Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

29 pages, 2585 KiB  
Article
Impact of Wind on eVTOL Operations and Implications for Vertiport Airside Traffic Flows: A Case Study of Hamburg and Munich
by Karolin Schweiger, Reinhard Schmitz and Franz Knabe
Drones 2023, 7(7), 464; https://doi.org/10.3390/drones7070464 - 11 Jul 2023
Cited by 15 | Viewed by 5474
Abstract
This study examines the impact of wind/gust speed conditions on airside traffic flows at vertiports in the context of on-demand urban air mobility based on the Vertidrome Airside Level of Service Framework. A wind-dependent operational concept introducing four wind speed categories with corresponding [...] Read more.
This study examines the impact of wind/gust speed conditions on airside traffic flows at vertiports in the context of on-demand urban air mobility based on the Vertidrome Airside Level of Service Framework. A wind-dependent operational concept introducing four wind speed categories with corresponding wind-dependent separation values is developed and applied in simulation. A decade (2011–2020) of historical METAR wind/gust speed reports are analyzed for a potential vertiport location at Hamburg and Munich airport, and a representative year of wind speed data is selected for each location as simulation input. Both locations experience performance degradation during the first quarter of the simulated year, which contains over 50% of the annual flight cancellations, and exceed wind-operating conditions, especially during midday and early afternoon hours. This study discusses the importance of wind-dependent coordination of flight schedules and analyzes the challenge of determining appropriate wind speed category thresholds. Lower thresholds result in an increased frequency of operationally unfavorable wind/gust conditions. Additional sensitivity analyses are performed to study the effects of wind-dependent separation deltas and wind-(in)dependent scheduling approaches. In conclusion, the presented approach enables planners and operators to make informed decisions about vertiport traffic flow characteristics and performance, vertiport location, and business cases. Full article
(This article belongs to the Special Issue Weather Impacts on Uncrewed Aircraft)
Show Figures

Figure 1

18 pages, 674 KiB  
Article
Deep Reinforcement Learning for Truck-Drone Delivery Problem
by Zhiliang Bi, Xiwang Guo, Jiacun Wang, Shujin Qin and Guanjun Liu
Drones 2023, 7(7), 445; https://doi.org/10.3390/drones7070445 - 6 Jul 2023
Cited by 24 | Viewed by 4897
Abstract
Utilizing drones for delivery is an effective approach to enhancing delivery efficiency and lowering expenses. However, to overcome the delivery range and payload capacity limitations of drones, the combination of trucks and drones is gaining more attention. By using trucks as a flight [...] Read more.
Utilizing drones for delivery is an effective approach to enhancing delivery efficiency and lowering expenses. However, to overcome the delivery range and payload capacity limitations of drones, the combination of trucks and drones is gaining more attention. By using trucks as a flight platform for drones and supporting their take-off and landing, the delivery range and capacity can be greatly extended. This research focused on mixed truck-drone delivery and utilized reinforcement learning and real road networks to address its optimal scheduling issue. Furthermore, the state and behavior of the vehicle were optimized to reduce meaningless behavior, especially the optimization of truck travel trajectory and customer service time. Finally, a comparison with other reinforcement learning algorithms with behavioral constraints demonstrated the reasonableness of the problem and the advantages of the algorithm. Full article
Show Figures

Figure 1

16 pages, 11307 KiB  
Article
Hyper-Local Weather Predictions with the Enhanced General Urban Area Microclimate Predictions Tool
by Kevin A. Adkins, William Becker, Sricharan Ayyalasomayajula, Steven Lavenstein, Kleoniki Vlachou, David Miller, Marc Compere, Avinash Muthu Krishnan and Nickolas Macchiarella
Drones 2023, 7(7), 428; https://doi.org/10.3390/drones7070428 - 28 Jun 2023
Cited by 5 | Viewed by 3155
Abstract
This paper presents enhancements to, and the demonstration of, the General Urban area Microclimate Predictions tool (GUMP), which is designed to provide hyper-local weather predictions by combining machine-learning (ML) models and computational fluid dynamic (CFD) simulations. For the further development and demonstration of [...] Read more.
This paper presents enhancements to, and the demonstration of, the General Urban area Microclimate Predictions tool (GUMP), which is designed to provide hyper-local weather predictions by combining machine-learning (ML) models and computational fluid dynamic (CFD) simulations. For the further development and demonstration of GUMP, the Embry–Riddle Aeronautical University (ERAU) campus was used as a test environment. Local weather sensors provided data to train ML models, and CFD models of urban- and suburban-like areas of ERAU’s campus were created and iterated through with a wide assortment of inlet wind speed and direction combinations. ML weather sensor predictions were combined with best-fit CFD models from a database of CFD flow fields, providing flight operational areas with a fully expressed wind flow field. This field defined a risk map for uncrewed aircraft operators based on flight plans and individual flight performance metrics. The potential applications of GUMP are significant due to the immediate availability of weather predictions and its ability to easily extend to arbitrary urban and suburban locations. Full article
(This article belongs to the Special Issue Weather Impacts on Uncrewed Aircraft)
Show Figures

