, T.S. Ingestion of Nanoplastics and Microplastics by Pacific Oyster Larvae. Environ. Sci. Technol. 2015, 49, 14625–14632. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Chen, F.; Yao, Q.; Lin, M.; Zhou, K.; Mi, S.; Pan, H.; Zhao, X. Toxicity Effects and Mechanism of Micro/Nanoplastics and Loaded Conventional Pollutants on Zooplankton: An Overview. Mar. Environ. Res. 2024, 198, 106547. [Google Scholar] [CrossRef] [PubMed]
- Provencher, J.F.; Bond, A.L.; Hedd, A.; Montevecchi, W.A.; Martin, P.; Courchesne, S.J.; Lavers, J.L.; Mallory, M.L. Quantifying Ingested Debris in Marine Megafauna: A Review and Recommendations for Standardization. Anal. Methods 2017, 9, 1454–1469. [Google Scholar] [CrossRef]
- Wang, W.; Gao, H.; Jin, S.; Li, R.; Na, G. The Ecotoxicological Effects of Microplastics on Aquatic Food Web, from Primary Producer to Human: A Review. Ecotoxicol. Environ. Saf. 2019, 173, 110–117. [Google Scholar] [CrossRef]
- Chae, Y.; Kim, D.; Choi, M.-J.; Cho, Y.; An, Y.-J. Impact of Nanosized Plastic on the Nutritional Value and Gut Microbiota of Whiteleg Shrimp Litopenaeus vannamei via Dietary Exposure. Environ. Int. 2019, 130, 104848. [Google Scholar] [CrossRef]
- Lei, L.; Wu, S.; Lu, S.; Liu, M.; Song, Y.; Fu, Z.; Shi, H.; Raley-Susman, K.M.; He, D. Microplastic Particles Cause Intestinal Damage and Other Adverse Effects in Zebrafish (Danio rerio) and Nematode (Caenorhabditis elegans). Sci. Total Environ. 2018, 619–620, 1–8. [Google Scholar] [CrossRef]
- Pittura, L.; Avio, C.G.; Giuliani, M.E.; d’Errico, G.; Keiter, S.H.; Cormier, B.; Gorbi, S.; Regoli, F. Microplastics as Vehicles of Environmental PAHs to Marine Organisms: Combined Chemical and Physical Hazards to the Mediterranean Mussels, Mytilus galloprovincialis. Front. Mar. Sci. 2018, 5, 103. [Google Scholar] [CrossRef]
- Raguso, C.; Grech, D.; Becchi, A.; Ubaldi, P.G.; Lasagni, M.; Guala, I.; Saliu, F. Detection of Microplastics and Phthalic Acid Esters in Sea Urchins from Sardinia (Western Mediterranean Sea). Mar. Pollut. Bull. 2022, 185, 114328. [Google Scholar] [CrossRef] [PubMed]
- Maldeniya, M.U.S.; Liu, Y.; Ma, B.; Yin, J.; Wen, S.; Yuan, L.; Luo, P. Microplastic and Nanoplastic Exposure Induced Transcriptional and Physiological Alterations and Triggered Immune Responses in the Sea Cucumber, Holothuria leucospilota. Environ. Pollut. 2025, 375, 126291. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, A.; Strode, E.; Kurach, Ł.; Stachowicz, M. Ecotoxicological Effects of Nanoplastic and Microplastic Polystyrene Particles on Hyalella azteca: A Comprehensive Study on the Impact of Physical and Chemical Surface Properties. J. Contam. Hydrol. 2025, 272, 104574. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhang, S.; Sun, J.; He, X.; Xue, S.; Zhang, W.; Li, P.; Lin, L.; Qu, Y.; Ward-Fear, G.; et al. Nanoplastic Pollution Changes the Intestinal Microbiome but Not the Morphology or Behavior of a Freshwater Turtle. Sci. Total Environ. 2024, 934, 173178. [Google Scholar] [CrossRef] [PubMed]
- Başaran Kankılıç, G.; Koraltan, İ.; Erkmen, B.; Çağan, A.S.; Çırak, T.; Özen, M.; Seyfe, M.; Altındağ, A.; Tavşanoğlu, Ü.N. Size-Selective Microplastic Uptake by Freshwater Organisms: Fish, Mussel, and Zooplankton. Environ. Pollut. 2023, 336, 122445. [Google Scholar] [CrossRef]
- Doria, H.B.; Sohal, N.; Feldmeyer, B.; Pfenninger, M. Size over Substance: Microplastic Particle Size Drives Gene Expression and Fitness Loss in a Freshwater Insect. Aquat. Toxicol. 2025, 284, 107386. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Valsalan, S.A. Microplastics in Fish and a Bivalve Species Sampled from Freshwater Environment and Retail Outlets, and the Assessment of Human Exposure. Food Control 2024, 166, 110664. [Google Scholar] [CrossRef]
- Sampsonidis, I.; Michailidou, K.; Spritinoudi, K.; Dimitriadi, A.; Ainali, N.M.; Bobori, D.C.; Lambropoulou, D.A.; Kyzas, G.Z.; Bikiaris, D.N.; Kalogiannis, S. Genotoxicity and Metabolic Changes Induced via Ingestion of Virgin and UV-Aged Polyethylene Microplastics by the Freshwater Fish Perca fluviatilis. Chemosphere 2024, 362, 142619. [Google Scholar] [CrossRef]
- Latchere, O.; Métais, I.; Perrein-Ettajani, H.; Lemoing, M.; Feurtet-Mazel, A.; Gonzalez, P.; Daffe, G.; Gigault, J.; Catrouillet, C.; Châtel, A.; et al. Trophic Transfer Effects of PS Nanoplastics and Field-Derived Nanoplastics in the Freshwater Clam Corbicula fluminea. Aquat. Toxicol. 2024, 277, 107160. [Google Scholar] [CrossRef]
