Topical Collection "Bioenergy and Biofuel"

Editor

Prof. Dr. Thomas E. Amidon
Website
Collection Editor
Department of Paper and Bioprocess Engineering, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY 13210, USA
Interests: biorefineries; biofuels; bioenergy; bio-based materials and chemicals; nanocellulose; pulp and paper; pellets; forest and biomass resources; process development; novel bio-based products; cell wall deconstruction; hot water extraction; cellulosic bioproducts; improved fiber-based products; biomass productivity
Special Issues and Collections in MDPI journals

Topical Collection Information

Dear Colleagues,

We would like to see articles in the intellectual space from raw materials (any form of biomass), to extraction and separation into components, to conversion of intermediates into final products. The products do not have to be biofuels if the products are renewable in origin and substitute for fossil fuel derived products. Engineering work applicable to any of the component operations is also appreciated. We would also be interested in articles showing that multiple products and more sophistication in product development could lead to greater returns. An example here might be furfural production from xylose as a more valuable product than fermentation of xylose to ethanol, as well as showing that this might be an energetically preferable way to produce furfural.

Prof. Dr. Thomas E. Amidon
Collection Editor

Manuscript Submission Information

Manuscripts for the topical collection can be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on this website. The topical collection considers regular research articles, short communications and review articles. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page.

Please visit the Instructions for Authors page before submitting a manuscript. The article processing charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs).


Keywords

  • biomass
  • biofuels
  • biorefinery
  • extraction
  • component separation
  • conversion
  • novel biobased products
  • biorefinery engineering
  • biomass and biorefinery policy
  • fossil fuel substitution

Related Special Issues

Published Papers (150 papers)

2020

Jump to: 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011

Open AccessArticle
A Methodology for Measuring the Heat Release Efficiency in Bubbling Fluidised Bed Combustors
Energies 2020, 13(10), 2420; https://doi.org/10.3390/en13102420 - 12 May 2020
Abstract
Differences in the densities of bed material and—especially biogenic—solid fuels prevent an ideal mixture within bubbling fluidised bed (BFB) combustors. So, the presence of fuel particles is usually observed mainly near the surface of the fluidised bed. During their thermal conversion, this leads [...] Read more.
Differences in the densities of bed material and—especially biogenic—solid fuels prevent an ideal mixture within bubbling fluidised bed (BFB) combustors. So, the presence of fuel particles is usually observed mainly near the surface of the fluidised bed. During their thermal conversion, this leads to a release of unburnt pyrolysis products to the freeboard of the combustion chamber. Within the further oxidation, these species will not transfer their heat-of-reaction to the inert bed material in the way of a convective heat transfer, but rather increase the gas phase temperature providing probably some additional radiative heat transfer to the dense bed. In this case, the so-called heat release efficiency to the fluidised bed, being the ratio of transferred heat to the fuel input, will be reduced. This paper presents a methodology to quantify this heat release efficiency with lab-scale experiments and the observed effects of common operating parameters like bed temperature, fluidisation ratio and fuel-to-air ratio. Experimental results show that the air-to-fuel ratio dominates the heat release efficiency, while bed temperature and fluidisation ratio have minor influences. Full article
Show Figures

Figure 1

Open AccessArticle
Effects of Nitrogen Forms and Supply Mode on Lipid Production of Microalga Scenedesmus obliquus
Energies 2020, 13(3), 697; https://doi.org/10.3390/en13030697 - 06 Feb 2020
Cited by 1
Abstract
Optimization of the microalgae culture conditions could significantly reduce the production costs of microalgae-derived biodiesel. In the current study, a new process of adding different forms using the multiple small-dose method was employed. The effects of different forms of nitrogen (NaNO3, [...] Read more.
Optimization of the microalgae culture conditions could significantly reduce the production costs of microalgae-derived biodiesel. In the current study, a new process of adding different forms using the multiple small-dose method was employed. The effects of different forms of nitrogen (NaNO3, NH4Cl, and CH4N2O) and their concentrations (0.1, 0.5, 1, and 2 mg L−1) on the growth and lipid production of Scenedesmus obliquus were studied. Algae density and lipid production increased with increasing nitrogen concentration for all different forms of nitrogen except NH4Cl. The Scenedesmus obliquus growth was promoted by adding NaNO3 and CH4N2O, but was inhibited by adding NH4Cl. Adding 2 mg N L−1 of CH4N2O daily yielded the highest cell density (1.7 × 107 cells mL−1) and lipid production (242.4 mg L−1). These conditions can thus maintain the biomass of Scenedesmus obliquus, increase its lipid accumulation, and decrease the costs of biodiesel production. Full article
Show Figures

Graphical abstract

2019

Jump to: 2020, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011

Open AccessArticle
Factors Affecting the Corrosive Behavior of Used Cooking Oils and a Non-Edible Fish Oil That Are in Contact with Ferrous Metals
Energies 2019, 12(24), 4812; https://doi.org/10.3390/en12244812 - 17 Dec 2019
Abstract
The corrosion behavior of three used cooking oils and one non-edible fish oil was experimentally investigated by the immersion test of iron rods at room temperature. The corrosivity of the tested oils was indirectly determined from the amount of the dissolved iron in [...] Read more.
The corrosion behavior of three used cooking oils and one non-edible fish oil was experimentally investigated by the immersion test of iron rods at room temperature. The corrosivity of the tested oils was indirectly determined from the amount of the dissolved iron in the tested oils after the immersion test. Different factors that affect the corrosive behavior of the tested oils were assessed. Among the tested oils, the fish oil showed the highest amount of dissolved iron owing to its chemical properties such as high water content and acid number. In general, water content and acid number have direct effects on the amount of dissolved iron. The addition of oleic acid to the used cooking oil resulted in a 60% less amount of dissolved iron. It was suggested that the addition of oleic acid prompted the formation of a monolayer, which inhibited the permeation of oxygen and water to the surface of the iron rod. Moreover, the addition of glycerol gave the lowest amount of dissolved iron in the oil sample owing to its ability to bind water molecules and form microemulsions in the presence of a surfactant (for example, oleic acid). Full article
Show Figures

Figure 1

Open AccessArticle
The Effect of Lignin Content in Birch and Beech Kraft Cellulosic Pulps on Simple Sugar Yields from the Enzymatic Hydrolysis of Cellulose
Energies 2019, 12(15), 2952; https://doi.org/10.3390/en12152952 - 31 Jul 2019
Cited by 2
Abstract
The results of enzymatic hydrolysis of birch and beech kraft cellulosic pulps indicate that they may be promising feedstocks for fermentation processes including biofuel manufacturing. The aim of this study was to investigate whether birch and beech wood require the same degree of [...] Read more.
The results of enzymatic hydrolysis of birch and beech kraft cellulosic pulps indicate that they may be promising feedstocks for fermentation processes including biofuel manufacturing. The aim of this study was to investigate whether birch and beech wood require the same degree of delignification by kraft pulping as pine wood. The differences observed in the efficiency of hydrolysis for the raw materials tested suggest that the differences in the anatomical structure of the examined wood in relation to pine wood is essential for the efficiency of the enzymatic hydrolysis process. The yields of glucose and other reducing sugars obtained from the birch and beech cellulosic pulps were similar (up to around 75% and 98.3% dry weight, and 76% and 98.6% dry weight, respectively). The highest glucose yields from cellulose contained in the birch and beech pulp were around 81.2% (at a Kappa number of 28.3) and 83.1% (at a Kappa number of 30.4), respectively. The maximum glucose yields and total reducing sugars of birch wood on a dry weight basis (39.8% and 52.1%, respectively) were derived from the pulp at a Kappa number of 28.3, while the highest yields of glucose and total reducing sugars of beech wood on a dry weight basis (around 36.9% and 48.2%, respectively) were reached from the pulp at a Kappa number of 25.3. To obtain the highest glucose yields and total reducing sugars of a wood on a dry weight basis, total lignin elimination from the birch and beech pulps was not necessary. However more in-depth delignification of birch and beech wood is required than for pine wood. Full article
Show Figures

Figure 1

Open AccessArticle
Floating Membrane Bioreactors with High Gas Hold-Up for Syngas-to-Biomethane Conversion
Energies 2019, 12(6), 1046; https://doi.org/10.3390/en12061046 - 18 Mar 2019
Cited by 1
Abstract
The low gas-to-liquid mass transfer rate is one of the main challenges in syngas biomethanation. In this work, a new concept of the floating membrane system with high gas hold-up was introduced in order to enhance the mass transfer rate of the process. [...] Read more.
The low gas-to-liquid mass transfer rate is one of the main challenges in syngas biomethanation. In this work, a new concept of the floating membrane system with high gas hold-up was introduced in order to enhance the mass transfer rate of the process. In addition, the effect of the inoculum-to-syngas ratio was investigated. The experiments were conducted at 55 °C with an anaerobic mixed culture in both batch and continuous modes. According to the results from the continuous experiments, the H2 and CO conversion rates in the floating membrane bioreactor were approximately 38% and 28% higher in comparison to the free (suspended) cell bioreactors. The doubling of the thickness of the membrane bed resulted in an increase of the conversion rates of H2 and CO by approximately 6% and 12%, respectively. The highest H2 and CO consumption rates and CH4 production rate recorded were approximately 22 mmol/(L·d), 50 mmol/(L·d), and 34.41 mmol/(L·d), respectively, obtained at the highest inoculum-to-syngas ratio of 0.2 g/mL. To conclude, the use of the floating membrane system enhanced the syngas biomethanation rates, while a thicker membrane bed resulted in even higher syngas conversion rates. Moreover, the increase of the inoculum-to-syngas ratio of up to 0.2 g/mL favored the syngas conversion. Full article
Show Figures

Figure 1

Open AccessArticle
Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel–Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles
Energies 2019, 12(5), 798; https://doi.org/10.3390/en12050798 - 27 Feb 2019
Cited by 9
Abstract
The effect of iron-doped cerium oxide (FeCeO2) nanoparticles as a fuel additive was experimentally investigated with waste cooking oil methyl ester (WCOME) in a four-stroke, single cylinder, direct injection diesel engine. The study aimed at the reduction of harmful emissions of [...] Read more.
The effect of iron-doped cerium oxide (FeCeO2) nanoparticles as a fuel additive was experimentally investigated with waste cooking oil methyl ester (WCOME) in a four-stroke, single cylinder, direct injection diesel engine. The study aimed at the reduction of harmful emissions of diesel engines including oxides of nitrogen (NOx) and soot. Two types of nanoparticles were used: cerium oxide doped with 10% iron and cerium oxide doped with 20% iron, to further investigate the influence of the doping level on the nanoparticle activity. The nanoparticles were dispersed in the tested fuels at a dosage of 90 ppm with the aid of an ultrasonic homogenizer. Tests were conducted at a constant engine speed of 2000 rpm and varying loads (from 0 to 12 N.m) with neat diesel (D100) and biodiesel–diesel blends of 30% WCOME and 70% diesel by volume (B30). The engine combustion, performance, and emission characteristics for the fuel blends with nanoparticles were compared with neat diesel as the base fuel. The test results showed improvement in the peak cylinder pressure by approximately 3.5% with addition of nanoparticles to the fuel. A reduction in NOx emissions by up to 15.7% were recorded, while there was no noticeable change in unburned hydrocarbon (HC) emissions. Carbon monoxide (CO) emission was reduced by up to 24.6% for B30 and 15.4% for B30 with nano-additives. Better engine performance was recorded for B30 with 20% FeCeO2 as compared to 10% FeCeO2, in regard to cylinder pressure and emissions. The brake specific fuel consumption was lower for the fuel blend of B30 with 10% FeCeO2 nanoparticles, in low-to-medium loads and comparable to D100 at high loads. Hence, a higher brake thermal efficiency was recorded for the blend in low-to-medium loads compared to D100. Full article
Show Figures

Figure 1

Open AccessReview
A Holistic Review on Biomass Gasification Modified Equilibrium Models
Energies 2019, 12(1), 160; https://doi.org/10.3390/en12010160 - 03 Jan 2019
Cited by 7
Abstract
Biomass gasification is realized as a settled process to produce energy in a sustainable form, between all the biomass-based energy generation routes. Consequently, there are a renewed interest in biomass gasification promoting the research of different mathematical models to enlighten and comprehend gasification [...] Read more.
Biomass gasification is realized as a settled process to produce energy in a sustainable form, between all the biomass-based energy generation routes. Consequently, there are a renewed interest in biomass gasification promoting the research of different mathematical models to enlighten and comprehend gasification process complexities. This review is focused on the thermodynamic equilibrium models, which is the class of models that seems to be more developed. It is verified that the review articles available in the literature do not address non-stoichiometric methods, as well as an ambiguous categorization of stoichiometric and non-stoichiometric methods. Therefore, the main purpose of this article is to review the non-stoichiometric equilibrium models and categorize them, and review the different stoichiometric equilibrium model’s categorization available in the literature. The modeling procedures adopted for the different modeling categories are compared. Conclusion can be drawn that almost all equilibrium models are modified by the inclusion of empirical correction factors that improves the model prediction capabilities but with loss of generality. Full article
Show Figures

Figure 1

2018

Jump to: 2020, 2019, 2017, 2016, 2015, 2014, 2013, 2012, 2011

Open AccessArticle
Evaluation of Biogas Production from the Co-Digestion of Municipal Food Waste and Wastewater Sludge at Refugee Camps Using an Automated Methane Potential Test System
Energies 2019, 12(1), 32; https://doi.org/10.3390/en12010032 - 22 Dec 2018
Cited by 11
Abstract
The potential benefits of the application of a circular economy—converting biomass at Za’atari Syrian refugee camps into energy—was investigated in this study. Representative organic waste and sludge samples were collected from the camp, mixed in different ratios, and analyzed in triplicate for potential [...] Read more.
The potential benefits of the application of a circular economy—converting biomass at Za’atari Syrian refugee camps into energy—was investigated in this study. Representative organic waste and sludge samples were collected from the camp, mixed in different ratios, and analyzed in triplicate for potential biogas yield. Numerous calorific tests were also carried out. The tangential benefit of the co-digestion that was noticed was that it lowered the value of the total solid content in the mixture to the recommended values for wet digestion without the need for freshwater. To test the potential methane production, the automated methane potential test system (AMPTS) and the graduated tubes in the temperature-controlled climate room GB21 were utilized. Also, calorific values were determined for the organic waste and sludge on both a dry and a wet basis. The maximum biogas production from 100% organic waste and 100% sludge using AMPTS was 153 m3 ton−1 and 5.6 m3 ton−1, respectively. Methane yield reached its maximum at a Vs sub/Vs inoculum range of 0.25–0.3. In contrast, the methane yield decreased when the Vs sub/Vs inoculum exceeded 0.46. The optimum ratio of mixing of municipal food waste to sludge must be carefully selected to satisfy the demands of an energy production pilot plant and avoid the environmental issues associated with the sludge amount at wastewater treatment plants (WWTPs). A possible ratio to start with is 60–80% organic waste, which can produce 21–65 m3· biogas ton−1 fresh matter (FM). The co-digestion of organic waste and sludge can generate 38 Nm3/day of methane, which, in theory, can generate about 4 MW in remote refugee camps. Full article
Show Figures