Figure 1

18 pages, 9208 KiB  
Article
Chattering Reduction of Sliding Mode Control for Quadrotor UAVs Based on Reinforcement Learning
by Qi Wang, Akio Namiki, Abner Asignacion, Jr., Ziran Li and Satoshi Suzuki
Drones 2023, 7(7), 420; https://doi.org/10.3390/drones7070420 - 25 Jun 2023
Cited by 10 | Viewed by 3535
Abstract
Sliding mode control, an algorithm known for its stability and robustness, has been widely used in designing robot controllers. Such controllers inevitably exhibit chattering; numerous methods have been proposed to deal with this problem in the past decade. However, in most scenarios, ensuring [...] Read more.
Sliding mode control, an algorithm known for its stability and robustness, has been widely used in designing robot controllers. Such controllers inevitably exhibit chattering; numerous methods have been proposed to deal with this problem in the past decade. However, in most scenarios, ensuring that the specified form and the parameters selected are optimal for the system is challenging. In this work, the reinforcement-learning method is adopted to explore the optimal nonlinear function to reduce chattering. Based on a conventional reference model for sliding mode control, the network output directly participates in the controller calculation without any restrictions. Additionally, a two-step verification method is proposed, including simulation under input delay and external disturbance and actual experiments using a quadrotor. Two types of classic chattering reduction methods are implemented on the same basic controller for comparison. The experiment results indicate that the proposed method could effectively reduce chattering and exhibit better tracking performance. Full article
Show Figures

Figure 1

39 pages, 9548 KiB  
Article
Assuring Safe and Efficient Operation of UAV Using Explainable Machine Learning
by Abdulrahman Alharbi, Ivan Petrunin and Dimitrios Panagiotakopoulos
Drones 2023, 7(5), 327; https://doi.org/10.3390/drones7050327 - 19 May 2023
Cited by 10 | Viewed by 3477
Abstract
The accurate estimation of airspace capacity in unmanned traffic management (UTM) operations is critical for a safe, efficient, and equitable allocation of airspace system resources. While conventional approaches for assessing airspace complexity certainly exist, these methods fail to capture true airspace capacity, since [...] Read more.
The accurate estimation of airspace capacity in unmanned traffic management (UTM) operations is critical for a safe, efficient, and equitable allocation of airspace system resources. While conventional approaches for assessing airspace complexity certainly exist, these methods fail to capture true airspace capacity, since they fail to address several important variables (such as weather). Meanwhile, existing AI-based decision-support systems evince opacity and inexplicability, and this restricts their practical application. With these challenges in mind, the authors propose a tailored solution to the needs of demand and capacity management (DCM) services. This solution, by deploying a synthesized fuzzy rule-based model and deep learning will address the trade-off between explicability and performance. In doing so, it will generate an intelligent system that will be explicable and reasonably comprehensible. The results show that this advisory system will be able to indicate the most appropriate regions for unmanned aerial vehicle (UAVs) operation, and it will also increase UTM airspace availability by more than 23%. Moreover, the proposed system demonstrates a maximum capacity gain of 65% and a minimum safety gain of 35%, while possessing an explainability attribute of 70%. This will assist UTM authorities through more effective airspace capacity estimation and the formulation of new operational regulations and performance requirements. Full article
(This article belongs to the Special Issue AAM Integration: Strategic Insights and Goals)
Show Figures