- Shen, M.; Song, B.; Zhu, Y.; Zeng, G.; Zhang, Y.; Yang, Y.; Wen, X.; Chen, M.; Yi, H. Removal of Microplastics by Drinking Water Treatment: Current Knowledge and Future Directions. Chemosphere 2020, 251, 126612. [Google Scholar] [CrossRef] [PubMed]
- Tympa, L.-E.; Katsara, K.; Moschou, P.N.; Kenanakis, G.; Papadakis, V.M. Do Microplastics Enter Our Food Chain via Root Vegetables? A Raman Based Spectroscopic Study on Raphanus sativus. Materials 2021, 14, 2329. [Google Scholar] [CrossRef]
- Lee, A.; Song, C.; Lee, J.J.; Lee, S.S.; Kang, J.; Kim, K.-T.; Kim, C. Selective Detection and Tracking of Polyamide Microplastic by Aggregation-Promoted Fluorescent Dye in Environmental Samples, Milk and Live Organisms. J. Environ. Chem. Eng. 2025, 13, 118100. [Google Scholar] [CrossRef]
- Welden, N.A.; Abylkhani, B.; Howarth, L.M. The Effects of Trophic Transfer and Environmental Factors on Microplastic Uptake by Plaice, Pleuronectes plastessa, and Spider Crab, Maja squinado. Environ. Pollut. 2018, 239, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Arini, A.; Gigault, J.; Venel, Z.; Bertucci, A.; Baudrimont, M. The Underestimated Toxic Effects of Nanoplastics Coming from Marine Sources: A Demonstration on Oysters (Isognomon alatus). Chemosphere 2022, 295, 133824. [Google Scholar] [CrossRef] [PubMed]
- Nozari Asl, R.; Jaafarzadeh Haghighi Fard, N.; Jahedi, F.; Khaksar, M.A.; Shenavar, B. Systematic Review of Pulmonary Toxicity Induced by Microplastics and Nanoplastics: Insights from In Vivo and In Vitro Studies. Toxicol. Anal. Clin. 2025, 37, 223–241. [Google Scholar] [CrossRef]
- Pauly, J.L.; Stegmeier, S.J.; Allaart, H.A.; Cheney, R.T.; Zhang, P.J.; Mayer, A.G.; Streck, R.J. Inhaled Cellulosic and Plastic Fibers Found in Human Lung Tissue. Cancer Epidemiol. Biomark. Prev. 1998, 7, 419–428. [Google Scholar]
- Zhong, C.; Lan, M.; Chen, C.; Fan, L.; Shen, H.; He, M.; Wang, J.; Fang, J.; Lu, W.; Xu, X.; et al. Geospatial Environmental Sources of Inhaled Microplastics: A Case in Zhuhai, China. J. Hazard. Mater. 2025, 496, 139537. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Ribeiro Júnior, G.; Galvão, L.D.S.; Ando, R.A.; Mauad, T. Presence of Airborne Microplastics in Human Lung Tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef]
- Luo, Y.; Naidu, R.; Fang, C. Toy Building Bricks as a Potential Source of Microplastics and Nanoplastics. J. Hazard. Mater. 2024, 471, 134424. [Google Scholar] [CrossRef] [PubMed]
- Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in Cosmetics: Environmental Issues and Needs for Global Bans. Environ. Toxicol. Pharmacol. 2019, 68, 75–79. [Google Scholar] [CrossRef]
- Liu, L.; Xu, K.; Zhang, B.; Ye, Y.; Zhang, Q.; Jiang, W. Cellular Internalization and Release of Polystyrene Microplastics and Nanoplastics. Sci. Total Environ. 2021, 779, 146523. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Xia, P.-F.; Yuan, X.-Z.; Wang, S.-G. Chlorine Disinfection Elevates the Toxicity of Polystyrene Microplastics to Human Cells by Inducing Mitochondria-Dependent Apoptosis. J. Hazard. Mater. 2022, 425, 127842. [Google Scholar] [CrossRef] [PubMed]
- Forte, M.; Iachetta, G.; Tussellino, M.; Carotenuto, R.; Prisco, M.; De Falco, M.; Laforgia, V.; Valiante, S. Polystyrene Nanoparticles Internalization in Human Gastric Adenocarcinoma Cells. Toxicol. Vitr. 2016, 31, 126–136. [Google Scholar] [CrossRef]
- Halimu, G.; Zhang, Q.; Liu, L.; Zhang, Z.; Wang, X.; Gu, W.; Zhang, B.; Dai, Y.; Zhang, H.; Zhang, C.; et al. Toxic Effects of Nanoplastics with Different Sizes and Surface Charges on Epithelial-to-Mesenchymal Transition in A549 Cells and the Potential Toxicological Mechanism. J. Hazard. Mater. 2022, 430, 128485. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ladd, D.M.; Kaval, N.; Wang, H.-S. Toxicity of Long Term Exposure to Low Dose Polystyrene Microplastics and Nanoplastics in Human iPSC-Derived Cardiomyocytes. Food Chem. Toxicol. 2025, 202, 115489. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.; Akhtar, M. Cytotoxic Effect of Polystyrene Nanoplastics in Human Umbilical Vein Endothelial Cells (HUVECs) and Normal Rat Kidney Cells (NRK52E). J. King Saud Univ. Sci. 2024, 36, 103505. [Google Scholar] [CrossRef]