Figure 1

Open AccessArticle
Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts
Energies 2018, 11(12), 3463; https://doi.org/10.3390/en11123463 - 11 Dec 2018
Cited by 3
Abstract
Currently, about 2.7 billion people across the world still lack access to clean cooking means. Humanitarian emergencies and post-emergencies are among the most critical situations: the utilization of traditional devices such as three-stone fires have a huge negative impact not only on food [...] Read more.
Currently, about 2.7 billion people across the world still lack access to clean cooking means. Humanitarian emergencies and post-emergencies are among the most critical situations: the utilization of traditional devices such as three-stone fires have a huge negative impact not only on food security but also on the socio-economic status of people, their health and the surrounding environment. Advanced Cooking Stoves may constitute better systems compared to actual ones, however, financial, logistic and time constraints have strongly limited the interventions in critical contexts until now. The innovative, low-cost Mewar Angithi insert for improving energy efficiency of three-stone fires may play a role in the transition to better cooking systems in such contexts. In this paper, we rely on the Water Boiling Test 4.2.3 to assess the performances of the Mewar Angithi insert respect to a traditional three-stone fire and we analyse the results through a robust statistical procedure. The potentiality and suitability of this novel solution is discussed for its use in critical contexts. Full article
Show Figures

Figure 1

Open AccessArticle
An Experimental and Theoretical Study of the Gasification of Miscanthus Briquettes in a Double-Stage Downdraft Gasifier: Syngas, Tar, and Biochar Characterization
Energies 2018, 11(11), 3225; https://doi.org/10.3390/en11113225 - 21 Nov 2018
Cited by 2
Abstract
The goal of this work is to understand the gasification process for Miscanthus briquettes in a double-stage downdraft gasifier, and the impact of different Equivalence Ratios (ER) on syngas, biochar, and tar characteristics. The optimal ER was found to be 0.35, which yielded [...] Read more.
The goal of this work is to understand the gasification process for Miscanthus briquettes in a double-stage downdraft gasifier, and the impact of different Equivalence Ratios (ER) on syngas, biochar, and tar characteristics. The optimal ER was found to be 0.35, which yielded a syngas maximum heating value of 5.5 MJ/Nm3 with a syngas composition of 20.29% CO, 18.68% H2, and 0.86% CH4. To better understand the observed behavior, an equilibrium reaction model was created and validated using the experimental data. The model showed that the heating value decreased with increasing ER, and that hydrogen production peaked at ER = 0.37, while methane (CH4) became negligible above ER = 0.42. Tar and particle content in the gas produced at a certain temperature can now be predicted. To assess the biochar characteristics, surface structure image analysis and a surface area porosity analysis were carried out. Employing images from a scanning electron microscope (SEM), the biochar cell bonds and pore structures were examined and analyzed. By using the Brunauer-Emmett-Teller (BET) analysis of the surface porosity, the surface area to be 186.06 m2/g and the micro pore volume was calculated to be 0.07 m3/g. The final aspect of the analysis involved an evaluation of tar production. Combining current and prior data showed a logarithmic relationship between the amount of tar produced and the gasifier bed temperature, where the amount of tar produced decreased with increasing bed temperature. This results in very low tar levels, which is one of the known advantages for a double-stage downdraft gasifier over a single-stage system. Full article
Show Figures

Figure 1

Open AccessArticle
Co-Digestion of Napier Grass with Food Waste and Napier Silage with Food Waste for Methane Production
Energies 2018, 11(11), 3200; https://doi.org/10.3390/en11113200 - 18 Nov 2018
Cited by 6
Abstract
Enhancement of methane production by co-digestion of Napier grass and Napier silage with food waste was investigated in batch and repeated batch modes. First, the ratios of Napier grass to food waste and Napier silage to food waste were varied at different g-volatile [...] Read more.
Enhancement of methane production by co-digestion of Napier grass and Napier silage with food waste was investigated in batch and repeated batch modes. First, the ratios of Napier grass to food waste and Napier silage to food waste were varied at different g-volatile solids (VS) to g-VS at an initial substrate concentration of 5 g-VS/L. The optimum ratios of Napier grass to food waste and Napier silage to food waste were 1:4 and 3:2 (g-VS/g-VS), respectively. This gave maximum methane yields (MY) of 411 and 362 mL-CH4/g-VSadded, respectively. Subsequently, the suitable ratios were used to produce methane at various substrate concentrations. A maximal MY of 403 and 353 mL CH4/g-VS were attained when concentrations of Napier grass co-digested with food waste and Napier silage co-digested with food waste were 15 g-VS/L and 20 g-VS/L, respectively. Under the optimum substrate concentration, the maximum MY from co-digestion of Napier grass with food waste was 1.14 times higher than that of Napier silage with food waste. Thus, co-digestion of Napier grass with food waste was further investigated at various organic loading rates (OLRs) in a 10.25 L horizontal reactor with a working volume of 5 L at an optimal ratio of 1:4 (g-VS/g-VS) and substrate concentration of 15 g VS/L. An OLR of 1.5 g-VS/L∙d gave a maximum methane production rate and MY of 0.5 L CH4/L∙d and 0.33 L-CH4/g-VSadded, respectively. Under the optimum OLR, the predominant methane producers were Methanoregula sp., Methanotorris sp., Methanobacterium sp., Methanogenium sp. and Methanosarcina sp. An energy production of 11.9 kJ/g-VSadded was attained. Full article
Show Figures

Figure 1

Open AccessArticle
Physicochemical, Performance, Combustion and Emission Characteristics of Melaleuca Cajuputi Oil-Refined Palm Oil Hybrid Biofuel Blend
Energies 2018, 11(11), 3146; https://doi.org/10.3390/en11113146 - 14 Nov 2018
Cited by 2
Abstract
To reduce the economic impact caused by the fossil fuel crisis and avoid relying on existing biofuels, it is important to seek locally available and renewable biofuel throughout the year. In the present work, a new light biofuel—Melaleuca Cajuputi oil (MCO)—was introduced to [...] Read more.
To reduce the economic impact caused by the fossil fuel crisis and avoid relying on existing biofuels, it is important to seek locally available and renewable biofuel throughout the year. In the present work, a new light biofuel—Melaleuca Cajuputi oil (MCO)—was introduced to blend with refined palm oil (RPO). The physicochemical properties, combustion characteristics, engine performance, and exhaust emissions were comprehensively examined. It was found that the higher the percentage of MCO, the lower the viscosity and density of the blends obtained. Calorific value (CV) was increased with the increase of MCO fraction in the blend. Regression analysis has suggested that the blend of 32% (v/v) of RPO and 68% (v/v) of MCO (RPO32MCO68) is optimal to obtain viscosity and density in accordance with ASTM 6751/EN 14214 standards. The experimental results show that the in-cylinder pressure, brake torque, and brake power of the optimal blend were slightly lower than those of baseline diesel fuel. Brake specific fuel consumption (BSFC), carbon monoxide (CO), and unburnt hydrocarbon (HC) were found to be slightly higher compared to diesel fuel. Notably, nitrogen oxides (NOx) and smoke opacity were found to be decreased over the entire range of the test. Overall, the optimal blend of RPO32MCO68 has shown a decent result which marks it as a potential viable source of biofuel. Full article
Show Figures

Figure 1

Open AccessArticle
Chemical Characteristics of Biomass Ashes
Energies 2018, 11(11), 2885; https://doi.org/10.3390/en11112885 - 24 Oct 2018
Cited by 19
Abstract
The aim of the conducted research was to obtain information on the main components of ashes from 35 biomass species used in combustion processes to obtain reference data for the development of utility possibilities for these ashes, with particular emphasis on agricultural use. [...] Read more.
The aim of the conducted research was to obtain information on the main components of ashes from 35 biomass species used in combustion processes to obtain reference data for the development of utility possibilities for these ashes, with particular emphasis on agricultural use. The examined biomass samples were divided into groups depending on origin: woody biomass and energetic woody plants I-WWB, herbaceous and grassy energy plants II-EC, agricultural waste III-AR, forest waste IV-FR and waste from the agri-food industry V-AFIW. The analysis of the studied elements contents was carried out in the designated groups. The chemical composition of ash was dominated by the macroelements Ca, K, P and S, which suggests the possibility of their agricultural use. At the same time, the low content of toxic elements such as As and Pb should not be a limiting feature in their use, with the exception of wood biomass. In addition, ashes obtained from the biomass combustion were enriched with microelements such as Zn, Cu and Mn, which further increases their possibilities of fertilizer use. The potential use of ash from each type of biomass in the aspect of its chemical composition should be considered individually, regardless of the division into groups depending on the origin of biomass. Full article
Show Figures

Figure 1

Open AccessArticle
Effects of Pore Fluid Chemistry and Saturation Degree on the Fracability of Australian Warwick Siltstone
Energies 2018, 11(10), 2795; https://doi.org/10.3390/en11102795 - 17 Oct 2018
Cited by 1
Abstract
Fracability of unconventional gas reservoirs is an important parameter that governs the effectiveness of subsequent gas extraction. Since reservoirs are saturated with various pore fluids, it is essential to evaluate the alteration of fracability of varyingly saturated rocks. In this study, varyingly saturated [...] Read more.
Fracability of unconventional gas reservoirs is an important parameter that governs the effectiveness of subsequent gas extraction. Since reservoirs are saturated with various pore fluids, it is essential to evaluate the alteration of fracability of varyingly saturated rocks. In this study, varyingly saturated (dry, water, and brine with 10%, 20% and 30% NaCl by weight) siltstone samples were subjected to uniaxial compressive loading to evaluate their fracability variation. Acoustic emission (AE) and ARAMIS photogrammetry analyses were incorporated to interpret the crack propagation. SEM analysis was carried out to visualize the micro-structural alterations. Results show that siltstone strength and brittleness index (BI) are reduced by 31.7% and 46.7% after water saturation, due to water-induced softening effect. High NaCl concentrations do not reduce the siltstone strength or brittleness significantly but may contribute to a slight re-gain of both values (about 3–4%). This may be due to NaCl crystallization in rock pore spaces, as confirmed by SEM analysis. AE analysis infers that dry siltstone exhibits a gradual fracture propagation, whereas water and brine saturated specimens exhibit a hindered fracturing ability. ARAMIS analysis illustrates that high NaCl concentrations causes rock mass failure to be converted to shear failure from splitting failure, which is in favour of fracability. Full article
Show Figures

Figure 1

Open AccessArticle
Optimizing Waste Heat Utilization in Vehicle Bio-Methane Plants
Energies 2018, 11(6), 1518; https://doi.org/10.3390/en11061518 - 11 Jun 2018
Cited by 1
Abstract
Current vehicle bio-methane plants have drawbacks associated with high energy consumption and low recovery levels of waste heat produced during the gasification process. In this paper, we have optimized the performance of heat exchange networks using pinch analysis and through the introduction of [...] Read more.
Current vehicle bio-methane plants have drawbacks associated with high energy consumption and low recovery levels of waste heat produced during the gasification process. In this paper, we have optimized the performance of heat exchange networks using pinch analysis and through the introduction of heat pump integration technology. Optimal results for the heat exchange network of a bio-gas system producing 10,000 cubic meters have been calculated using a pinch point temperature of 50 °C, a minimum heating utility load of 234.02 kW and a minimum cooling utility load of 201.25 kW. These optimal parameters are predicted to result in energy savings of 116.08 kW (19.75%), whilst the introduction of new heat pump integration technology would afford further energy savings of 95.55 kW (16.25%). The combined energy saving value of 211.63 kW corresponds to a total energy saving of 36%, with economic analysis revealing that these reforms would give annual savings of 103,300 USD. The installation costs required to introduce these process modifications are predicted to require an initial investment of 423,200 USD, which would take 4.1 years to reach payout time based on predicted annual energy savings. Full article
Show Figures

Figure 1

Open AccessFeature PaperEditor’s ChoiceReview
A Comprehensive Overview of CO2 Flow Behaviour in Deep Coal Seams
Energies 2018, 11(4), 906; https://doi.org/10.3390/en11040906 - 12 Apr 2018
Cited by 8
Abstract
Although enhanced coal bed methane recovery (ECBM) and CO2 sequestration are effective approaches for achieving lower and safer CO2 levels in the atmosphere, the effectiveness of CO2 storage is greatly influenced by the flow ability of the injected CO2 [...] Read more.
Although enhanced coal bed methane recovery (ECBM) and CO2 sequestration are effective approaches for achieving lower and safer CO2 levels in the atmosphere, the effectiveness of CO2 storage is greatly influenced by the flow ability of the injected CO2 through the coal seam. A precious understanding of CO2 flow behaviour is necessary due to various complexities generated in coal seams upon CO2 injection. This paper aims to provide a comprehensive overview on the CO2 flow behaviour in deep coal seams, specifically addressing the permeability alterations associated with different in situ conditions. The low permeability nature of natural coal seams has a significant impact on the CO2 sequestration process. One of the major causative factors for this low permeability nature is the high effective stresses applying on them, which reduces the pore space available for fluid movement with giving negative impact on the flow capability. Further, deep coal seams are often water saturated where, the moisture behave as barriers for fluid movement and thus reduce the seam permeability. Although the high temperatures existing at deep seams cause thermal expansion in the coal matrix, reducing their permeability, extremely high temperatures may create thermal cracks, resulting permeability enhancements. Deep coal seams preferable for CO2 sequestration generally are high-rank coal, as they have been subjected to greater pressure and temperature variations over a long period of time, which confirm the low permeability nature of such seams. The resulting extremely low CO2 permeability nature creates serious issues in large-scale CO2 sequestration/ECBM projects, as critically high injection pressures are required to achieve sufficient CO2 injection into the coal seam. The situation becomes worse when CO2 is injected into such coal seams, because CO2 movement in the coal seam creates a significant influence on the natural permeability of the seams through CO2 adsorption-induced swelling and hydrocarbon mobilisation. With regard to the temperature, the combined effects of the generation of thermal cracks, thermal expansion, adsorption behaviour alterations and the associated phase transition must be considered before coming to a final conclusion. A reduction in coal’s CO2 permeability with increasing CO2 pressure may occur due to swelling and slip-flow effects, both of which are influenced by the phase transition in CO2 from sub- to super-critical in deep seams. To date, many models have been proposed to simulate CO2 movement in coal considering various factors, including porosity, effective stress, and swelling/shrinkage. These models have been extremely useful to predict CO2 injectability into coal seams prior to field projects and have therefore assisted in implementing number of successful CO2 sequestration/ECBM projects. Full article
Show Figures