Figure 1

24 pages, 2596 KiB  
Article
Advanced Air Mobility Operation and Infrastructure for Sustainable Connected eVTOL Vehicle
by Saba Al-Rubaye, Antonios Tsourdos and Kamesh Namuduri
Drones 2023, 7(5), 319; https://doi.org/10.3390/drones7050319 - 16 May 2023
Cited by 48 | Viewed by 11429
Abstract
Advanced air mobility (AAM) is an emerging sector in aviation aiming to offer secure, efficient, and eco-friendly transportation utilizing electric vertical takeoff and landing (eVTOL) aircraft. These vehicles are designed for short-haul flights, transporting passengers and cargo between urban centers, suburbs, and remote [...] Read more.
Advanced air mobility (AAM) is an emerging sector in aviation aiming to offer secure, efficient, and eco-friendly transportation utilizing electric vertical takeoff and landing (eVTOL) aircraft. These vehicles are designed for short-haul flights, transporting passengers and cargo between urban centers, suburbs, and remote areas. As the number of flights is expected to rise significantly in congested metropolitan areas, there is a need for a digital ecosystem to support the AAM platform. This ecosystem requires seamless integration of air traffic management systems, ground control systems, and communication networks, enabling effective communication between AAM vehicles and ground systems to ensure safe and efficient operations. Consequently, the aviation industry is seeking to develop a new aerospace framework that promotes shared aerospace practices, ensuring the safety, sustainability, and efficiency of air traffic operations. However, the lack of adequate wireless coverage in congested cities and disconnected rural communities poses challenges for large-scale AAM deployments. In the immediate recovery phase, incorporating AAM with new air-to-ground connectivity presents difficulties such as overwhelming the terrestrial network with data requests, maintaining link reliability, and managing handover occurrences. Furthermore, managing eVTOL traffic in urban areas with congested airspace necessitates high levels of connectivity to support air routing information for eVTOL vehicles. This paper introduces a novel concept addressing future flight challenges and proposes a framework for integrating operations, infrastructure, connectivity, and ecosystems in future air mobility. Specifically, it includes a performance analysis to illustrate the impact of extensive AAM vehicle mobility on ground base station network infrastructure in urban environments. This work aims to pave the way for future air mobility by introducing a new vision for backbone infrastructure that supports safe and sustainable aviation through advanced communication technology. Full article
(This article belongs to the Special Issue Next Generation of Unmanned Aircraft Systems and Services)
Show Figures

Figure 1

15 pages, 3171 KiB  
Article
Improved Radar Detection of Small Drones Using Doppler Signal-to-Clutter Ratio (DSCR) Detector
by Jiangkun Gong, Jun Yan, Huiping Hu, Deyong Kong and Deren Li
Drones 2023, 7(5), 316; https://doi.org/10.3390/drones7050316 - 10 May 2023
Cited by 17 | Viewed by 7235
Abstract
The detection of drones using radar presents challenges due to their small radar cross-section (RCS) values, slow velocities, and low altitudes. Traditional signal-to-noise ratio (SNR) detectors often fail to detect weak radar signals from small drones, resulting in high “Missed Target” rates due [...] Read more.
The detection of drones using radar presents challenges due to their small radar cross-section (RCS) values, slow velocities, and low altitudes. Traditional signal-to-noise ratio (SNR) detectors often fail to detect weak radar signals from small drones, resulting in high “Missed Target” rates due to the dependence of SNR values on RCS and detection range. To overcome this issue, we propose the use of a Doppler signal-to-clutter ratio (DSCR) detector that can extract both amplitude and Doppler information from drone signals. Theoretical calculations suggest that the DSCR of a target is less dependent on the detection range than the SNR. Experimental results using a Ku-band pulsed-Doppler surface surveillance radar and an X-band marine surveillance radar demonstrate that the DSCR detector can effectively extract radar signals from small drones, even when the signals are similar to clutter levels. Compared to the SNR detector, the DSCR detector reduces missed target rates by utilizing a lower detection threshold. Our tests include quad-rotor, fixed-wing, and hybrid vertical take-off and landing (VTOL) drones, with mean SNR values comparable to the surrounding clutter but with DSCR values above 10 dB, significantly higher than the clutter. The simplicity and low radar requirements of the DSCR detector make it a promising solution for drone detection in radar engineering applications. Full article
(This article belongs to the Special Issue Intelligent Recognition and Detection for Unmanned Systems)
Show Figures