- Leslie, H.A.; Van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D. Cytotoxic Effects of Commonly Used Nanomaterials and Microplastics on Cerebral and Epithelial Human Cells. Environ. Res. 2017, 159, 579–587. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, A.; Wang, Y.; Feng, S.; Xue, Q.; Liu, Z.; Zhao, H.; Jing, Z.; Xie, J. Microplastics Induce Human Kidney Development Retardation through ATP-Mediated Glucose Metabolism Rewiring. J. Hazard. Mater. 2025, 486, 137002. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Pramanik, S.K.; Monira, S. Understanding the Fragmentation of Microplastics into Nanoplastics and Removal of Nano/Microplastics from Wastewater Using Membrane, Air Flotation and Nanoferrofluid Processes. Chemosphere 2021, 282, 131053. [Google Scholar] [CrossRef]
- Yaranal, N.A.; Subbiah, S.; Mohanty, K. Identification, Extraction of Microplastics from Edible Salts and Its Removal from Contaminated Seawater. Environ. Technol. Innov. 2021, 21, 101253. [Google Scholar] [CrossRef]
- Marczak-Grzesik, M.; Tarach, K.A.; Olszewska, A.; Sobańska, K.; Kowalczyk, A.; Góra-Marek, K. UV–Vis Methodology for Evaluation of Adsorption of Polystyrene Nanoplastics by Zeolite Adsorbents: A Case of Carboxylate-Modified Polystyrene. J. Environ. Chem. Eng. 2025, 13, 117306. [Google Scholar] [CrossRef]
- Han, M.; Wang, Z.; Xie, Z.; Hou, M.; Gao, Z. Polydopamine-Modified Sodium Alginate Hydrogel for Microplastics Removal: Adsorption Performance, Characteristics, and Kinetics. Int. J. Biol. Macromol. 2025, 297, 139947. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.; Shon, H.K.; Jeong, S. Effective Removal of Micro- and Nanoplastics from Water Using Iron Oxide Nanoparticles: Mechanisms and Optimization. Chem. Eng. J. 2025, 519, 165739. [Google Scholar] [CrossRef]
- Fu, J.; Liu, N.; Peng, Y.; Wang, G.; Wang, X.; Wang, Q.; Lv, M.; Chen, L. An Ultralight Sustainable Sponge for Elimination of Microplastics and Nanoplastics. J. Hazard. Mater. 2023, 456, 131685. [Google Scholar] [CrossRef]
- Foladori, P.; Lucchini, G.; Torboli, A.; Bruni, L. Flow Cytometry as a Tool for the Rapid Enumeration of 1-μm Microplastics Spiked in Wastewater and Activated Sludge after Coagulation-Flocculation-Sedimentation. Chemosphere 2024, 359, 142328. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zhou, Y.; Zhang, P.; Nie, Y.; Ma, J. Coagulation Performance and Mechanism of Different Novel Covalently Bonded Organic Silicon-Aluminum/Iron Composite Coagulant for As(V) Removal from Water: The Role of Hydrolysate Species and the Effect of Coexisting Microplastics. J. Hazard. Mater. 2024, 480, 135819. [Google Scholar] [CrossRef] [PubMed]
- Kouchakipour, S.; Hosseinzadeh, M.; Zarghami Qaretapeh, M.; Dashtian, K. Sustainable Large-Scale Fe3O4/Carbon for Enhanced Polystyrene Nanoplastics Removal through Magnetic Adsorption Coagulation. J. Water Process Eng. 2024, 58, 104919. [Google Scholar] [CrossRef]
- Gongi, W.; Touzi, H.; Sadly, I.; Ben Ouada, H.; Tamarin, O.; Ben Ouada, H. A Novel Impedimetric Sensor Based on Cyanobacterial Extracellular Polymeric Substances for Microplastics Detection. J. Polym. Environ. 2022, 30, 4738–4748. [Google Scholar] [CrossRef]
- Stabili, L.; Quarta, E.; Giotta, L. The Seaweed Chaetomorpha linum Cultivated in an Integrated Multitrophic Aquaculture System: A New Tool for Microplastic Bioremediation? Sci. Total Environ. 2024, 954, 176262. [Google Scholar] [CrossRef] [PubMed]
- Sangkham, S.; Pitakpong, A.; Kumar, R. Advanced Approaches to Microplastic Removal in Landfill Leachate: Advanced Oxidation Processes (AOPs), Biodegradation, and Membrane Filtration. Case Stud. Chem. Environ. Eng. 2025, 11, 101056. [Google Scholar] [CrossRef]
- Ye, Q.; Xu, H.; Hunter, T.N.; Harbottle, D.; Kale, G.M.; Tillotson, M.R. Advanced Polystyrene Nanoplastic Remediation through Electro-Fenton Process: Degradation Mechanisms and Pathways. J. Environ. Chem. Eng. 2025, 13, 118907. [Google Scholar] [CrossRef]
- Pérez-López, A.; Domínguez, C.M.; Santos, A.; Cotillas, S. Removal of Polystyrene Nanoplastics from Urban Treated Wastewater by Electrochemical Oxidation. Sep. Purif. Technol. 2025, 363 Pt 2, 132139. [Google Scholar] [CrossRef]
- Easton, T.; Maksymiuk, K.; Charlton, L.; Koutsos, V.; Chatzisymeon, E. Transformation of Polyester Fiber Microplastics by Sulfate-Based Advanced Oxidation Processes. J. Environ. Chem. Eng. 2024, 12, 112988. [Google Scholar] [CrossRef]
- OECD. Global Plastics Outlook: Policy Scenarios to 2060; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- Microbead-Free Waters Act of 2015, H.R. 1321, 114th Congress (2015–2016). Public Law 114-114. Available online: https://www.congress.gov/bill/114th-congress/house-bill/1321/text (accessed on 1 May 2025).