Figure 1

Open AccessArticle
Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends
Energies 2018, 11(4), 738; https://doi.org/10.3390/en11040738 - 24 Mar 2018
Cited by 9
Abstract
Essential oils are derived from not-fatty parts of plants and are mostly used in aromatherapy, as well as cosmetics and perfume production. The essential oils market is growing rapidly due to their claimed health benefits. However, because only therapeutic grade oil is required [...] Read more.
Essential oils are derived from not-fatty parts of plants and are mostly used in aromatherapy, as well as cosmetics and perfume production. The essential oils market is growing rapidly due to their claimed health benefits. However, because only therapeutic grade oil is required in the medicinal sector, there is a substantial low-value waste stream of essential oils that can be used in the transportation and agricultural sectors. This study investigated the influence of orange, eucalyptus, and tea tree oil on engine performance and combustion characteristics of a multi-cylinder compression ignition engine. Orange, eucalyptus, and tea tree oil were blended with diesel at 10% by volume. For benchmarking, neat diesel and 10% waste cooking biodiesel-diesel blend were also tested. The selected fuels were used to conduct engine test runs with a constant engine speed (1500 RPM (revolutions per minute)) at four loads. As the load increased, frictional power losses decreased for all of the fuel samples and thus mechanical efficiency increased. At higher loads (75% and 100%), only orange oil-diesel blends produced comparable power to diesel and waste cooking biodiesel-diesel blends. Fuel consumption (brake and indicated) for the essential oil-diesel blends was higher when compared to base diesel and waste cooking biodiesel-diesel blends. Thermal efficiency for the essential oil-diesel blends was comparable to base diesel and waste cooking biodiesel-diesel blends. At higher loads, blow-by was lower for essential oil blends as compared to base diesel and waste cooking biodiesel-diesel blends. At 50% and 100% load, peak pressure was lower for all of the essential oil-diesel blends when compared to base diesel and waste cooking biodiesel-diesel blends. From the heat release rate curve, the essential oil-diesel blends ignition delay times were longer because the oils have lower cetane values. Overall, the low-value streams of these essential oils were found to be suitable for use in diesel engines at 10% blends by agricultural producers of these oils. Full article
Show Figures

Figure 1

Open AccessArticle
Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany
Energies 2018, 11(3), 615; https://doi.org/10.3390/en11030615 - 09 Mar 2018
Cited by 4
Abstract
Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG) emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper, the analysis and modeling of the long-term development [...] Read more.
Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG) emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper, the analysis and modeling of the long-term development of GHG abatement and relative GHG abatement cost competitiveness between crop-based biofuels in Germany are carried out. Presently dominant conventional biofuels and advanced liquid biofuels were found not to be competitive compared to the substantially higher yielding options available: sugar beet-based ethanol for the short- to medium-term least-cost option and substitute natural gas (SNG) for the medium to long term. The competitiveness of SNG was found to depend highly on the emissions development of the power mix. Silage maize-based biomethane was found competitive on a land area basis, but not on an energetic basis. Due to land limitations, as well as cost and GHG uncertainty, a stronger focus on the land use of crop-based biofuels should be laid out in policy. Full article
Show Figures

Figure 1

Open AccessCommunication
Polarization Potential Has No Effect on Maximum Current Density Produced by Halotolerant Bioanodes
Energies 2018, 11(3), 529; https://doi.org/10.3390/en11030529 - 01 Mar 2018
Cited by 2
Abstract
Halotolerant bioanodes are considered an attractive alternative in microbial electrochemical systems, as they can operate under higher conductive electrolytes, in comparison with traditional wastewater and freshwater bioanodes. The dependency between energetic performance and polarization potential has been addressed in several works; however the [...] Read more.
Halotolerant bioanodes are considered an attractive alternative in microbial electrochemical systems, as they can operate under higher conductive electrolytes, in comparison with traditional wastewater and freshwater bioanodes. The dependency between energetic performance and polarization potential has been addressed in several works; however the vast majority discusses its effect when wastewater or freshwater inocula are employed, and fewer reports focus on inocula from highly-saline environments. Moreover, the effect of the polarization potential on current production is not fully understood. To determine if the polarization potential has a significant effect on current production, eight bioanodes were grown by chronoamperometry at positive and negative potentials relative to the reference electrode (+0.34 V/SHE and −0.16 V/SHE), in a three-electrode set-up employing sediments from a hyperhaline coastal lagoon. The maximum current density obtained was the same, despite the differences in the applied potential. Our findings indicate that even if differences in organic matter removal and coulombic efficiency are obtained, the polarization potential had no statistically significant effect on overall current density production. Full article
Show Figures

Figure 1

Open AccessArticle
Hydrothermal Disintegration and Extraction of Different Microalgae Species
Energies 2018, 11(2), 450; https://doi.org/10.3390/en11020450 - 20 Feb 2018
Cited by 4
Abstract
For the disintegration and extraction of microalgae to produce lipids and biofuels, a novel processing technology was investigated. The utilization of a hydrothermal treatment was tested on four different microalgae species (Scenedesmus rubescens, Chlorella vulgaris, Nannochloropsis oculata and Arthorspira platensis (Spirulina)) [...] Read more.
For the disintegration and extraction of microalgae to produce lipids and biofuels, a novel processing technology was investigated. The utilization of a hydrothermal treatment was tested on four different microalgae species (Scenedesmus rubescens, Chlorella vulgaris, Nannochloropsis oculata and Arthorspira platensis (Spirulina)) to determine whether it has an advantage in comparison to other disintegration methods for lipid extraction. It was shown, that hydrothermal treatment is a reasonable opportunity to utilize microalgae without drying and increase the lipid yield of an algae extraction process. For three of the four microalgae species, the extraction yield with a prior hydrothermal treatment elevated the lipid yield up to six times in comparison to direct extraction. Only Scenedesmus rubescens showed a different behaviour. Reason can be found in the different cell wall of the species. The investigation of the differences in cell wall composition of the used species indicate that the existence of algaenan as a cell wall compound plays a major role in stability. Full article
Show Figures

Figure 1

Open AccessArticle
Energy Analysis of a Rotary Drum Bioreactor for Composting Tomato Plant Residues
Energies 2018, 11(2), 449; https://doi.org/10.3390/en11020449 - 19 Feb 2018
Cited by 7
Abstract
Energy produced from plant residue composting has stimulated great interest in heat recovery and utilization. Composting is an exothermic process often controlled through temperature measurements. However, energy analysis of the overall composting system, especially the rotary bioreactors, is generally not well known and [...] Read more.
Energy produced from plant residue composting has stimulated great interest in heat recovery and utilization. Composting is an exothermic process often controlled through temperature measurements. However, energy analysis of the overall composting system, especially the rotary bioreactors, is generally not well known and very limited. This study presents detailed energy analysis in a laboratory-scale, batch-operated, rotary bioreactor used for composting tomato plant residues. The bioreactor was considered as a thermodynamic system operating under unsteady state conditions. The composting process was described, the input generated and lost energy terms as well as the relative importance of each term were quantitatively evaluated, and the composting phases were clearly identified. Results showed that the compost temperature peaked at 72 h of operation reaching 66.7 °C with a heat generation rate of 9.3 W·kg−1 of organic matter. During the composting process, the accumulated heat generation was 1.9 MJ·kg−1 of organic matter; only 4% of this heat was gained by the composting material, and 96% was lost outside the bioreactor. Contributions of thermal radiation, aeration, cylindrical, and side-walls surfaces of the reactor on the total heat loss were 1%, 2%, 69%, and 28%, respectively. The information obtained is applicable in the design, management, and control of composting operations and in improvement of bioreactor effectiveness and productivity. Full article
Show Figures

Figure 1

Open AccessArticle
Improving Vegetable Oil Properties by Transforming Fatty Acid Chain Length in Jatropha Oil and Coconut Oil Blends
Energies 2018, 11(2), 394; https://doi.org/10.3390/en11020394 - 08 Feb 2018
Cited by 4
Abstract
Efforts to improve the physical and chemical properties of vegetable oils as diesel fuels such as viscosity and calorific value are indispensable with the depletion of fossil oil reserves. Jatropha oil with long chain fatty acids and high degree of unsaturation is mixed [...] Read more.
Efforts to improve the physical and chemical properties of vegetable oils as diesel fuels such as viscosity and calorific value are indispensable with the depletion of fossil oil reserves. Jatropha oil with long chain fatty acids and high degree of unsaturation is mixed with short chain saturated fatty acid coconut oil in various compositions. The mixture was heated and stirred for 30 min at 90 °C. This mixing leads to a decrease in viscosity which allows for the breaking of the bond. The fatty acid molecule structure undergoes transformation that changes the degree of unsaturation and the average length of the carbon chain. Consequently, the kinematic viscosity and flash point of the mixture decreases while its calorific value increases. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Technoeconomic and Policy Drivers of Project Performance for Bioenergy Alternatives Using Biomass from Beetle-Killed Trees
Energies 2018, 11(2), 293; https://doi.org/10.3390/en11020293 - 26 Jan 2018
Cited by 6
Abstract
As a result of widespread mortality from beetle infestation in the forests of the western United States, there are substantial stocks of biomass suitable as a feedstock for energy production. This study explored the financial viability of four production pathway scenarios for the [...] Read more.
As a result of widespread mortality from beetle infestation in the forests of the western United States, there are substantial stocks of biomass suitable as a feedstock for energy production. This study explored the financial viability of four production pathway scenarios for the conversion of beetle-killed pine to bioenergy and bioproducts in the Rocky Mountains. Monte Carlo simulation using data obtained from planned and existing projects was used to account for uncertainty in key technoeconomic variables and to provide distributions of project net present value (NPV), as well as for sensitivity analysis of key economic and production variables. Over a 20-year project period, results for base case scenarios reveal mean NPV ranging from a low of −$8.3 million for electric power production to a high of $76.0 million for liquid biofuel with a biochar co-product. However, under simulation, all scenarios had conditions resulting in both positive and negative NPV. NPV ranged from −$74.5 million to $51.4 million for electric power, and from −$21.6 million to $246.3 million for liquid biofuels. The potential effects of economic trends and public policies that aim to promote renewable energy and biomass utilization are discussed for each production pathway. Because the factors that most strongly affect financial viability differ across projects, the likely effects of particular types of policies are also shown to vary substantially. Full article
Show Figures

Figure 1

Open AccessArticle
The Effect of Using Ethanol-Gasoline Blends on the Mechanical, Energy and Environmental Performance of In-Use Vehicles
Energies 2018, 11(1), 221; https://doi.org/10.3390/en11010221 - 17 Jan 2018
Cited by 14
Abstract
The use of ethanol in gasoline has become a worldwide tendency as an alternative to reduce net CO2 emissions to the atmosphere, increasing gasoline octane rating and reducing dependence on petroleum products. However, recently environmental authorities in large urban centers have expressed [...] Read more.
The use of ethanol in gasoline has become a worldwide tendency as an alternative to reduce net CO2 emissions to the atmosphere, increasing gasoline octane rating and reducing dependence on petroleum products. However, recently environmental authorities in large urban centers have expressed their concerns on the true effect of using ethanol blends of up to 20% v/v in in-use vehicles without any modification in the setup of the engine control unit (ECU), and on the variations of these effects along the years of operation of these vehicles. Their main concern is the potential increase in the emissions of volatile organic compounds with high ozone formation potential. To address these concerns, we developed analytical and experimental work testing engines under steady-conditions. We also tested carbureted and fuel-injected vehicles every 10,000 km during their first 100,000 km of operation. We measured the effect of using ethanol-gasoline blends on the power and torque generated, the fuel consumption and CO2, CO, NOx and unburned hydrocarbon emissions, including volatile organic compounds (VOCs) such as acetaldehyde, formaldehyde, benzene and 1,3-butadiene which are considered important ozone precursors. The obtained results showed statistically no significant differences in these variables when vehicles operate with a blend of 20% v/v ethanol and 80% v/v gasoline (E20) instead of gasoline. Those results remained unchanged during the first 100,000 km of operation of the vehicles. We also observed that when the vehicles operated with E20 at high engine loads, they showed a tendency to operate with greater values of λ (ratio of the actual air-fuel ratio to the stoichiometric air-fuel ratio) when compared to their operation with gasoline. According to the Eco-Indicator-99, these results represent a minor reduction (<1.3%) on the impact to human health, and on the deterioration of the ecosystem. However, it implies a 12.9% deterioration of the natural resources. Thermal equilibrium analysis, at the tailpipe conditions (~100 °C), showed that ethane, formaldehyde, ethylene and ethanol are the most relevant VOCs in terms of the amount of mass emitted. The use of ethanol in the gasoline reduced 20–40% of those emissions. These reductions implied an average reduction of 17% in the ozone formation potential. Full article
Show Figures