Figure 1

16 pages, 4490 KiB  
Article
Noise Impact Assessment of UAS Operation in Urbanised Areas: Field Measurements and a Simulation
by Filip Škultéty, Erik Bujna, Michal Janovec and Branislav Kandera
Drones 2023, 7(5), 314; https://doi.org/10.3390/drones7050314 - 9 May 2023
Cited by 6 | Viewed by 3632
Abstract
This article’s main topic is an assessment of unmanned aircraft system (UAS) noise pollution in several weight categories according to Regulation (EU) 2019/947 and its impact on the urban environment during regular operation. The necessity of solving the given problem is caused by [...] Read more.
This article’s main topic is an assessment of unmanned aircraft system (UAS) noise pollution in several weight categories according to Regulation (EU) 2019/947 and its impact on the urban environment during regular operation. The necessity of solving the given problem is caused by an increasing occurrence of UASs in airspace and the prospect of introducing unmanned aircraft into broader commercial operations. This work aims to provide an overview of noise measurements of two UAS weight categories under natural atmospheric conditions to assess their impact on the surrounding environment. On top of that, modelling and simulations were used to observe and assess the noise emission characteristics. The quantitative results contain an assessment of the given noise restrictions based on the psychoacoustic impact and actual measured values inserted into the urban simulation scenario of the Zilina case study located in northwest Slovakia. It was preceded by a study of noise levels in certain areas to evaluate the variation level after UAS integration into the corresponding airspace. Following a model simulation of the C2 category, it was concluded that there was a marginal rise in the level of noise exposure, which would not exceed the prescribed standards of the Environmental Noise Directive. Full article
Show Figures

Figure 1

22 pages, 9923 KiB  
Article
Drone High-Rise Aerial Delivery with Vertical Grid Screening
by Avishkar Seth, Alice James, Endrowednes Kuantama, Subhas Mukhopadhyay and Richard Han
Drones 2023, 7(5), 300; https://doi.org/10.3390/drones7050300 - 4 May 2023
Cited by 12 | Viewed by 5797
Abstract
Delivery drones typically perform delivery by suspending the parcel vertically or landing the drone to drop off the package. However, because of the constrained landing area and the requirement for precise navigation, delivering items to customers who reside in multi-story apartment complexes poses [...] Read more.
Delivery drones typically perform delivery by suspending the parcel vertically or landing the drone to drop off the package. However, because of the constrained landing area and the requirement for precise navigation, delivering items to customers who reside in multi-story apartment complexes poses a unique challenge. This research paper proposes a novel drone delivery system for multi-story apartment buildings with balconies that employ two methods for Vertical Grid Screening (VGS), i.e., Grid Screening (GS) and Square Screening (SS), to detect unique markers to identify the precise balcony that needs to receive the product. The developed drone has a frame size of 295 mm and is equipped with a stereo camera and a ranging sensor. The research paper also explores the scanning and trajectory methods required for autonomous flight to accurately approach the marker location. The proposed machine learning system is trained on a YOLOv5 model for image recognition of the marker, and four different models and batch sizes are compared. The 32-batch size with a 960 × 1280 resolution model provides an average of 0.97 confidence for an extended range. This system is tested outdoors and shows an accuracy of 95% for a planned trajectory with 398 ms detection time as a solution for last-mile delivery in urban areas. Full article
(This article belongs to the Special Issue Drones: Opportunities and Challenges)
Show Figures

Figure 1

22 pages, 6557 KiB  
Article
Estimating Effective Leaf Area Index of Winter Wheat Based on UAV Point Cloud Data
by Jie Yang, Minfeng Xing, Qiyun Tan, Jiali Shang, Yang Song, Xiliang Ni, Jinfei Wang and Min Xu
Drones 2023, 7(5), 299; https://doi.org/10.3390/drones7050299 - 3 May 2023
Cited by 25 | Viewed by 4488
Abstract
Leaf area index (LAI) is a widely used plant biophysical parameter required for modelling plant photosynthesis and crop yield estimation. UAV remote sensing plays an increasingly important role in providing the data source needed for LAI extraction. This study proposed a UAV-derived 3-D [...] Read more.
Leaf area index (LAI) is a widely used plant biophysical parameter required for modelling plant photosynthesis and crop yield estimation. UAV remote sensing plays an increasingly important role in providing the data source needed for LAI extraction. This study proposed a UAV-derived 3-D point cloud-based method to automatically calculate crop-effective LAI (LAIe). In this method, the 3-D winter wheat point cloud data filtered out of bare ground points was projected onto a hemisphere, and then the gap fraction was calculated through the hemispherical image obtained by projecting the sphere onto a plane. A single-angle inversion method and a multi-angle inversion method were used, respectively, to calculate the LAIe through the gap fraction. The results show a good linear correlation between the calculated LAIe and the field LAIe measured by the digital hemispherical photography method. In particular, the multi-angle inversion method of stereographic projection achieved the highest accuracy, with an R2 of 0.63. The method presented in this paper performs well in LAIe estimation of the main leaf development stages of the winter wheat growth cycle. It offers an effective means for mapping crop LAIe without the need for reference data, which saves time and cost. Full article
Show Figures