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs from Land into the Ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- City of San Francisco. Zero Waste Program Annual Report 2021. Available online: https://www.sfenvironment.org/files/events/2021_commission_on_the_environment_annual_report.pdf (accessed on 1 May 2025).
Shape | Typical Length | Typical Diameter/Thickness | Density (g/cm3) | Common Sources | Polymer Types | Color |
---|---|---|---|---|---|---|
Fibers | 0.1–5 mm | 10–50 µm | ~1.0–1.4 | Synthetic textiles, fishing nets | PES, PP, Nylon | Blue, red, green, black, white, yellow |
Fragments | 0.1–5 mm | 0.05–2 mm | >1.02 | Plastic debris, plastic bottles, container, spoon, straw | PE, PP, PS, PET | Transparent, white, orange, opaque, black |
Films | 1–10 mm | 10–100 µm | ~0.9–1.2 | Plastic bags, wrappers, packaging materials | LDPE, HDPE, PP | White, transparent, blue, purple |
Foams | 0.5–2 mm | 0.2–2 mm | ~0.05–0.5 | Polystyrene cups, packaging foams | PS, EPS | White, yellow, violet, pink |
Pellets/Nurdles | 2–5 mm | Spherical | ~0.9–1.4 | Industrial plastic byproduct, debris | PE, PP, PS | White, transparent. brown, yellow |
Beads/Granules | 0.1–1 mm | Spherical | ~1.0–1.3 | Cosmetics, personal care, abrasives | PE, PP, PET | White, transparent, yellow |
Plastic Polymer | Chemical Formula | Density (g/cm3) (Low–High) | Degradation Rate (Annual Mass Loss%) | Recyclability |
---|---|---|---|---|
Polyethylene (PE) | –(CH2–CH2)– | 0.91–0.96 | 0.6 (HDPE) 0.8 (LDPE) | Easily recyclable (HDPE & LDPE), although LDPE less common |
Polypropylene (PP) | –(C3H6)– | 0.90–0.92 | 0.0 | Moderately recyclable |
Polystyrene (PS) | –(C8H8)– | 1.04–1.06 | 0.1 | Hard to recycle: EPS foam rarely recycled |
Polyethylene Terephthalate (PET) | –(C10H8O4)– | 1.38–1.41 | 4.9 | Easily recyclable; high recovery rates |
Polyamide (Nylon) | –(C12H22N2O2)– | 1.13–1.15 | - | Rarely recycled; specialized recycling exists |
Polyester (PES) | –(C10H8O4)– | 1.38–1.41 | - | Easily recyclable |
Acrylic (PMMA) | –(C5O2H8)– | 1.18–1.20 | - | Hard to recycle |
Polytetrafluoroethylene (PTFE/Teflon) | –(C2F4)– | 2.10–2.30 | - | Very low recyclability; specialized chemical recycling only |
Polyvinyl Chloride (PVC) | –(C2H3Cl)– | 1.16–1.58 | - | Hard to recycle |
Polyurethane (PUR) | –(C13H21NO2)– | 1.20–1.25 | 3 | Hard to recycle; specialized chemical or mechanical recycling only |
Analysis Techniques | Types of MP | Detection Range | Advantages | Disadvantages | References |
---|---|---|---|---|---|
Macroscopic Visual Identification | Macroscopic particles | >5 mm | - Low cost - Simple & convenient | - Low accuracy - Prone to overestimation and misidentification | [54,55] |
Optical Characterization | PE, PET | 0.003 mm–1 mm | - Nondestructive - Determines size, morphology, chemical composition - Cost-effective portable systems | - Struggles with some polymers (e.g., PVC) - Limited sensitivity for nanoscale | [56,57,58] |
Fourier-Transform Infrared (FT-IR) Spectroscopy | PE, PP, PVC, PTFE | >25 µm–5 mm | - Robust technique - High efficiency - Identifies multiple polymers - Suitable for low to moderate particle numbers | - Sample clogging at high particle loads - Requires careful preparation - Less effective for very small nanoparticles | [59,60,61] |
Micro Fourier-Transform Infrared (µ-FT-IR) Spectroscopy | PET, PE, PP | ~10 µm–5 mm | - High resolution - Automated analysis - High polymer identification efficiency | - Expensive instrumentation - Slower analysis for large sample numbers | [60,61] |
Raman Spectroscopy | PET, PE, PP, PVC, PS | ~100 nm | - Detects very small particles including nanoparticles - High chemical specificity - High-resolution imaging | - Fluorescence interference - Expensive - Time-consuming for large numbers of particles | [62,63,64] |