Figure 1

Open AccessArticle
Esterification Optimization of Crude African Palm Olein Using Response Surface Methodology and Heterogeneous Acid Catalysis
Energies 2018, 11(1), 157; https://doi.org/10.3390/en11010157 - 09 Jan 2018
Cited by 4
Abstract
In this work, the effect of zeolite montmorillonite KSF in the esterification of free fatty acids (FFAs) of crude African palm olein (Eleaias guinnesis Jacq) was studied. To optimize the esterification of FFAs of the crude African palm olein (CAPO), the response [...] Read more.
In this work, the effect of zeolite montmorillonite KSF in the esterification of free fatty acids (FFAs) of crude African palm olein (Eleaias guinnesis Jacq) was studied. To optimize the esterification of FFAs of the crude African palm olein (CAPO), the response surface methodology (RSM) that was based on a central composite rotatable design (CCRD) was used. The effects of three parameters were investigated: (a) catalyst loading (2.6–9.4 wt %), (b) reaction temperature (133.2–166.2 °C), and (c) reaction time (0.32–3.68 h). The Analysis of variance (ANOVA) indicated that linear terms of catalyst loading (X1), reaction temperature (X2), the quadratic term of catalyst loading ( X 1 2 ), temperature reaction ( X 2 2 ), reaction time ( X 3 2 ), the interaction catalyst loading with reaction time ( X 1 * X3), and the interaction reaction temperature with reaction time ( X 2 * X3) have a significant effect (p < 0.05 with a 95% confidence level) on Fatty Methyl Ester (FAME) yield. The result indicated that the optimum reaction conditions to esterification of FFAs were: catalyst loading 9.4 wt %, reaction temperature 155.5 °C, and 3.3 h for reaction time, respectively. Under these conditions, the numerical estimation of FAME yield was 91.81 wt %. This result was experimentally validated obtaining a difference of 1.7% FAME yield, with respect to simulated values. Full article
Show Figures

Figure 1

Open AccessArticle
Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell
Energies 2018, 11(1), 124; https://doi.org/10.3390/en11010124 - 04 Jan 2018
Cited by 18
Abstract
The abundance of cellulosic wastes make them attractive source of energy for producing electricity in microbial fuel cells (MFCs). However, electricity production from cellulose requires obligate anaerobes that can degrade cellulose and transfer electrons to the electrode (exoelectrogens), and thus most previous MFC [...] Read more.
The abundance of cellulosic wastes make them attractive source of energy for producing electricity in microbial fuel cells (MFCs). However, electricity production from cellulose requires obligate anaerobes that can degrade cellulose and transfer electrons to the electrode (exoelectrogens), and thus most previous MFC studies have been conducted using two-chamber systems to avoid oxygen contamination of the anode. Single-chamber, air-cathode MFCs typically produce higher power densities than aqueous catholyte MFCs and avoid energy input for the cathodic reaction. To better understand the bacterial communities that evolve in single-chamber air-cathode MFCs fed cellulose, we examined the changes in the bacterial consortium in an MFC fed cellulose over time. The most predominant bacteria shown to be capable electron generation was Firmicutes, with the fermenters decomposing cellulose Bacteroidetes. The main genera developed after extended operation of the cellulose-fed MFC were cellulolytic strains, fermenters and electrogens that included: Parabacteroides, Proteiniphilum, Catonella and Clostridium. These results demonstrate that different communities evolve in air-cathode MFCs fed cellulose than the previous two-chamber reactors. Full article
Show Figures

Figure 1

2017

Jump to: 2020, 2019, 2018, 2016, 2015, 2014, 2013, 2012, 2011

Open AccessArticle
Co-Digestion of Napier Grass and Its Silage with Cow Dung for Bio-Hydrogen and Methane Production by Two-Stage Anaerobic Digestion Process
Energies 2018, 11(1), 47; https://doi.org/10.3390/en11010047 - 26 Dec 2017
Cited by 8
Abstract
The objective of this study was to efficiently utilize the napier grass and its silage to produce bio-hydrogen and methane by a two-stage process in batch mode. First, the production of hydrogen from a co-digestion of grass with cow dung and silage with [...] Read more.
The objective of this study was to efficiently utilize the napier grass and its silage to produce bio-hydrogen and methane by a two-stage process in batch mode. First, the production of hydrogen from a co-digestion of grass with cow dung and silage with cow dung by Clostridium butyricum Thailand Institute of Scientific and Technological Research (TISTR) 1032 was conducted. The results indicated that bio-hydrogen production by C. butyricum TISTR 1032 gave a higher hydrogen yield (HY) than without C. butyricum addition. The HY of 6.98 and 27.71 mL H2/g-Volatile solidadded (VSadded), were obtained from a co-digestion of grass with cow dung and silage with cow dung by C. butyricum, respectively. The hydrogenic effluent and solid residue left over after hydrogen fermentation were further used as substrates for methane production (Batch I). Methane yield (MY) from hydrogenic effluent of grass with cow dung and silage with cow dung were 169.87 and 141.33 mL CH4/g-CODadded (COD: chemical oxygen demand), respectively. The maximum MY of 210.10 and 177.79 mL CH4/g-VSadded, respectively, were attained from solid residues left over after bio-hydrogen production pretreated by enzyme (cellulase cocktail) and alkali (NaOH). Afterward, solid residue left over after methane production (Batch I) was used as the substrate for methane production (Batch II). A maximum MY of 370.39 and 370.99 mL CH4/g-VSadded were achieved from solid residue repeatedly pretreated by alkaline plus enzyme, respectively. The overall energy yield in the two-stage bio-hydrogen and methane production process was derived from a bio-hydrogen production, a methane production from hydrogenic effluent, methane production of pretreated solid residue (Batch I) and methane production of repeatedly pretreated solid residue (Batch II), which yielded 480.27 and 204.70 MJ/g-VSadded, respectively. Full article
Show Figures

Figure 1

Open AccessArticle
The Lubricity of Ternary Fuel Mixture Blends as a Way to Assess Diesel Engine Durability
Energies 2018, 11(1), 33; https://doi.org/10.3390/en11010033 - 24 Dec 2017
Cited by 5
Abstract
The study deals with the lubrication characteristics of ternary fuel mixture blends to assess diesel engine durability by using better performing fuels, namely Mandarin Crambe and Paraffin (ManCr_Pa) and Avocado Bush nut and Paraffin (AvBn_Pa). Tribological parameters of friction coefficient, wear, and lubrication [...] Read more.
The study deals with the lubrication characteristics of ternary fuel mixture blends to assess diesel engine durability by using better performing fuels, namely Mandarin Crambe and Paraffin (ManCr_Pa) and Avocado Bush nut and Paraffin (AvBn_Pa). Tribological parameters of friction coefficient, wear, and lubrication stability were measured to assess the impact of these fuels on engine durability. The tests were conducted on a four-ball tribotester using the American Society for Testing Materials (ASTM) D4172 standard; friction coefficient and wear scar diameter for the fuels were measured. The wear scar surface morphology of the ball metals was evaluated by a high-performance scanning electron microscope with energy dispersive X-ray SEM/EDX analysis. The corrosive behaviour of the fuels was also assessed by evaluating images from the SEM/EDX tests. Finally, the engine durability, reliability, and longevity were also evaluated based on the measured tribological parameters. Full article
Show Figures

Figure 1

Open AccessArticle
Floor Heave Mechanism of Gob-Side Entry Retaining with Fully-Mechanized Backfilling Mining
Energies 2017, 10(12), 2085; https://doi.org/10.3390/en10122085 - 08 Dec 2017
Cited by 21
Abstract
Serious floor heave in gob-side entry retaining (GER) with fully-mechanized gangue backfilling mining affects the transportation and ventilation safety of the mine. A theoretical mechanical model for the floor of gob-backfilled GER was established. The effects of the mechanical properties of floor strata, [...] Read more.
Serious floor heave in gob-side entry retaining (GER) with fully-mechanized gangue backfilling mining affects the transportation and ventilation safety of the mine. A theoretical mechanical model for the floor of gob-backfilled GER was established. The effects of the mechanical properties of floor strata, the granular compaction of backfilling area (BFA), the vertical support of roadside support body (RSB), and the stress concentration of the solid coal on the floor heave of the gob-backfilled GER were studied. The results show that the floor heave increases with the increase of the coal seam buried depth, and decreases with the increase of the floor rock elastic modulus. The development depth of the plastic zone decreases with the increase of the c and φ value of the floor rock, and increases with the increase of the stress concentration factor of the solid coal. The development depth of the plastic zone in the test mine reached 2.68 m. The field test and monitoring results indicate that the comprehensive control scheme of adjusting backfilling pressure, deep grouting reinforcement, shallow opening stress relief slots, and surface pouring can effectively control the floor heave. The roof-floor displacement is reduced by 73.8% compared to that with the original support scheme. The roadway section meets the design and application requirements when the deformation stabilizes, demonstrating the rationality of the mechanical model. The research results overcome the technical bottleneck of floor heave control of fully-mechanized backfilling GER, providing a reliable basis for the design of a floor heave control scheme. Full article
Show Figures

Graphical abstract

Open AccessArticle
Sludge Acts as a Catalyst for Coal during the Co-Combustion Process Investigated by Thermogravimetric Analysis
Energies 2017, 10(12), 1993; https://doi.org/10.3390/en10121993 - 01 Dec 2017
Cited by 9
Abstract
Sewage sludge in China has the characteristics of low organic content and low heating value compared with other developed countries. Self-sustaining combustion of Chinese sludge cannot be achieved when the moisture content is high. Co-combusting a small amount of sludge in the existing [...] Read more.
Sewage sludge in China has the characteristics of low organic content and low heating value compared with other developed countries. Self-sustaining combustion of Chinese sludge cannot be achieved when the moisture content is high. Co-combusting a small amount of sludge in the existing coal-fired boilers is a usual sludge disposal method in China. Thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis of a bituminous coal, three different sewage sludges, and their blends have been carried out. Fitted curves by linear calculation and actual curves of blends were compared to study the interaction between sludge and coal in their co-combustion process. The results indicate that the interaction between the two fuels takes place during the devolatilization and combustion period. Sludge acts as a catalyst for coal during the co-combustion process because of the large amount of inorganic salts contained in the sludge. Co-combustion of coal and sludge is more efficient than single burning of the two fuels. Full article
Show Figures

Figure 1

Open AccessArticle
Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments
Energies 2017, 10(11), 1734; https://doi.org/10.3390/en10111734 - 30 Oct 2017
Cited by 12
Abstract
Supercritical water gasification (SCWG) is an emerging technology for the valorization of (wet) biomass into a valuable fuel gas composed of hydrogen and/or methane. The harsh temperature and pressure conditions involved in SCWG (T > 375 °C, p > 22 MPa) are [...] Read more.
Supercritical water gasification (SCWG) is an emerging technology for the valorization of (wet) biomass into a valuable fuel gas composed of hydrogen and/or methane. The harsh temperature and pressure conditions involved in SCWG (T > 375 °C, p > 22 MPa) are definitely a challenge for the manufacturing of the reactors. Metal surfaces are indeed subject to corrosion under hydrothermal conditions, and expensive special alloys are needed to overcome such drawbacks. A ceramic reactor could be a potential solution to this issue. Finding a suitable material is, however, complex because the catalytic effect of the material can influence the gas yield and composition. In this work, a research reactor featuring an internal alumina inlay was utilized to conduct long-time (16 h) batch tests with real biomasses and model compounds. The same experiments were also conducted in batch reactors made of stainless steel and Inconel 625. The results show that the three devices have similar performance patterns in terms of gas production, although in the ceramic reactor higher yields of C2+ hydrocarbons were obtained. The SEM observation of the reacted alumina surface revealed a good resistance of such material to supercritical conditions, even though some intergranular corrosion was observed. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel
Energies 2017, 10(11), 1689; https://doi.org/10.3390/en10111689 - 26 Oct 2017
Cited by 19
Abstract
Mandarin (Citrus reticulata) is one of the most popular fruits in tropical and sub-tropical countries around the world. It contains about 22–34 seeds per fruit. This study investigated the potential of non-edible mandarin seed oil as an alternative fuel in Australia. The seeds [...] Read more.
Mandarin (Citrus reticulata) is one of the most popular fruits in tropical and sub-tropical countries around the world. It contains about 22–34 seeds per fruit. This study investigated the potential of non-edible mandarin seed oil as an alternative fuel in Australia. The seeds were prepared after drying in the oven for 20 h to attain an optimum moisture content of around 13.22%. The crude oil was extracted from the crushed seed using 98% n-hexane solution. The biodiesel conversion reaction (transesterification) was designed according to the acid value (mg KOH/g) of the crude oil. The study also critically examined the effect of various reaction parameters (such as effect of methanol: oil molar ratio, % of catalyst concentration, etc.) on the biodiesel conversion yield. After successful conversion of the bio-oil into biodiesel, the physio-chemical fuel properties of the virgin biodiesel were measured according to relevant ASTM standards and compared with ultra-low sulphur diesel (ULSD) and standard biodiesel ASTM D6751. The fatty acid methyl esters (FAMEs) were analysed by gas chromatography (GC) using the EN 14103 standard. The behaviour of the biodiesel (variation of density and kinematic viscosity) at various temperatures (10–40 °C) was obtained and compared with that of diesel fuel. Finally, mass and energy balances were conducted for both the oil extraction and biodiesel conversion processes to analyse the total process losses of the system. The study found 49.23 wt % oil yield from mandarin seed and 96.82% conversion efficiency for converting oil to biodiesel using the designated transesterification reaction. The GC test identified eleven FAMEs. The biodiesel mainly contains palmitic acid (C16:0) 26.80 vol %, stearic acid (C18:0) 4.93 vol %, oleic acid (C18:1) 21.43 vol % (including cis. and trans.), linoleic acid (C18:2) 4.07 vol %, and less than one percent each of other fatty acids. It is an important source of energy because it has a higher heating value of 41.446 MJ/kg which is close to ULSD (45.665 MJ/kg). In mass and energy balances, 49.23% mass was recovered as crude bio-oil and 84.48% energy was recovered as biodiesel from the total biomass. Full article
Show Figures

Figure 1

Open AccessArticle
Co-Digestion of Napier Grass and Its Silage with Cow Dung for Methane Production
Energies 2017, 10(10), 1654; https://doi.org/10.3390/en10101654 - 19 Oct 2017
Cited by 15
Abstract
Methane production from co-digestion of grass with cow dung and silage with cow dung was conducted by a bioaugmentation technique. For self-fermentation, maximum methane yield (MY) of 176.66 and 184.94 mL CH4/g-VSadded were achieved at a ratio of grass to [...] Read more.
Methane production from co-digestion of grass with cow dung and silage with cow dung was conducted by a bioaugmentation technique. For self-fermentation, maximum methane yield (MY) of 176.66 and 184.94 mL CH4/g-VSadded were achieved at a ratio of grass to cow dung and silage to cow dung of 1:1, respectively. A higher maximum MY of 179.59 and 208.11 mL CH4/g-VSadded was obtained from co-digestion of grass with cow dung and silage with cow dung bioaugmented with anaerobic sludge at a ratio of 3:1. The solid residue left over after co-digestion at a ratio of 3:1 was pretreated by alkaline plus enzyme before used to produce methane and a maximum MY of 333.63 and 301.38 mL CH4/g-VSadded, respectively, was achieved. Overall power generated from co-digestion of grass with cow dung plus pretreated solid residues and co-digestion of silage with cow dung plus pretreated solid residues were 0.0397 and 0.007 watt, respectively. Full article
Show Figures