Figure 1

23 pages, 191929 KiB  
Article
Transmission Line Segmentation Solutions for UAV Aerial Photography Based on Improved UNet
by Min He, Liang Qin, Xinlan Deng, Sihan Zhou, Haofeng Liu and Kaipei Liu
Drones 2023, 7(4), 274; https://doi.org/10.3390/drones7040274 - 17 Apr 2023
Cited by 13 | Viewed by 3078
Abstract
The accurate and efficient detection of power lines and towers in aerial drone images with complex backgrounds is crucial for the safety of power grid operations and low-altitude drone flights. In this paper, we propose a new method that enhances the deep learning [...] Read more.
The accurate and efficient detection of power lines and towers in aerial drone images with complex backgrounds is crucial for the safety of power grid operations and low-altitude drone flights. In this paper, we propose a new method that enhances the deep learning segmentation model UNet algorithm called TLSUNet. We enhance the UNet algorithm by using a lightweight backbone structure to extract the features and then reconstructing them with contextual information features. In this network model, to reduce its parameters and computational complexity, we adopt DFC-GhostNet (Dubbed Full Connected) as the backbone feature extraction network, which is composed of the DFC-GhostBottleneck structure and uses asymmetric convolution to capture long-distance targets in transmission lines, thus enhancing the model’s extraction capability. Additionally, we design a hybrid feature extraction module based on convolution and a transformer to refine deep semantic features and improve the model’s ability to locate towers and transmission lines in complex environments. Finally, we adopt the up-sampling operator CARAFE (Content-Aware Re-Assembly of FEature) to improve segmentation accuracy by enhancing target restoration using contextual neighborhood pixel information correlation under feature decoding. Our experiments on public aerial photography datasets demonstrate that the improved model requires only 8.3% of the original model’s computational effort and has only 21.4% of the original model’s parameters, while achieving a reduction in inference speed delay by 0.012 s. The segmentation metrics also showed significant improvements, with the mIOU improving from 79.75% to 86.46% and the mDice improving from 87.83% to 92.40%. These results confirm the effectiveness of our proposed method. Full article
(This article belongs to the Special Issue Intelligent Image Processing and Sensing for Drones)
Show Figures

Figure 1

22 pages, 1478 KiB  
Article
UAV Trajectory and Energy Efficiency Optimization in RIS-Assisted Multi-User Air-to-Ground Communications Networks
by Yuanyuan Yao, Ke Lv, Sai Huang, Xuehua Li and Wei Xiang
Drones 2023, 7(4), 272; https://doi.org/10.3390/drones7040272 - 15 Apr 2023
Cited by 20 | Viewed by 4769
Abstract
An air-to-ground downlink communication network consisting of a reconfigurable intelligent surface (RIS) and unmanned aerial vehicle (UAV) is proposed. In conjunction with a resource allocation strategy, the system’s energy efficiency is improved. Specifically, the UAV equipped with a RIS starts from an initial [...] Read more.
An air-to-ground downlink communication network consisting of a reconfigurable intelligent surface (RIS) and unmanned aerial vehicle (UAV) is proposed. In conjunction with a resource allocation strategy, the system’s energy efficiency is improved. Specifically, the UAV equipped with a RIS starts from an initial location, and an energy-efficient unmanned aerial vehicle deployment (EEUD) algorithm is deployed to jointly optimize the UAV trajectory, RIS phase shifts, and BS transmit power, so as to obtain a quasi-optimal deployment location and hence improve the energy efficiency. First, the RIS phase shifts are optimized by using the block coordinate descent (BCD) algorithm to deal with the nonconvex inequality constraint, and then integrated with the Dinkelbach algorithm to address the resource allocation problem of the BS transmit power. Finally, for solving the UAV trajectory optimization problem, the complex objective function is transformed into a convex function, and the optimal UAV flight trajectory is obtained. Our simulation results show that the quasi-optimal deployment location obtained by the EEUD algorithm is superior to other deployment strategies in energy efficiency. Moreover, the instantaneous energy efficiency of the UAVs along the trajectory of searching the deployment location is better than other comparison trajectories. Furthermore, the RIS-assisted multi-user air-to-ground communication network can offer up to 145% improvement in energy efficiency over the traditional amplify-and-forward (AF) relay. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