Scanning Electron Microscopy (SEM) | Microbeads (various MPs & NPs) | ~0.9 µm–750 µm | - Detailed morphological information - Detects surface features - High-resolution imaging | - Cannot directly identify polymer type - Expensive - Requires conductive coating - Small field of view | [65,66] |
Pyrolysis Methods (Py-GC–MS) | PE, PP, PET, PVC, PS, PMMA, Nylon | 0.04 µm–100 µm | - Quantitative - Detects wide polymer range - Effective for micro- and nanoplastics - Can be used in complex matrices | - Destructive - Requires specialized equipment and expertise - Cannot provide particle morphology | [67,68,69] |
Fluorescence Microscopy (Nile Red dye) | PE, PP, PS, Nylon | >5 µm–10 µm | - Cost-effective - Simple - Rapid screening - Detects hydrophobic polymers efficiently | - Less effective for less hydrophobic polymers (e.g., PET, PVC) - Prone to false positives - Limited particle size resolution | [70,71] |
Microfluidics | PS, PP, PMMA | ~60 µm | - Low cost - Rapid - Integrates sample processing and counting - Small sample volume | - Limited polymer types - May not detect very small nanoparticles | [72] |
Ocean | Sampling Technique | Types of Microplastics | Concentration | Particle Size | Polymer Types | Color | References |
---|---|---|---|---|---|---|---|
Northwestern Pacific | Manta trawl | Granules 39.7%, Sheets 26.7%, Films 24.7%, Lines 8.9% | 6.4 × 102–4.2 × 104 pieces/km2 | 0.5–1.0 mm (50%), 1–2.5 mm (29.8%), 2.5–5 mm (17.6%) | PE (57.8%), PP (36.0%), Nylon (3.4%) | White (57.4%), Transparent (22.8%), Green (6.6%), Black (6.4%), Blue (2.8%), Yellow (2.4%), Purple (1.5%) | [25] |
Pacific Ocean (mid-west) | Manta trawl net | Fibers/filaments (57.4%), Fragments (18.3%) | 6028–95,335 pieces/km2 | 1–2.5 mm (35.1%), 0.5–1 mm (28.5%) | PP (39.1%), PMMA (16.2%), PE (14.1%), PET (14.2%) | White (33.8%), Transparent (31.0%), Green (24.6%) | [27] |
Western Pacific | CTD sampler, Plankton pumps (in situ filtration) | Fibers (83.6%), Fragments (15.1%), Films (1.4%) | 115.12 ± 64.13 n/m3 (CTD), 0.37 ± 0.44 pieces/m3 (filtration) | 500 µm (40.2%) | PET (81.8–84%), PP (3–15%), Others (<5%) | Green (58.6%), Black, Blue, Red (~10% each) | [31] |
Atlantic Ocean (subtropics–equator) | Pump system, Manta Net | Fibers (36%), Fragments (56%), Foam (4.3%), Film (4.3%), Granules (4.3%) | Max: 4.9–5.5 pieces/m3, Min: 0–0.4 pieces/m3 | 200 µm–5 mm (pump), 500 µm–5 mm (Manta) | HDPE (density up to 970 g/m3) | — | [26] |
North-east Atlantic | Manta Trawl Net, Grab sampling | Particles (56%), Fibers (44%) | 0.24–4050 pieces/m3, 47–2154 pieces/m3 | 2–300 µm | Polyester (63%), Polycarbonate (24%), Cellulose acetate (12%), PS (1%), PET (20%), Acrylates (15%) | Mostly blue and red | [30,32] |
European Atlantic Coastal Waters | UFO pump sampling, Manta net | Fibers (56–97%), Fragments (88–98%) | <10 MPs/m3 to >1600 pieces/m3 | <300 µm | Polyester (42.5%), PP (17.5%), PE (8%), PA (6%), PS (2%), PVC (1.5%) | — | [33] |
SW Atlantic Ocean | Grab Sampling | Fibers (13.70 ± 13.40/L), Fragments (1.33 ± 2.17/L), Foams (1.17 ± 1.62/L) | 14.17 ± 5.50 pieces/L | <0.5 mm (majority), 0.5–1.5 mm (small %) | PANMA (most abundant), PP, PET, PE, aromatic resin, poly styrene acrylate ester, PS and cellulosic material | Transparent (8.7/L), Black (4.2/L), White (1.5/L), Pink, Red, Violet | [77] |
Baltic Sea | Plankton net (>100 μm), Jussi sampler (30 L, >50 μm) | Fragments (97.6%), Fibers (2.4%), Fiber (91.7%) | 0.92 ± 0.61 pieces/m3 (plankton), 0.44 ± 0.52 pieces/L (Jussi sampler, 30L) 19,984 ± 8858 pieces/m3 (seawater) | 20–724 µm (plankton), 20–8386 µm (Jussi), 1.08 ± 1.19 mm (seawater) | PE, PP, PET, PA, PS, Cellophane (16%), Polyacrylate (8%) | Blue dominant | [35,78] |
Mediterranean Sea (Adriatic) | Trawls net | — | 406 × 103 pieces/km2 | <5 mm (majority) | PE (80%), Unidentified (14%), Others (PP, PO, PS, PVC, ABS) | — | [80] |
Eastern Indian Ocean | Mesh net (330 µm) | Fragments (68.4%), Linear (16.1%), Fiber (8.3%), Granular (6.5%), Film (0.6%) | 0.34 ± 0.80 pieces/m2 | <1–5 mm (<1 mm most) | PP (51.1%), PE (20.1%) | Transparent (48.8%), Colored (28.5%), White (18.4%), Black (4.3%) | [81] |