Figure 1

Open AccessArticle
Diesel/CNG Mixture Autoignition Control Using Fuel Composition and Injection Gap
Energies 2017, 10(10), 1639; https://doi.org/10.3390/en10101639 - 18 Oct 2017
Cited by 3
Abstract
Combustion phasing is the main obstacle to the development of controlled auto-ignition based (CAI) engines to achieve low emissions and low fuel consumption operation. Fuel combinations with substantial differences in reactivity, such as diesel/compressed natural gas (CNG), show desirable combustion outputs and demonstrate [...] Read more.
Combustion phasing is the main obstacle to the development of controlled auto-ignition based (CAI) engines to achieve low emissions and low fuel consumption operation. Fuel combinations with substantial differences in reactivity, such as diesel/compressed natural gas (CNG), show desirable combustion outputs and demonstrate great possibility in controlling the combustion. This paper discusses a control method for diesel/CNG mixture combustion with a variation of fuel composition and fuel stratification levels. The experiments were carried out in a constant volume combustion chamber with both fuels directly injected into the chamber. The mixture composition was varied from 0 to 100% CNG/diesel at lambda 1 while the fuel stratification level was controlled by the injection phasing between the two fuels, with gaps between injections ranging from 0 to 20 ms. The results demonstrated the suppressing effect of CNG on the diesel combustion, especially at the early combustion stages. However, CNG significantly enhanced the combustion performance of the diesel in the later stages. Injection gaps, on the other hand, showed particular behavior depending on mixture composition. Injection gaps show less effect on combustion phasing but a significant effect on the combustion output for higher diesel percentage (≥70%), while it is contradictive for lower diesel percentage (<70%). Full article
Show Figures

Figure 1

Open AccessArticle
Biodiesel Production Potential from Littered Edible Oil Fraction Using Directly Synthesized S-TiO2/MCM-41 Catalyst in Esterification Process via Non-Catalytic Subcritical Hydrolysis
Energies 2017, 10(9), 1290; https://doi.org/10.3390/en10091290 - 29 Aug 2017
Cited by 6
Abstract
Due to uncontrolled consumption of fossil fuel it is necessary to use alternative resources as renewable energy. Among all the available liquid fuels biodiesel has drawn attention for producing less emissions and having less aromatic contents than diesel and because it can also [...] Read more.
Due to uncontrolled consumption of fossil fuel it is necessary to use alternative resources as renewable energy. Among all the available liquid fuels biodiesel has drawn attention for producing less emissions and having less aromatic contents than diesel and because it can also be obtained from inferior grade feedstocks. Since the various uses of fats and oils have increased, a significant amount of waste animal fat and used edible oil is generated every year. In this work, we produced biodiesel from littered edible oil fraction (LEOF) via hydrolysis followed by catalytic esterification. Nearly 90% free fatty acids (FFA) content was achieved at 275 °C, after 45 min during hydrolysis and linoleic acid (C18:2) was observed to be the highest component. Compared to refined soybean oil (SBO) the reaction rate was accelerated by the auto-catalytic behavior of free fatty acids (FFA) in littered edible oil fraction (LEOF). For catalytic esterification, S-TiO2/MCM-41 catalyst was directly synthesized and characterized by using XRD, SEM, NH3-TPD and Brunauer Emmett Teller (B.E.T). The parameters such as; SO4−2 content, TiO2 loading and calcination temperature were varied to get optimum free fatty acids (FFA) conversion. Fatty acid methyl ester (FAME) conversion was 99.29% using 1% S-TiO2/MCM-41 catalyst at 240 °C whereas 86.18% was observed with 3.5% catalyst at 180 °C with 20 min. Thus, using S-TiO2/MCM-41 catalyst in esterification via hydrolysis would be a better option for treating low quality feedstocks. Full article
Show Figures

Graphical abstract

Open AccessArticle
Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition
Energies 2017, 10(8), 1200; https://doi.org/10.3390/en10081200 - 13 Aug 2017
Cited by 11
Abstract
Combustion and heat release characteristics of biogas non-premixed flames under various hydrogen-enriched and oxygen-enriched conditions were investigated through chemical kinetics simulation using detailed chemical mechanisms. The heat release rates, chemical reaction rates, and molar fraction of all species of biogas at various methane [...] Read more.
Combustion and heat release characteristics of biogas non-premixed flames under various hydrogen-enriched and oxygen-enriched conditions were investigated through chemical kinetics simulation using detailed chemical mechanisms. The heat release rates, chemical reaction rates, and molar fraction of all species of biogas at various methane contents (35.3–58.7%, mass fraction), hydrogen addition ratios (10–50%), and oxygen enrichment levels (21–35%) were calculated considering the GRI 3.0 mechanism and P1 radiation model. Results showed that the net reaction rate of biogas increases with increasing hydrogen addition ratio and oxygen levels, leading to a higher net heat release rate of biogas flame. Meanwhile, flame length was shortened with the increase in hydrogen addition ratio and oxygen levels. The formation of free radicals, such as H, O, and OH, are enhanced with increase in hydrogen addition ratio and oxygen levels. Higher reaction rates of exothermic elementary reactions, especially those with OH free radical are increased, are beneficial to the improvement in combustion and heat release characteristics of biogas in practical applications. Full article
Show Figures

Figure 1

Open AccessArticle
Influence of Catalytic Formulation and Operative Conditions on Coke Deposition over CeO2-SiO2 Based Catalysts for Ethanol Reforming
Energies 2017, 10(7), 1030; https://doi.org/10.3390/en10071030 - 19 Jul 2017
Cited by 8
Abstract
In this work, a series of CeO2-SiO2 (30 wt % of ceria)-based catalysts was prepared by the wetness impregnation method and tested for ESR (ethanol steam reforming) at 450–500 °C, atmospheric pressure and a water/ethanol ratio increasing from 4 to [...] Read more.
In this work, a series of CeO2-SiO2 (30 wt % of ceria)-based catalysts was prepared by the wetness impregnation method and tested for ESR (ethanol steam reforming) at 450–500 °C, atmospheric pressure and a water/ethanol ratio increasing from 4 to 6 (the ethanol concentration being fixed to 10 vol %); after every test, coke gasification measurements were performed at the same water partial pressure, and the temperature of the test and the gasified carbon was measured from the areas under the CO and CO2 profiles. Finally, oxidation measurements under a 5% O2/N2 stream made it possible to calculate the total carbon deposited. In an attempt to improve the coke resistance of a Pt-Ni/CeO2-SiO2 catalyst, the effect of support basification by alkali addition (K and Cs), as well as Pt substitution by Rh was investigated. The novel catalysts, especially those containing Rh, displayed a lowering in the carbon formation rate; however, a faster reduction of ethanol conversion with time-on-stream and lessened hydrogen selectivities were recorded. In addition, no significant gain in terms of coke gasification rates was observed. The most active catalyst (Pt-Ni/CeO2-SiO2) was also tested under different operative conditions, in order to study the effect of temperature and water/ethanol ratio on carbon formation and gasification. The increase in the water content resulted in an enhanced reactor-plugging time due to reduced carbonaceous deposits formation; however, no effect of steam concentration on the carbon gasification rate were recorded. On the other hand, the increase in temperature from 450–500 °C lowered the coke selectivity by almost one order of magnitude improving, at the same time, the contribution of the gasification reactions. Full article
Show Figures

Figure 1

Open AccessArticle
Production of Torrefied Solid Bio-Fuel from Pulp Industry Waste
Energies 2017, 10(7), 910; https://doi.org/10.3390/en10070910 - 03 Jul 2017
Cited by 8
Abstract
The pulp industry in Taiwan discharges tons of wood waste and pulp sludge (i.e., wastewater-derived secondary sludge) per year. The mixture of these two bio-wastes, denoted as wood waste with pulp sludge (WPS), has been commonly converted to organic fertilizers for agriculture application [...] Read more.
The pulp industry in Taiwan discharges tons of wood waste and pulp sludge (i.e., wastewater-derived secondary sludge) per year. The mixture of these two bio-wastes, denoted as wood waste with pulp sludge (WPS), has been commonly converted to organic fertilizers for agriculture application or to soil conditioners. However, due to energy demand, the WPS can be utilized in a beneficial way to mitigate an energy shortage. This study elucidated the performance of applying torrefaction, a bio-waste to energy method, to transform the WPS into solid bio-fuel. Two batches of the tested WPS (i.e., WPS1 and WPS2) were generated from a virgin pulp factory in eastern Taiwan. The WPS1 and WPS2 samples contained a large amount of organics and had high heating values (HHV) on a dry-basis (HHD) of 18.30 and 15.72 MJ/kg, respectively, exhibiting a potential for their use as a solid bio-fuel. However, the wet WPS as received bears high water and volatile matter content and required de-watering, drying, and upgrading. After a 20 min torrefaction time (tT), the HHD of torrefied WPS1 (WPST1) can be enhanced to 27.49 MJ/kg at a torrefaction temperature (TT) of 573 K, while that of torrefied WPS2 (WPST2) increased to 19.74 MJ/kg at a TT of 593 K. The corresponding values of the energy densification ratio of torrefied solid bio-fuels of WPST1 and WPST2 can respectively rise to 1.50 and 1.25 times that of the raw bio-waste. The HHD of WPST1 of 27.49 MJ/kg is within the range of 24–35 MJ/kg for bituminous coal. In addition, the wet-basis HHV of WPST1 with an equilibrium moisture content of 5.91 wt % is 25.87 MJ/kg, which satisfies the Quality D coal specification of the Taiwan Power Co. requiring a value of above 20.92 MJ/kg. Full article
Show Figures

Figure 1

Open AccessArticle
A Computational Tool for Comparative Energy Cost Analysis of Multiple-Crop Production Systems
Energies 2017, 10(7), 831; https://doi.org/10.3390/en10070831 - 22 Jun 2017
Cited by 8
Abstract
Various crops can be considered as potential bioenergy and biofuel production feedstocks. The selection of the crops to be cultivated for that purpose is based on several factors. For an objective comparison between different crops, a common framework is required to assess their [...] Read more.
Various crops can be considered as potential bioenergy and biofuel production feedstocks. The selection of the crops to be cultivated for that purpose is based on several factors. For an objective comparison between different crops, a common framework is required to assess their economic or energetic performance. In this paper, a computational tool for the energy cost evaluation of multiple-crop production systems is presented. All the in-field and transport operations are considered, providing a detailed analysis of the energy requirements of the components that contribute to the overall energy consumption. A demonstration scenario is also described. The scenario is based on three selected energy crops, namely Miscanthus, Arundo donax and Switchgrass. The tool can be used as a decision support system for the evaluation of different agronomical practices (such as fertilization and agrochemicals application), machinery systems, and management practices that can be applied in each one of the individual crops within the production system. Full article
Show Figures

Figure 1

Open AccessArticle
Watching the Smoke Rise Up: Thermal Efficiency, Pollutant Emissions and Global Warming Impact of Three Biomass Cookstoves in Ghana
Energies 2017, 10(5), 641; https://doi.org/10.3390/en10050641 - 06 May 2017
Cited by 10
Abstract
In Ghana, about 73% of households rely on solid fuels for cooking. Over 13,000 annual deaths are attributed to exposure to indoor air pollution from inefficient combustion. In this study, assessment of thermal efficiency, emissions, and total global warming impact of three cookstoves [...] Read more.
In Ghana, about 73% of households rely on solid fuels for cooking. Over 13,000 annual deaths are attributed to exposure to indoor air pollution from inefficient combustion. In this study, assessment of thermal efficiency, emissions, and total global warming impact of three cookstoves commonly used in Ghana was completed using the International Workshop Agreement (IWA) Water Boiling Test (WBT) protocol. Statistical averages of three replicate tests for each cookstove were computed. Thermal efficiency results were: wood-burning cookstove: 12.2 ± 5.00% (Tier 0); coalpot charcoal stove: 23.3 ± 0.73% (Tier 1–2); and Gyapa charcoal cookstove: 30.00 ± 4.63% (Tier 2–3). The wood-burning cookstove emitted more CO, CO2, and PM2.5 than the coalpot charcoal stove and Gyapa charcoal cookstove. The emission factor (EF) for PM2.5 and the emission rate for the wood-burning cookstove were over four times higher than the coalpot charcoal stove and Gyapa charcoal cookstove. To complete the WBT, the study results showed that, by using the Gyapa charcoal cookstove instead of the wood-burning cookstove, the global warming impact could be potentially reduced by approximately 75% and using the Gyapa charcoal cookstove instead of the coalpot charcoal cookstove by 50%. We conclude that there is the need for awareness, policy, and incentives to enable end-users to switch to, and adopt, Gyapa charcoal cookstoves for increased efficiency and reduced emissions/global warming impact. Full article
Show Figures

Figure 1

Open AccessArticle
Experimental Investigations of Physical and Chemical Properties for Microalgae HTL Bio-Crude Using a Large Batch Reactor
Energies 2017, 10(4), 467; https://doi.org/10.3390/en10040467 - 05 Apr 2017
Cited by 10
Abstract
As a biofuel feedstock, microalgae has good scalability and potential to supply a significant proportion of world energy compared to most types of biofuel feedstock. Hydrothermal liquefaction (HTL) is well-suited to wet biomass (such as microalgae) as it greatly reduces the energy requirements [...] Read more.
As a biofuel feedstock, microalgae has good scalability and potential to supply a significant proportion of world energy compared to most types of biofuel feedstock. Hydrothermal liquefaction (HTL) is well-suited to wet biomass (such as microalgae) as it greatly reduces the energy requirements associated with dewatering and drying. This article presents experimental analyses of chemical and physical properties of bio-crude oil produced via HTL using a high growth-rate microalga Scenedesmus sp. in a large batch reactor. The overarching goal was to investigate the suitability of microalgae HTL bio-crude produced in a large batch reactor for direct application in marine diesel engines. To this end we characterized the chemical and physical properties of the bio-crudes produced. HTL literature mostly reports work using very small batch reactors which are preferred by researchers, so there are few experimental and parametric measurements for bio-crude physical properties, such as viscosity and density. In the course of this study, a difference between traditionally calculated values and measured values was noted. In the parametric study, the bio-crude viscosity was significantly closer to regular diesel and biodiesel standards than transesterified (FAME) microalgae biodiesel. Under optimised conditions, HTL bio-crude’s high density (0.97–1.04 kg·L−1) and its high viscosity (70.77–73.89 mm2·s−1) had enough similarity to marine heavy fuels. although the measured higher heating value, HHV, was lower (29.8 MJ·kg−1). The reaction temperature was explored in the range 280–350 °C and bio-crude oil yield and HHV reached their maxima at the highest temperature. Slurry concentration was explored between 15% and 30% at this temperature and the best HHV, O:C, and N:C were found to occur at 25%. Two solvents (dichloromethane and n-hexane) were used to recover the bio-crude oil, affecting the yield and chemical composition of the bio-crude. Full article
Show Figures

Figure 1

Open AccessArticle
Economic and Environmental Study of Wineries Powered by Grid-Connected Photovoltaic Systems in Spain
Energies 2017, 10(2), 222; https://doi.org/10.3390/en10020222 - 14 Feb 2017
Cited by 6
Abstract
This research developed a system that can make factories more independent from the grid. The system enhances efficiency since factory operation is powered by the renewable energy generated during the production process. Winemaking is a key sector that can profit from such a [...] Read more.
This research developed a system that can make factories more independent from the grid. The system enhances efficiency since factory operation is powered by the renewable energy generated during the production process. Winemaking is a key sector that can profit from such a system because wineries can recycle much of the waste from the raw materials employed in wine production. Moreover, the solar energy collected at winemaking facilities can also be used to reduce electricity consumption and thus increase energy efficiency. This study investigated the feasibility of using renewable energy sources, such as solar energy, in wineries in Spain, given the quantity of renewable energy produced in the country. For this purpose, cost-effectiveness, power generation, CO2 emissions and the renewable energy fraction were taken into account. The assumption was that the photovoltaic system was grid-connected. Research results showed a reduction in electrical power costs ranging from 4% to 36%. This reduction was accompanied by an increase in the use of renewable energy of up to 57%. The results obtained are based on self-consumption or net metering policy as well as the production capacity of the winery. Full article
Show Figures

Figure 1

Open AccessArticle
Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment
Energies 2017, 10(2), 192; https://doi.org/10.3390/en10020192 - 09 Feb 2017
Cited by 3
Abstract
The current concerns on global energy security, climate change, and environmental pollution represent some of the major elements of the growing interest on renewable energy. In this framework agro-food energy systems are at the center of a twofold debate: on the one hand [...] Read more.
The current concerns on global energy security, climate change, and environmental pollution represent some of the major elements of the growing interest on renewable energy. In this framework agro-food energy systems are at the center of a twofold debate: on the one hand they represent a key option for energy production while on the other their sustainability is threatened by the expansion of the bioenergy market that could lead to negative social and environmental consequences. The aim of this work is to evaluate—through a case study—the technical and economic feasibility of the replacement of energy crops (ECs) with used cooking oil (UCO) in an anaerobic digestion (AD) full-scale plant. At this purpose, a full-scale plant performing AD was monitored for two years. Three scenarios were developed and compared to evaluate the impacts and the potential benefits in terms of land saving in case of a substitution of ECs with UCO. Results highlighted a reduction of land use of over 50% if UCO is introduced in co-digestion with ECs. The lack of an appropriate legislative framework limits the utilization of used cooking oils (UCOs) in AD with a consequently missed opportunity for biogas owners that could find an important alternative in UCO. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
An Improvement in Biodiesel Production from Waste Cooking Oil by Applying Thought Multi-Response Surface Methodology Using Desirability Functions
Energies 2017, 10(1), 130; https://doi.org/10.3390/en10010130 - 21 Jan 2017
Cited by 24
Abstract
The exhaustion of natural resources has increased petroleum prices and the environmental impact of oil has stimulated the search for an alternative source of energy such as biodiesel. Waste cooking oil is a potential replacement for vegetable oils in the production of biodiesel. [...] Read more.
The exhaustion of natural resources has increased petroleum prices and the environmental impact of oil has stimulated the search for an alternative source of energy such as biodiesel. Waste cooking oil is a potential replacement for vegetable oils in the production of biodiesel. Biodiesel is synthesized by direct transesterification of vegetable oils, which is controlled by several inputs or process variables, including the dosage of catalyst, process temperature, mixing speed, mixing time, humidity and impurities of waste cooking oil that was studied in this case. Yield, turbidity, density, viscosity and higher heating value are considered as outputs. This paper used multi-response surface methodology (MRS) with desirability functions to find the best combination of input variables used in the transesterification reactions to improve the production of biodiesel. In this case, several biodiesel optimization scenarios have been proposed. They are based on a desire to improve the biodiesel yield and the higher heating value, while decreasing the viscosity, density and turbidity. The results demonstrated that, although waste cooking oil was collected from various sources, the dosage of catalyst is one of the most important variables in the yield of biodiesel production, whereas the viscosity obtained was similar in all samples of the biodiesel that was studied. Full article
Show Figures

Figure 1

Open AccessArticle
Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel
Energies 2017, 10(1), 55; https://doi.org/10.3390/en10010055 - 05 Jan 2017
Cited by 14
Abstract
Biodiesels are a renewable energy source, and they have the potential to be used as alternatives to diesel fuel. The aim of this study is to investigate the wear and friction characteristics of Australian native first generation and second generation biodiesels using a [...] Read more.
Biodiesels are a renewable energy source, and they have the potential to be used as alternatives to diesel fuel. The aim of this study is to investigate the wear and friction characteristics of Australian native first generation and second generation biodiesels using a four-ball tribo tester. The biodiesel was produced through a two-step transesterification process and characterized according to the American Society for Testing and Materials (ASTM) standards. The tribological experiment was carried out at a constant 1800 rpm and different loads and temperatures. In addition, the surface morphology of the ball was tested by scanning electron microscope (SEM)/energy dispersive X-ray spectroscopy (EDX) analysis. The test results indicated that biodiesel fuels have a lower coefficient of frictions (COF) and lower wear scar diameter (WSD) up to 83.50% and 41.28%, respectively, compared to conventional diesel fuel. The worn surface area results showed that biodiesel fuel has a minimum percentage of C and O, except Fe, compared to diesel. In addition, the worn surface area for diesel was found (2.20%–27.92%) to be higher than biodiesel. The findings of this study indicated that both first and second generation biodiesel fuels have better tribological performance than diesel fuel, and between the biodiesel fuels, macadamia biodiesel showed better lubrication performance. Full article
Show Figures

Figure 1

Open AccessArticle
Optimization of Reducing Sugar Production from Manihot glaziovii Starch Using Response Surface Methodology
Energies 2017, 10(1), 35; https://doi.org/10.3390/en10010035 - 01 Jan 2017
Cited by 24
Abstract
Bioethanol is known as a viable alternative fuel to solve both energy and environmental crises. This study used response surface methodology based on the Box-Behnken experimental design to obtain the optimum conditions for and quality of bioethanol production. Enzymatic hydrolysis optimization was performed [...] Read more.
Bioethanol is known as a viable alternative fuel to solve both energy and environmental crises. This study used response surface methodology based on the Box-Behnken experimental design to obtain the optimum conditions for and quality of bioethanol production. Enzymatic hydrolysis optimization was performed with selected hydrolysis parameters, including substrate loading, stroke speed, α-amylase concentration and amyloglucosidase concentration. From the experiment, the resulting optimum conditions are 23.88% (w/v) substrate loading, 109.43 U/g α-amylase concentration, 65.44 U/mL amyloglucosidase concentration and 74.87 rpm stroke speed, which yielded 196.23 g/L reducing sugar. The fermentation process was also carried out, with a production value of 0.45 g ethanol/g reducing sugar, which is equivalent to 88.61% of ethanol yield after fermentation by using Saccharomyces cerevisiae (S. cerevisiae). The physical and chemical properties of the produced ethanol are within the specifications of the ASTM D4806 standard. The good quality of ethanol produced from this study indicates that Manihot glaziovii (M. glaziovii) has great potential as bioethanol feedstock. Full article
Show Figures

Figure 1

2016

Jump to: 2020, 2019, 2018, 2017, 2015, 2014, 2013, 2012, 2011

Open AccessArticle
A Simple Method for the Detection of Long-Chain Fatty Acids in an Anaerobic Digestate Using a Quartz Crystal Sensor
Energies 2017, 10(1), 19; https://doi.org/10.3390/en10010019 - 24 Dec 2016
Cited by 2
Abstract
In anaerobic digestion (AD), long-chain fatty acids (LCFAs) produced by hydrolysis of lipids, exhibit toxicity against microorganisms when their concentration exceeds several millimolar. An absorption detection system using a quartz crystal microbalance (QCM) was developed to monitor the LCFA concentration during an anaerobic [...] Read more.
In anaerobic digestion (AD), long-chain fatty acids (LCFAs) produced by hydrolysis of lipids, exhibit toxicity against microorganisms when their concentration exceeds several millimolar. An absorption detection system using a quartz crystal microbalance (QCM) was developed to monitor the LCFA concentration during an anaerobic digester’s operation treating oily organic waste. The dissociation of the LCFAs considerably improved the sensor response and, moreover, enabled it to specifically detect LCFA from the mixture of LCFA and triglyceride. Under alkaline conditions, the frequency-shift rates of the QCM sensor linearly increased in accordance with palmitic acid concentration in the range of 0–100 mg/L. Frequency changes caused by anaerobic digestate samples were successfully measured after removing suspended solids and adjusting the pH to 10.7. Finally, the QCM measurements for digestate samples demonstrated that frequency-shift rates are highly correlated with LCFA concentrations, which confirmed that the newly developed QCM sensor is helpful for LCFA monitoring in terms of rapidness and usability. Full article
Show Figures

Figure 1

Open AccessArticle
Realistic Quantum Control of Energy Transfer in Photosynthetic Processes
Energies 2016, 9(12), 1063; https://doi.org/10.3390/en9121063 - 15 Dec 2016
Cited by 3
Abstract
The occurrence of coherence phenomenon as a result of the interference of the probability amplitude terms is among the principle features of quantum mechanics concepts. Current experiments display the presence of quantum techniques whose coherence is supplied over large interval times. Specifically, photosynthetic [...] Read more.
The occurrence of coherence phenomenon as a result of the interference of the probability amplitude terms is among the principle features of quantum mechanics concepts. Current experiments display the presence of quantum techniques whose coherence is supplied over large interval times. Specifically, photosynthetic mechanisms in light-harvesting complexes furnish oscillatory behaviors owing to quantum coherence. In this manuscript, we study the coherent quantum energy transfer for a single-excitation and nonlocal correlation in a dimer system (donor+acceptor) displayed by two-level systems (TLSs), interacting with a cavity field with a time-dependent coupling effect considering the realistic situation of coupling between each TLS and the cavity field. We analyze and explore the specific conditions which are viable with real experimental realization for the ultimate transfer of quantum energy and nonlocal quantum correlation. We show that the enhancement of the probability for a single-excitation energy transfer greatly benefits from the energy detuning, photon-number transition, classicality of the field, and the time-dependent coupling effect. We also find that the entanglement between the donor and acceptor is very sensitive to the physical parameters and it can be generated during the coherent energy transfer. Full article
Show Figures

Figure 1

Open AccessArticle
A Principal Component Analysis in Switchgrass Chemical Composition
Energies 2016, 9(11), 913; https://doi.org/10.3390/en9110913 - 04 Nov 2016
Cited by 6
Abstract
In recent years, bioenergy has become a promising renewable energy source that can potentially reduce the greenhouse emissions and generate economic growth in rural areas. Gaining understanding and controlling biomass chemical composition contributes to an efficient biofuel generation. This paper presents a principal [...] Read more.
In recent years, bioenergy has become a promising renewable energy source that can potentially reduce the greenhouse emissions and generate economic growth in rural areas. Gaining understanding and controlling biomass chemical composition contributes to an efficient biofuel generation. This paper presents a principal component analysis (PCA) that shows the influence and relevance of selected controllable factors over the chemical composition of switchgrass and, therefore, in the generation of biofuels. The study introduces the following factors: (1) storage days; (2) particle size; (3) wrap type; and (4) weight of the bale. Results show that all the aforementioned factors have an influence in the chemical composition. The number of days that bales have been stored was the most significant factor regarding changes in chemical components due to its effect over principal components 1 and 2 (PC1 and PC2, approximately 80% of the total variance). The storage days are followed by the particle size, the weight of the bale and the type of wrap utilized to enclose the bale. An increment in the number of days (from 75–150 days to 225 days) in storage decreases the percentage of carbohydrates by −1.03% while content of ash increases by 6.56%. Full article
Show Figures

Figure 1

Open AccessReview
Scrap Tyre Management Pathways and Their Use as a Fuel—A Review
Energies 2016, 9(11), 888; https://doi.org/10.3390/en9110888 - 29 Oct 2016
Cited by 30
Abstract
This article provides a review of different methods for managing waste tyres. Around 1.5 billion scrap tyres make their way into the environmental cycle each year, so there is an extreme demand to manage and mitigate the environmental impact which occurs from landfilling [...] Read more.
This article provides a review of different methods for managing waste tyres. Around 1.5 billion scrap tyres make their way into the environmental cycle each year, so there is an extreme demand to manage and mitigate the environmental impact which occurs from landfilling and burning. Numerous approaches are targeted to recycle and reuse the tyre rubber in various applications. Among them, one of the most important methods for sustainable environmental stewardship is converting tyre rubber components into bio-oil. In this study, scrap tyre management techniques including landfill, retreading, recycling, combustion, and conversion to liquid fuels was reviewed (including gasification, hydrothermal liquefaction, and pyrolysis). The effects of parameters such as reactor types, pyrolysis temperature, and catalyst on the oil, gas and solid products in pyrolysis process were investigated. Full article
Show Figures