Indian Ocean (Arabian Sea) | Bongo net | Fibers (47%), Fragments (27%), Films (18%), Foams (7%), Pellets (1%) | 0.013 ± 0.012 pieces/m3 | 0.5–5 mm (51%) | PE, PP | Blue, Brown, Green, Orange, Transparent, White, Yellow | [82] |
Indian Ocean (Bay of Bengal) | Manta Net | Fragments, Fibers, Films, Foams, Pellets, Microbeads | 0.021–0.023 pieces/m2 | >300 µm | PE (28%), PP (25%), PS (17%), PET (15%) 0thers: PET, PA, PP, HDPE | Mainly White | [83] |
Arctic Ocean (Barent Sea) | Sequential mesh filtration (300–65–22 µm) | Fibers (92.1%) | 0.011 pieces/m3 (0.007–0.015) | <1000 µm (60%), 41.6–14,855 µm | Polyester (3.8%), Copolymers (2.7%), Elastomers (7.1%), Acrylics (10.6%), Semisynthetic (74.4%) | Blue (79%), Red (17%) | [84] |
Arctic coastal waters | Neuston net (0.333 mm), Pump sampling | Fragments (95%) (neuston), Fibers (53%), Fragments (47%) (pump) | 0.19 pieces/m3 | 500–5000 µm (neuston), 100–5000 µm (pump) | PE (67.8%), PP (16.1%), EPS (14.7%), PA (0.7%) and PVC, (0.7%) (neuston net) PET (25.7%), PA (19.8%), PE (16.8%), PP (15.8%), Acryl (12.9%), PS (5.0%), PVC (1%), PTFE (1%), Others (1% ethylene propylene, 1%, polymethyl methacrylate) (pump sampling) | — | [85] |
Antarctica (Snow) (Union Glacier, Schanz Glacier and the South Pole) | Grab sampling | Particles (79%), Fibers (21%) | 73–3099 pieces/L | <50 µm (95%) | PA (55.5%), PET (12.3%), PE (10.9%), Rubber (10.3%), Acrylates (4.6%), PP (3.1%), CMC (2.2%), PVC (0.4%), PS (0.1%), EVA (0.2%) | — | [86] |
Antarctic coastal waters | Grab sampling | Fragments (95.6%), Fibers (4.1%) | 17.4 pieces/L | 20–300 µm | PA, PET, PU (73.8%) | — | [87] |
Freshwater System | Name | Sampling Techniques | Concentration | Types of Microplastics and Nanoplastics | Particle Size | Polymer Types | Color | Reference |
---|---|---|---|---|---|---|---|---|
River | Yellow river (China) | Grab Sampling (stainless-steel bucket) | 930 and 497 pieces/L (in dry and wet season) | Fibers (93.12%), fragments and particles | <200 μm (most abundant) | PE, PP, PS | [40] | |
Zhang and Fuyang (Urban River in China) | Grab Sampling (5 L) | Zhang river: 4133 ± 1674 pieces/m3 (dry season) and 6717 ± 2350 pieces/m3 (wet season) Fuyang river: 2433 ± 771 pieces/m3 (dry season) and 1722 ± 854 pieces/m3 (wet season) | Fibers (Zhang River: 75.9–77.4%; Fuyang River: 58.2–65.3%) | 0–2 mm Zhang River: (85.9–89.5)%; Fuyang River: (86.3–87.9)% | PE (Zhang River: 38.3–47.9%; Fuyang River: 41.1–48.6%) and PP (Zhang River: 16.1–20.6%; Fuyang River: 11.3–15.1%). | blue dominant color (Zhang River: 44.7–55.2%; Fuyang River: 25.3–33.1%). | [99] | |
Pearl River (China) | Grab Sampling | 47.75–411.55 µg/L | <1000 nm | PS, PVC, PA66 | [100] | |||
Ariyankuppam River (India) | Grab Sampling | 124.83 ± 22.44 pieces/L | Fibers (87.9%) | 0–500 μm and 500–1000 μm | High-density polyethylene (HDPE) and Low-Density Polyethylene (LDPE) | Blue (9.30%), dark blue (15.71%), green (2.10%), dark green (0.93%), yellow (3.70%), red (17.32%), black (32.82%), transparent (17.32%), opaque (0.80%). | [101] | |
Buffalo and Swartkops Rivers (South Africa) | Grab Sampling (Cylindrical bucket) | 1.76 ± 1.44 pieces/L | fibers and fragments (80%) pellets/spheres (1.10%) | 0.063–0.5 mm | PE and PP | Red, blue, and black (63%), Yellow (2.7%) | [102] | |
Meuse River Basin (Netherlands) | Pump sampling | 67–11,532 pieces/m3 | Fibers, PE, PP, nitrile rubber and acrylates/polyurethanes | 20–30 μm | PE (23%), PP (19.7%) and ethylene propylene diene monomer rubber (18.3%) | [41] | ||
Latvian rivers in Europe (Daugava, Lielupe, Gauja, and Salaca) | Manta net (length 2 m, 100 μm mesh aperture) | 0.63 to 132.88 piecesm3 | Fibers (68.02%) and fragments | 300–999 μm (52.45%), 1000–4999 μm (27.62%) | PE, PP, and ethylene propylene diene monomer | Black, transparent, and blue | [42] | |
Gallatin River watershed (USA) | Grab sampling (average of 1.3 L) | 1.2 pieces/L | Fibers (80%) fragments (19.7%), and microbeads (0.3%) | 0.1–1.5 mm | Semisynthetic cellulose (30%), PES (20%), PET (13%), Cotton (5%), PP (4%), PA (4%), Urethane (4%) | Blue (33%) clear/transparent (30%) red (13%), others (13%), or black (11%) | [103] | |
Alabama River (USA) | Plankton nets | 31–135 pieces/L (fall), 25–66 pieces/L, 13–48 pieces/L(summer), and 12–75 pieces/L(spring) | fiber (39 –72 %) (in summer) fiber (62 –74 %) (in fall) | <1 mm (50%) <2.5 mm (40%) | PET (21.7%), PMP (16.1%), PP (13.8%), PVC (12.4%), PBT (12%), ABS (6.7%), and PE (5.3%). | [43] | ||
Goulburn River catchment (Victoria, Australia) | Grab Sampling (5 L) | 0.40 ± 0.27 pieces/L | Fiber (58.3–100.0%) | 0.036 to 4.668 mm | PES (30.6%), PA (12.9%), Rayon (8.1%) | Blue (45%), black (8.1%), red (7.1%) | [104] | |
Suquía River basin (Argentina) | Grab Sampling | 64.6 ± 23.5 and 158.0 ± 56.4 pieces/m3 | Fibers (65%) | 804.1 ± 59.6 µm | Cellulose and PET | Blue (∼40%) | [105] | |
Lakes | Lake Hazar (Türkiye) | net (70 × 40 × 260 cm, 300 μm mesh size, Hydro-Bios) | 286.09 ± 226.96 pieces/m3 | Fragments (80.4%) Others: films, fibers and foams (~10–20%) | <0.5 mm (44.3%) | PE, PP (most common) | White/transparent (69.2%), blue, green, red, yellow and black | [44] |
Lake Aba Samuel, (Addis Ababa, Ethiopia) | Centrifugal pump (Leo 4xcm 120C) | 29 ± 0.6 pieces/L | Fragments (34%), fibers (28%), films (16%), foams (12%), and pellets (9%) | <100 µm (45%) | PE (30%), PP (20%), and PET (20%) | Transparent (40%), green (91.5%), black (10.8) | [45] | |
Lake Ontario (Canada) | Grab Sampling (10 L) | 0.8 pieces/L | Fiber (28%), films (27%), foam (8%) | 1.0 ± 0.9 mm and 0.3 ± 0.2 mm | Cellulose (40%), PET (20%), PE (10%), PVC (5%) | Clear/white (50%) | [97] | |
Alkaline Bagno dell’Acqua Lake (Pantelleria Island, southern Italy) | Metal Bucket (10 L) | 0.13 ± 0.04 pieces/L | Fibers (∼90%) | 1–5 mm (50%) 0.5–1 mm (26%), 0.1–0.5 mm (21%) and >5 mm (5%). | PES (68%), PA/Nylon (11%), EVA (11%), PP (5%) | black (46%), blue (27%), red (16%) and transparent (11%) | [106] | |
Lake Mead (USA) | Microplastic net (HYDRO-BIOS) | 0.44–9.7 pieces/m3 | Fibers (68.9%), Fragments (15.6%), films (8.9%), foams (6.5%), and beads/pellets (0.1%) | 355–1000 μm (73.1%) 1000–5600 μm (26.5) | Clear (33.4%), white (18.7%), black (17.1%), blue (14.7%), and red (6.7%). | [107] | ||
Taihu Lake (China) | Grab Sampling | 381–1356 μg/L | Microplastics:1–100 μm Nanoplastics: <1 μm | PE, PP, PET, PVC, PS, PMM | [67] | |||
Creeks | Shanghai creeks (China) | Grab Sampling (5 L) | 0.9–2 pieces/L | Fiber (88%), fragment, (7%), film (4%), pallet (1%) | 1–2 mm (60%) <0.1 mm (15%) | Red (55%), blue (25%), black (5%), white (5%) | [108] | |
Brownhill Creek, Christie Creek, and Pedler Creek (Australia) | Automated composite sampling | 1.2–30 pieces/L | Fibers (71.5%), Fragments (16.9%), beads (8.1%), films (2.3%) and foams (1.1%) | 200–500 µm | Translucent (38.7%), blue (28.4%), and black (12.4%) | [46] | ||
Boulder Creek (USA) | Galvanized metal bucket (50 L) | 0.08–0.62 pieces/L | fragments (51.7%) and fibers (48.3%) | >63 µm | PES (50%) | [109] | ||
Estuary | Yangtze Estuary | Grab Sampling (5 L) | 0–1pieces/L | Fiber (85%), fragment, (6%), pallet (5%) and film (4%), | 1–2 mm (60%) <0.1 mm (20%) | Blue (60%), black (20%), red (10%) | [108] | |
Escravos Estuary, Nigeria | plankton water sampler | 50 pieces/L | Fibers (~30%) Fragments (26%) | 4.2–800 µm | PET, PA or nylon, PVC, PS, and PC | Blue (dominant) | [110] | |
Netravathi-Gurupura estuary (Northeast India) | Stainless-steel bucket and Niskin horizontal water sampler (for deeper depth) | 8.15 (±3.81) pieces/L (wet season) and 1.14 (±0.78) pieces/L (dry season) | Fibers (92%) Fragments (3.8%) Film (3%) | 0.1–0.3 mm (63.09%) 0.3–1 mm (32.94%) | PET (35%), PE (20–25%), PA (10%), and PS (10%)) | Transparent (42–35%), blue (23–35%), black (31%) | [47] | |