Figure 1

Open AccessArticle
The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production
Energies 2016, 9(10), 838; https://doi.org/10.3390/en9100838 - 18 Oct 2016
Cited by 9
Abstract
This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis, modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG) and hydrogen from [...] Read more.
This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis, modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG) and hydrogen from supercritical water refining of a lipid extracted algae feedstock integrated with onsite heat and power generation. The developed reactor models for product gas composition, yield and thermal demand were validated and showed conformity with reported experimental results, and the balance of plant units were designed based on established technologies or state-of-the-art pilot operations. The poly-generative cases illustrated the thermo-chemical constraints and design trade-offs presented by key process parameters such as plant organic throughput, supercritical water refining temperature, nature of desirable coproducts, downstream indirect production and heat recovery scenarios. The evaluated cases favoring hydrogen production at 5 wt. % solid content and 600 °C conversion temperature allowed higher gross syngas and CHP production. However, mainly due to the higher utility demands the net syngas production remained lower compared to the cases favoring BioSNG production. The latter case, at 450 °C reactor temperature, 18 wt. % solid content and presence of downstream indirect production recorded 66.5%, 66.2% and 57.2% energetic, fuel-equivalent and exergetic efficiencies respectively. Full article
Show Figures

Graphical abstract

Open AccessBrief Report
Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species
Energies 2016, 9(9), 685; https://doi.org/10.3390/en9090685 - 29 Aug 2016
Cited by 3
Abstract
Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated [...] Read more.
Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP) candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG) biosynthesis pathway in Trichoderma reesei. We then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. While the overall fatty acid methyl ester (FAME) profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion on lipid production improvement will facilitate strain engineering to boost lipid production under more optimal conditions for productivity than those required for nitrogen depletion. Full article
Show Figures

Figure 1

Open AccessArticle
Environment-Friendly Heterogeneous Alkaline-Based Mixed Metal Oxide Catalysts for Biodiesel Production
Energies 2016, 9(8), 611; https://doi.org/10.3390/en9080611 - 03 Aug 2016
Cited by 15
Abstract
The critical problem arising from the depletion of fossil fuels has stimulated recent interests in alternative sources for petroleum-based fuel. An alternative fuel should be technically feasible, readily available, sustainable, and techno-economically competitive. Biodiesel is considered as a potential replacement of conventional diesel [...] Read more.
The critical problem arising from the depletion of fossil fuels has stimulated recent interests in alternative sources for petroleum-based fuel. An alternative fuel should be technically feasible, readily available, sustainable, and techno-economically competitive. Biodiesel is considered as a potential replacement of conventional diesel fuel, which is prepared from non-edible and high-acid feedstock via transesterification technology. The focus of this study is to investigate the catalytic activity of mixed metal oxides (MMOs) as catalysts for biodiesel production by using non-edible jatropha oil as feedstock. Various types of MMOs (CaO-MgO, CaO-ZnO, CaO-La2O3, and MgO-ZnO) were synthesized via a co-precipitation method. In this study, transesterification activities are closely related to the physicochemical properties of catalysts. The presence of different active metals in the binary system greatly influenced the surface area, basicity, and the stability of catalysts. The catalytic activity of MMO catalysts was increased in the order of CaO-ZnO (94% ± 1%) > CaO ~ CaO-MgO ~ CaO-La2O3 (~90% ± 2%) > MgO-ZnO (83% ± 2%) > MgO (64% ± 1%) > ZnO (41% ± 2%) > La2O3 (23% ± 1%). In addition, the MMO catalysts, especially CaO-ZnO, demonstrated high reusability and catalyst stability for four cycles of transesterification reaction of jatropha oil. Full article
Show Figures

Graphical abstract

Open AccessReview
A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis
Energies 2016, 9(7), 481; https://doi.org/10.3390/en9070481 - 23 Jun 2016
Cited by 43
Abstract
This paper reports on a comprehensive study of the CO2-EOR (Enhanced oil recovery) process, a detailed literature review and a numerical modelling study. According to past studies, CO2 injection can recover additional oil from reservoirs by reservoir pressure increment, oil [...] Read more.
This paper reports on a comprehensive study of the CO2-EOR (Enhanced oil recovery) process, a detailed literature review and a numerical modelling study. According to past studies, CO2 injection can recover additional oil from reservoirs by reservoir pressure increment, oil swelling, the reduction of oil viscosity and density and the vaporization of oil hydrocarbons. Therefore, CO2-EOR can be used to enhance the two major oil recovery mechanisms in the field: miscible and immiscible oil recovery, which can be further increased by increasing the amount of CO2 injected, applying innovative flood design and well placement, improving the mobility ratio, extending miscibility, and controlling reservoir depth and temperature. A 3-D numerical model was developed using the CO2-Prophet simulator to examine the effective factors in the CO2-EOR process. According to that, in pure CO2 injection, oil production generally exhibits increasing trends with increasing CO2 injection rate and volume (in HCPV (Hydrocarbon pore volume)) and reservoir temperature. In the WAG (Water alternating gas) process, oil production generally increases with increasing CO2 and water injection rates, the total amount of flood injected in HCPV and the distance between the injection wells, and reduces with WAG flood ratio and initial reservoir pressure. Compared to other factors, the water injection rate creates the minimum influence on oil production, and the CO2 injection rate, flood volume and distance between the flood wells have almost equally important influence on oil production. Full article
Show Figures

Graphical abstract

Open AccessArticle
Effect of Coal Rank on Various Fluid Saturations Creating Mechanical Property Alterations Using Australian Coals
Energies 2016, 9(6), 440; https://doi.org/10.3390/en9060440 - 08 Jun 2016
Cited by 14
Abstract
During CO2 sequestration in deep coal seams, the coal mass may be subjected to various fluid (CO2, N2, etc.) saturations. Therefore, in order to maintain the long-term integrity of the process, it is necessary to identify the [...] Read more.
During CO2 sequestration in deep coal seams, the coal mass may be subjected to various fluid (CO2, N2, etc.) saturations. Therefore, in order to maintain the long-term integrity of the process, it is necessary to identify the mechanical responses of preferable coal seams for various fluid saturations. To date, many studies have focused on the CO2 saturation effect on coal mass strength and less consideration has been given to the influence of other saturation mediums. Hence, this study aims to investigate coal’s mechanical responses to water and N2 saturations compared to CO2 saturation and to determine the effect of coal-rank. A series of unconfined compressive strength (UCS) tests was conducted on Australian brown and black coal samples saturated with water and N2 at various saturation pressures. An advanced acoustic emission (AE) system was utilized to identify the changes in crack propagation behaviors under each condition. According to the results, both CO2 and water act similarly with coal by enhancing the ductile properties of the coal mass and this mechanical weakening is greater for high-rank coal. Conversely, N2 saturation slightly enhances coal strength and delays crack propagation in coal and this strength enhancement can be improved by increasing the N2 saturation pressure. Full article
Show Figures

Figure 1

Open AccessArticle
Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate
Energies 2016, 9(5), 388; https://doi.org/10.3390/en9050388 - 20 May 2016
Cited by 3
Abstract
Implementation of microbial fuel cells (MFCs) for electricity production requires effective current generation from waste products via robust cathode reduction. Three cathode types using dissolved oxygen cathodes (DOCs), ferricyanide cathodes (FeCs) and air cathodes (AiCs) were therefore assessed using bioethanol effluent, containing 20.5 [...] Read more.
Implementation of microbial fuel cells (MFCs) for electricity production requires effective current generation from waste products via robust cathode reduction. Three cathode types using dissolved oxygen cathodes (DOCs), ferricyanide cathodes (FeCs) and air cathodes (AiCs) were therefore assessed using bioethanol effluent, containing 20.5 g/L xylose, 1.8 g/L arabinose and 2.5 g/L propionic acid. In each set-up the anode and cathode had an electrode surface area of 88 cm2, which was used for calculation of the current density. Electricity generation was evaluated by quantifying current responses to substrate loading rates and external resistance. At the lowest external resistance of 27 Ω and highest substrate loading rate of 2 g chemical oxygen demand (COD) per L·day, FeC-MFC generated highest average current density (1630 mA/m2) followed by AiC-MFC (802 mA/m2) and DOC-MFC (184 mA/m2). Electrochemical impedance spectroscopy (EIS) was used to determine the impedance of the cathodes. It was thereby confirmed that the FeC-MFC produced the highest current density with the lowest internal resistance for the cathode. However, in a setup using bioethanol effluent, the AiC-MFC was concluded to be the most sustainable option since it does not require ferricyanide. The data offer a new add-on option to the straw biorefinery by using bioethanol effluent for microbial electricity production. Full article
Show Figures

Graphical abstract

Open AccessArticle
Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids
Energies 2016, 9(5), 368; https://doi.org/10.3390/en9050368 - 16 May 2016
Cited by 5
Abstract
The biochemical methane potential and composition of sugar beet pulp silage were investigated using samples taken from six different depths in both open and closed silos (height 3.6 m). The biochemical methane potential (BMP) of pulp silage in open silos ranged from 337 [...] Read more.
The biochemical methane potential and composition of sugar beet pulp silage were investigated using samples taken from six different depths in both open and closed silos (height 3.6 m). The biochemical methane potential (BMP) of pulp silage in open silos ranged from 337 to 420 normal litre (NL) CH4/kg volatile solids (VS), while the BMP of pulp silage in closed silos varied between 411 and 451 NL CH4/kg VS. The biochemical methane potential peaked at a depth of 1.45 m with 420 NL CH4/kg VS for open silos and 451 NL CH4/kg VS for closed silos. The ethanol concentration and biochemical methane potential showed the same trend with depth throughout the silos. The energy loss correlated to the loss of volatile solids, and the depths described a linear relationship between them for both the open and closed silos (R2 = 0.997 for the open silo and R2 = 0.991 for the closed silo). The energy potentials and composition of beet pulp silage were highly stratified and there was a risk that the silage samples were not representative in investigations of biomass quality for energy production. Full article
Show Figures

Figure 1

Open AccessArticle
Techno-Economic Analysis of Integrating First and Second-Generation Ethanol Production Using Filamentous Fungi: An Industrial Case Study
Energies 2016, 9(5), 359; https://doi.org/10.3390/en9050359 - 12 May 2016
Cited by 12
Abstract
The 2nd generation plants producing ethanol from lignocelluloses demand risky and high investment costs. This paper presents the energy- and economical evaluations for integrating lignocellulose in current 1st generation dry mill ethanol processes, using filamentous fungi. Dry mills use grains and have mills, [...] Read more.
The 2nd generation plants producing ethanol from lignocelluloses demand risky and high investment costs. This paper presents the energy- and economical evaluations for integrating lignocellulose in current 1st generation dry mill ethanol processes, using filamentous fungi. Dry mills use grains and have mills, liquefactions, saccharifications, fermentation, and distillation to produce ethanol, while their stillage passes centrifugation, and evaporation to recycle the water and dry the cake and evaporated syrup into animal feed. In this work, a bioreactor was considered to cultivate fungi on the stillage either before or after the centrifugation step together with pretreated lignocellulosic wheat bran. The results showed that the integrated 1st and 2nd generation ethanol process requires a capital investment of 77 million USD, which could yield NPV of 162 million USD after 20 years. Compared to the fungal cultivation on thin stillage modified 1st generation process, the integrated process resulted in 53 million USD higher NPV. The energy analysis showed that the thin stillage modified 1st generation process could reduce the overall energy consumption by 2.5% and increase the ethanol production by 4%. Such modifications in the 1st generation processes and integration concepts could be interesting for the ethanol industries, as integrating lignocelluloses to their existing setup requires less capital investment. Full article
Show Figures

Graphical abstract

2015

Jump to: 2020, 2019, 2018, 2017, 2016, 2014, 2013, 2012, 2011

Open AccessArticle
Regionalized Techno-Economic Assessment and Policy Analysis for Biomass Molded Fuel in China
Energies 2015, 8(12), 13846-13863; https://doi.org/10.3390/en81212399 - 04 Dec 2015
Cited by 11
Abstract
As a relatively mature technology, biomass molded fuel (BMF) is widely used in distributed and centralized heating in China and has received considerable government attention. Although many BFM incentive policies have been developed, decreased domestic traditional fuel prices in China have caused BMF [...] Read more.
As a relatively mature technology, biomass molded fuel (BMF) is widely used in distributed and centralized heating in China and has received considerable government attention. Although many BFM incentive policies have been developed, decreased domestic traditional fuel prices in China have caused BMF to lose its economic viability and new policy recommendations are needed to stimulate this industry. The present study built a regionalized net present value (NPV) model based on real production process simulation to test the impacts of each policy factor. The calculations showed that BMF production costs vary remarkably between regions, with the cost of agricultural briquette fuel (ABF) ranging from 86 US dollar per metric ton (USD/t) to 110 (USD/t), while that of woody pellet fuel (WPF) varies from 122 USD/t to 154 USD/t. The largest part of BMF’s cost composition is feedstock, which accounts for up 50%–60% of the total; accordingly a feedstock subsidy is the most effective policy factor, but in consideration of policy implementation, it would be better to use a production subsidy. For ABF, the optimal product subsidy varies from 26 USD/t to 57 USD/t among different regions of China, while for WPF, the range is 36 USD/t to 75 USD/t. Based on the data, a regional BMF development strategy is also proposed in this study. Full article
Show Figures

Figure 1

Open AccessArticle
Effects of Alkali and Alkaline Earth Metals on N-Containing Species Release during Rice Straw Pyrolysis
Energies 2015, 8(11), 13021-13032; https://doi.org/10.3390/en81112356 - 17 Nov 2015
Cited by 13
Abstract
To study the effects of inherent and external alkali and alkaline earth metallic species (AAEMs, i.e., K, Ca and Mg) on the behavior of N-containing species release during rice straw (RS) pyrolysis, different pretreatments were applied in numerous experiments. Results indicate that [...] Read more.
To study the effects of inherent and external alkali and alkaline earth metallic species (AAEMs, i.e., K, Ca and Mg) on the behavior of N-containing species release during rice straw (RS) pyrolysis, different pretreatments were applied in numerous experiments. Results indicate that ammonia (NH3) and hydrogen cyanide (HCN) are the major N-containing species and that the yields of isocyanic acid (HNCO) and nitric oxide (NO) are relatively low. The removal of inhert AAEMs shifts N-containing species release to a high-temperature zone according to volatile release behavior because of the increase in activation energy. The formation selectivity of NH3, HNCO, and NO increases by demineralized pretreatment, whereas HCN selectivity decreases. The formation of HNCO is mainly affected by alkaline earth metal. N-containing species release occurs in low temperatures with the addition of external AAEMs. The activation energy of samples impregnated with CaCl2 and MgCl2 sharply decreases compared to the original RS. The total yields of N-containing species are reduced significantly in the presence of KCl, CaCl2, and MgCl2 as additives. The inhibition ability of AAEMs follows the sequence MgCl2 > CaCl2 > KCl. The inhibition effect of MgCl2 can be improved by solution immersion compared with solid powder mixing. The clean biomass pyrolysis and gasification technology with low N-containing species content may be developed according to the results. Full article
Show Figures