Wetland catchment | Great Lakes region: Horicon, WI; Seney, MI; Shiawassee, MI; Ottawa, OH; and Montezuma, NY | Grab sampling | 2–68 pieces/m3 | Fibers (most abundant) Fragments | 100 μm–4 mm | [111] | ||
Cromhall integrated constructed wetland (ICW) (South West Gloucestershire, UK) | Grab sampling (5 L and 10L stainless steel bucket) | 0.30 ± 0.09 pieces/L | fibers (71.9%) and fragments (70.1%) | 100–1000 μm (dominant) | [112] | |||
Zhalong wetland red-crowned crane nature reserve (northeast China) | Grab sampling (metal bucket, 10 L volume) | 738 ± 85 pieces/L | PS, PP, and PE (85%) | [113] |
Region | Types of Waste- Waters | Treatment Level | Conc. in Influent | Conc. in Effluent | Types of Micro- and Nanoplastics | Particle Size | Polymer Types | Removal Efficiency | MP Discharge (Pieces × 106/day) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Ho Chi Minh City, Vietnam | Industrial | Secondary | 0.3–40.4 pieces/L | 0.5–5.9 pieces/L | Fibers (85–97%) | 300 μm–5000 μm | (91–96)% | 1.7 | [118] | |
Finland (Mikkeli) | Municipal | Secondary and tertiary | 204 pieces/L in | 0.09 to 0.75 pieces/L | Fragments (77–80%) and fibers (20–33%) | 100–249 μm (47–64%) | PE (16–31%), PP (11–19%), PET (15–35%) | ~99% | 258 | [119] |
Russelsheim am Main, Germany | Municipal | Secondary | 5.9 pieces/L (wet season) 3.0 pieces/L (dry season) | Fibers | 90–300 μm | PET (dominant), PE, PP and PS | 80–90% | [120] | ||
Chennai (India) | Domestic | Secondary | 139.8 ± 110 pieces/L | 6.38 ± 6.63 pieces/L | Fiber and fragments | 5–20 μm (77–91%) | PET, HDPE, PP | (92–99)% | [121] | |
Kodungaiyur Plant, Koyambedu plant (Chennai, India) | Municipal | Tertiary | 5443 pieces/L and 4800 pieces/L | 235 pieces/L and 355 pieces/L | Fiber (31–69%), Fragment (15–23%), film (8–11%) | >105 μm (65 to 75%) | PE (~35%), PP (~30%), PUR (~9%) | 96% and ~93% | 2840 and 2820 | [122] |
Sydney, Australia | Municipal | Tertiary | 0.21–1.5 (pieces/L) | Fibers, granular, irregular | 25–500 μm (92–99%) | PET (35%), nylon (28%), PE (23%), PP (10%) and PS (4%) detected | 99% | [42] | ||
Changchun City, Northeast China. | Industrial and domestic | Tertiary | 38.5 ± 2.5 pieces/L | 1 ± 1.0 pieces/L | Granule, line, fiber, flake, foam, and film. | 50–200 μm (39–41%) | PE (30%) PET (29%), PP (11%), PS (7%), | 90% and 97% | 85 | [123] |
River Clyde, Glasgow | Domestic | Secondary | 15.70 (±5.23) pieces/L | 25 (±0.04) pieces/L | Flakes (67.3%), fibers (18.5%), film (9.9%), beads (3.0%), and foam (1.3%) | <5 mm (abundant) | PE (30.4%), PA (21%), and Acrylic (13%) | 98.4% | 65 | [44] |
St. Andrew Bay, Florida, USA | Municipal | Tertiary | Fragments (59.1%), fibers (33.1%) and films (7.9%), | <100 µm | PP (54.3%), PET (16.5%), and PES (12.6%) | 97–99% | 1–10 | [124] | ||
Australia | Municipal | Tertiary | 27.7, 18, and 9.1 µg/L | 1, 1.4, and 0.8 µg/L /L) | (<1 µm) | Nylon 66 (30%), PE (27%), PP (%), Nylon 6 (15%), and PET (9%) | 96%, 92%, and 91% | 1.9–6.5 | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razzaque, A.S.; Melesse, A.M. Global Insights into Micro- and Nanoplastic Pollution in Surface Water: A Review. Hydrology 2025, 12, 265. https://doi.org/10.3390/hydrology12100265
Razzaque AS, Melesse AM. Global Insights into Micro- and Nanoplastic Pollution in Surface Water: A Review. Hydrology. 2025; 12(10):265. https://doi.org/10.3390/hydrology12100265
Chicago/Turabian StyleRazzaque, Aujeeta Shehrin, and Assefa M. Melesse. 2025. "Global Insights into Micro- and Nanoplastic Pollution in Surface Water: A Review" Hydrology 12, no. 10: 265. https://doi.org/10.3390/hydrology12100265
APA StyleRazzaque, A. S., & Melesse, A. M. (2025). Global Insights into Micro- and Nanoplastic Pollution in Surface Water: A Review. Hydrology, 12(10), 265. https://doi.org/10.3390/hydrology12100265