Graphical abstract

Open AccessArticle
Eicosapentaenoic Acid from Porphyridium Cruentum: Increasing Growth and Productivity of Microalgae for Pharmaceutical Products
Energies 2015, 8(9), 10487-10503; https://doi.org/10.3390/en80910487 - 22 Sep 2015
Cited by 11
Abstract
An alternative source of eicosapentaenoic acid (EPA) or omega-3 could be microalgae lipids instead of fish oils. However, EPA and lipid contents extracted from microalgae vary at different growth conditions. Therefore, it is of paramount importance to optimize the growth conditions of microalgae [...] Read more.
An alternative source of eicosapentaenoic acid (EPA) or omega-3 could be microalgae lipids instead of fish oils. However, EPA and lipid contents extracted from microalgae vary at different growth conditions. Therefore, it is of paramount importance to optimize the growth conditions of microalgae to maximize EPA production. In this paper, the effects of temperature (16 °C and 20 °C), light intensity (140 µE m−2 s−1 and 180 µE m−2 s−1) and nitrate level (0.075, 0.3, 0.5, and 0.7 g/L) on the cell growth, lipid productivity, and omega-6/omega-3 ratio of Porphyridium cruentum, one of the most promising oil-rich species of microalgae, are investigated. The ratio of the fatty acids with omega-6 and omega-3 groups at various growth conditions were compared, since an appropriate proportion of ω-6 (arachidonic acid (ARA)) to ω-3 (EPA) is vital for healthy nutrition. Lower EPA production and consequently a higher ARA/EPA ratio occurred when 5% CO2/air was utilized as CO2 supplementation compared to pure CO2. The highest EPA (13.08% (w/w) of total fatty acids) and biomass productivity (143 mg L−1 day−1) was achieved at 140 µE m−2 s−1, 20 °C, and 0.3 g/L nitrate, while lipid content was the lowest (0.5% w/w) at this condition. The optimal condition with minimum ARA/EPA ratio (2.5) was identified at 20 °C, 140 µE m−2 s−1, and 0.5 g/L nitrate concentration. Full article
Show Figures

Graphical abstract

Open AccessArticle
Influence of Combustion Parameters on Fouling Composition after Wood Pellet Burning in a Lab-Scale Low-Power Boiler
Energies 2015, 8(9), 9794-9816; https://doi.org/10.3390/en8099794 - 09 Sep 2015
Cited by 18
Abstract
The present study aims to evaluate the effect of different operating conditions on fouling composition after woody biomass combustion in an experimental low-power fixed-bed boiler. The boiler was built specifically for research purposes and allows easy removal of areas susceptible to fouling and [...] Read more.
The present study aims to evaluate the effect of different operating conditions on fouling composition after woody biomass combustion in an experimental low-power fixed-bed boiler. The boiler was built specifically for research purposes and allows easy removal of areas susceptible to fouling and the control, modification and registry of combustion parameters. The influences of the total airflow supplied and the deposition probe temperature were studied in fouling; differentiating between the layers of fouling adhered to the tube and those deposited over the tube. Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) and Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDS) were performed in order to determine a relationship between the fouling composition and the combustion parameters used. Upon increasing the total airflow supplied and the deposition probe temperature, the amount of organic matter, namely unburned carbon, decreased, indicating a better combustion efficiency. Chemical analysis results of fouling deposits showed that inorganic elements presented different behaviors depending on the collection area and the combustion parameters. Non-volatile elements such as Si and Ca were mostly found in the coarse fraction of the bottom ash and minor amounts were deposited over the tube. Small amounts of Cl in biomass generated serious deposition problems, especially during combustions with low airflow rates. Full article
Show Figures

Figure 1

Open AccessArticle
Chemical Composition of Apricot Pit Shells and Effect of Hot-Water Extraction
Energies 2015, 8(9), 9640-9654; https://doi.org/10.3390/en8099640 - 03 Sep 2015
Cited by 18
Abstract
Agricultural residues, such as corn stover, wheat straw, and nut shells show promise as feedstocks for lignocellulosic biorefinery due to their relatively high polysaccharide content and low or no nutritional value for human consumption. Apricot pit shells (APS) were studied in this work [...] Read more.
Agricultural residues, such as corn stover, wheat straw, and nut shells show promise as feedstocks for lignocellulosic biorefinery due to their relatively high polysaccharide content and low or no nutritional value for human consumption. Apricot pit shells (APS) were studied in this work to assess their potential for use in a biorefinery. Hot water extraction (HWE; 160 °C, 2 h), proposed to remove easily accessible hemicelluloses, was performed to evaluate the susceptibility of APS to this mild pretreatment process. The chemical composition of APS before and after HWE (EAPS) was analyzed by standard methods and 1H-NMR. A low yield of the remaining HW-extracted APS (~59%) indicated that APS are highly susceptible to this pretreatment method. 1H-NMR analysis of EAPS revealed that ~77% of xylan present in raw APS was removed along with ~24% of lignin. The energy of combustion of APS was measured before and after HWE showing a slight increase due to HWE (1.61% increase). Near infrared radiation spectroscopy (NIRS), proposed as a quick non-invasive method of biomass analysis, was performed. NIRS corroborated results of traditional analysis and 1H-NMR. Determination of antioxidizing activity (AOA) of APS extracts was also undertaken. AOA of organic APS extracts were shown to be more than 20 times higher than that of a synthetic antioxidizing agent. Full article
Show Figures

Figure 1

Open AccessArticle
Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia
Energies 2015, 8(9), 9565-9583; https://doi.org/10.3390/en8099565 - 02 Sep 2015
Cited by 11
Abstract
Up to the present day, wood has been used to supply the needs for cooking in rural Africa. Due to the ongoing deforestation, households need to change to other energy sources. To cover this need, a large amount of people are using residues [...] Read more.
Up to the present day, wood has been used to supply the needs for cooking in rural Africa. Due to the ongoing deforestation, households need to change to other energy sources. To cover this need, a large amount of people are using residues from agriculture (straw, manure) instead. However, both straw and manure also have a function in agriculture for soil improvement. Using all the straw and manure will seriously affect the food production. In this paper we first determine the amount of energy that households need for cooking (about 7 GJ per year). Then we estimate the amount of residues that can be obtained from the agricultural system and the amount of energy for cooking that can be derived from this amount when different conversion techniques are used. The amount of residues needed is strongly affected by the technology used. The traditional three stone fires require at least two times as much resource than the more advanced technologies. Up to 4 ha of land or 15 cows are needed to provide enough straw and manure to cook on the traditional three stone fires. When more efficient techniques are used (briquetting, biogas) this can be reduced to 2 ha and six cows. Due to large variation in resource availability between households, about 80% of the households own less than 2 ha and 70% holds less than four cows. This means that even when modern, energy efficient techniques are used the largest share of the population is not able to generate enough energy for cooking from their own land and/or cattle. Most rural households in Sub-Saharan Africa may share similar resource holding characteristics for which the results from the current findings on Ethiopia can be relevant. Full article
Show Figures

Figure 1

Open AccessReview
Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application
Energies 2015, 8(8), 8121-8144; https://doi.org/10.3390/en8088121 - 05 Aug 2015
Cited by 30
Abstract
In the last decades the increasing energy requirements along with the need to face the consequences of climate change have driven the search for renewable energy sources, in order to replace as much as possible the use of fossil fuels. In this context [...] Read more.
In the last decades the increasing energy requirements along with the need to face the consequences of climate change have driven the search for renewable energy sources, in order to replace as much as possible the use of fossil fuels. In this context biomass has generated great interest as it can be converted into energy via several routes, including fermentation and anaerobic digestion. The former is the most common option to produce ethanol, which has been recognized as one of the leading candidates to substitute a large fraction of the liquid fuels produced from oil. As the economic competitiveness of bioethanol fermentation processes has to be enhanced in order to promote its wider implementation, the most recent trends are directed towards the use of fermentation by-products within anaerobic digestion. The integration of both fermentation and anaerobic digestion, in a biorefinery concept, would allow the production of ethanol along with that of biogas, which can be used to produce heat and electricity, thus improving the overall energy balance. This work aims at reviewing the main studies on the combination of both bioethanol and biogas production processes, in order to highlight the strength and weakness of the integrated treatment for industrial application. Full article
Show Figures

Figure 1

Open AccessArticle
Release of Extracellular Polymeric Substance and Disintegration of Anaerobic Granular Sludge under Reduced Sulfur Compounds-Rich Conditions
Energies 2015, 8(8), 7968-7985; https://doi.org/10.3390/en8087968 - 31 Jul 2015
Cited by 14
Abstract
The effect of reduced form of sulfur compounds on granular sludge was investigated. Significant release of extracellular polymeric substance (EPS) from the granular sludge occurred in the presence of sulfide and methanethiol according to various concentrations. Granular sludge also showed a rapid increase [...] Read more.
The effect of reduced form of sulfur compounds on granular sludge was investigated. Significant release of extracellular polymeric substance (EPS) from the granular sludge occurred in the presence of sulfide and methanethiol according to various concentrations. Granular sludge also showed a rapid increase in turbidity and decrease in diameter in accordance with sulfide concentration during the long-term shaking, suggesting that the strength of the granules was reduced with high-concentration sulfide. A continuous experiment of up-flow anaerobic sludge blanket reactors with different concentrations of sulfide (10, 200, 500 mg-S/L) influence demonstrated that the reactor fed with higher concentration of sulfide allowed more washout of small particle-suspended solid (SS) content and soluble carbohydrate and protein, which were considered as EPS released from biofilm. Finally, the presence of sulfide negatively affected methane production, chemical oxygen demand removal and sludge retention in operational performance. Full article
Show Figures

Figure 1

Open AccessArticle
Lignin-Furfural Based Adhesives
Energies 2015, 8(8), 7897-7914; https://doi.org/10.3390/en8087897 - 30 Jul 2015
Cited by 43
Abstract
Lignin recovered from the hot-water extract of sugar maple (Acer saccharum) is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF) resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR) analysis. The molecular weight [...] Read more.
Lignin recovered from the hot-water extract of sugar maple (Acer saccharum) is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF) resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR) analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC). The effect of pH (0.3, 0.65 and 1), ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength. Full article
Show Figures

Graphical abstract

Open AccessReview
Engineering Plant Biomass Lignin Content and Composition for Biofuels and Bioproducts
Energies 2015, 8(8), 7654-7676; https://doi.org/10.3390/en8087654 - 27 Jul 2015
Cited by 58
Abstract
Lignin is an aromatic biopolymer involved in providing structural support to plant cell walls. Compared to the other cell wall polymers, i.e., cellulose and hemicelluloses, lignin has been considered a hindrance in cellulosic bioethanol production due to the complexity involved in its [...] Read more.
Lignin is an aromatic biopolymer involved in providing structural support to plant cell walls. Compared to the other cell wall polymers, i.e., cellulose and hemicelluloses, lignin has been considered a hindrance in cellulosic bioethanol production due to the complexity involved in its separation from other polymers of various biomass feedstocks. Nevertheless, lignin is a potential source of valuable aromatic chemical compounds and upgradable building blocks. Though the biosynthetic pathway of lignin has been elucidated in great detail, the random nature of the polymerization (free radical coupling) process poses challenges for its depolymerization into valuable bioproducts. The absence of specific methodologies for lignin degradation represents an important opportunity for research and development. This review highlights research development in lignin biosynthesis, lignin genetic engineering and different biological and chemical means of depolymerization used to convert lignin into biofuels and bioproducts. Full article
Show Figures

Figure 1

Open AccessArticle
Screening and Evaluation of Some Green Algal Strains (Chlorophyceae) Isolated from Freshwater and Soda Lakes for Biofuel Production
Energies 2015, 8(7), 7502-7521; https://doi.org/10.3390/en8077502 - 22 Jul 2015
Cited by 30
Abstract
Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts and within short periods of time and these can be processed into both biofuels and other useful commercial products. Due to this reason microalgae are considered as a potential [...] Read more.
Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts and within short periods of time and these can be processed into both biofuels and other useful commercial products. Due to this reason microalgae are considered as a potential source of renewable energy; and one of the most important decisions in obtaining oil from microalgae is the choice of species. In this study, the potential of Chlorophyceae species isolated from freshwater and soda lakes in Hungary and Romania (Central Europe) were characterized and evaluated by determining their biomass accumulation, lipid productivity, fatty acid profiles, and biodiesel properties besides protein and carbohydrate productivity. Out of nine strains tested, three accumulated more than 40% dry weight of protein, four accumulated more than 30% dry weight of carbohydrate and the strain Chlorella vulgaris LC8 accumulated high lipid content (42.1% ± 2.6%) with a favorable C16-C18 fatty acid profile (77.4%) as well as suitable biodiesel properties of high cetane number (57.3), low viscosity (4.7 mm2/s), lower iodine number (75.18 g I2/100 g), relative cloud point (8.8 °C) and negative cold filter plugging point (−6.5 °C). Hence the new strain, Chlorella vulgaris LC8 has potential as a feedstock for the production of excellent quality biodiesel. Full article
Show Figures

Figure 1

Open AccessArticle
Behavior of Beech Sawdust during Densification into a Solid Biofuel
Energies 2015, 8(7), 6382-6398; https://doi.org/10.3390/en8076382 - 25 Jun 2015
Cited by 27
Abstract
In solid biofuel manufacture technological and material variables influence the densification process and thus also the final briquette quality. The impact of these technological variables, especially compression pressure and compression temperature, and also of the material parameters (particle size and moisture content) can [...] Read more.
In solid biofuel manufacture technological and material variables influence the densification process and thus also the final briquette quality. The impact of these technological variables, especially compression pressure and compression temperature, and also of the material parameters (particle size and moisture content) can generally be observed during biomass densification in the quality indicators, where the abovementioned variables have a significant influence, especially on the mechanical indicators of quality (briquette density, mechanical durability, etc.). This paper presents the results of experimental research dealing with determining the relationship between the technological and the material variables during densification of beech sawdust. The main goal of the paper is to determine the mutual interaction between compression pressure, compression temperature and material particle size. Research findings were obtained using single-axis densification. The influence of the particle size interacting with compression pressure and compression temperature on the final briquette density was determined. The research findings obtained should prove valuable in briquette production and also in the engineering of densification machines. Full article
Show Figures

Figure 1