28 pages, 3268 KiB  
Article
Transition Nonlinear Blended Aerodynamic Modeling and Anti-Harmonic Disturbance Robust Control of Fixed-Wing Tiltrotor UAV
by Jingxian Liao and Hyochoong Bang
Drones 2023, 7(4), 255; https://doi.org/10.3390/drones7040255 - 10 Apr 2023
Cited by 9 | Viewed by 4929
Abstract
This study proposed a novel nonlinear blended aerodynamic model for the tiltrotor unmanned aerial vehicle (UAV) during the transition phase to handle the high angle-of-attack (AoA) flight, which aggregated the flat-plate mode and the linear mode of the aerodynamic coefficients. Additionally, a harmonic [...] Read more.
This study proposed a novel nonlinear blended aerodynamic model for the tiltrotor unmanned aerial vehicle (UAV) during the transition phase to handle the high angle-of-attack (AoA) flight, which aggregated the flat-plate mode and the linear mode of the aerodynamic coefficients. Additionally, a harmonic disturbance observer (HDO) and super-twisting sliding mode controller (STSMC) addressed the fast-changing external disturbances and attenuated the chattering problem in the original SMC. The comparative trajectory tracking results indicated that the blended aerodynamic model accurately tracks the reference signals with no tracking errors, which demonstrated a superior performance as compared to the traditional aerodynamic model, with a reduction of 2.2%, 50%, 73.6%, and 11.2% in the time required for tracking the pitch angle, pitch rate, and velocities u and w, respectively. Conversely, the traditional one exhibited significant tracking errors, ranging from 0.016° in the pitch angle channel to 1.25°/s in the pitch rate channel, and 0.6 m/s for velocity u and 0.01 m/s for velocity w. Moreover, the comparative control input results illustrated that the least control effort was required for the proposed HDO-STSMC control scheme with a blending function, while the original ESO-SMC experienced more oscillations and sharp amplitude changes, taking twice the time to converge, with considerable tracking errors such as 1.067° in the pitch angle channel, 0.788°/s in the pitch rate channel, 1.554 m/s for velocity u, and 0.746 m/s for velocity w, which verified the feasibility and superiority of the proposed HDO-STSMC with the blending function. Two performance indices revealed the robust stability and rapid convergence of the proposed transition blended aerodynamic model with the HDO-STSMC control scheme. Full article
(This article belongs to the Special Issue Flight Control System Simulation)
Show Figures

Figure 1

18 pages, 9726 KiB  
Article
Blade Twist Effects on Aerodynamic Performance and Noise Reduction in a Multirotor Propeller
by Jianwei Sun, Koichi Yonezawa, Yasutada Tanabe, Hideaki Sugawara and Hao Liu
Drones 2023, 7(4), 252; https://doi.org/10.3390/drones7040252 - 6 Apr 2023
Cited by 5 | Viewed by 8070
Abstract
This paper presents a novel integrated study of the aerodynamic performance and acoustic signature of multirotor propellers with a specific focus on the blade twist angle effect. Experimental measurements and computational fluid dynamic (CFD) simulations were utilized to examine and compare the aerodynamic [...] Read more.
This paper presents a novel integrated study of the aerodynamic performance and acoustic signature of multirotor propellers with a specific focus on the blade twist angle effect. Experimental measurements and computational fluid dynamic (CFD) simulations were utilized to examine and compare the aerodynamic performance and noise reduction between twisted and untwisted blades. A 2D phase-locked particle image velocimetry (PIV) was employed to visualize flow structures at specific blade locations in terms of tip vortices and trailing edge vortices. Good consistency between the simulations and measurements was observed in aerodynamic and acoustic performance. It is verified that the propellers with twisted blades enable a maximum increase of 9.3% in the figure of merit compared to untwisted blades while achieving the same thrust production and are further capable to reduce overall sound pressure level by a maximum of 4.3 dB. CFD results reveal that the twisted propeller remarkedly reduces far-field loading noise by suppressing trailing-edge vortices, hence mitigating kinetic energy fluctuation at the blade tip, while having minimal impact on thickness noise. This study points to the crucial role of blade twists in altering the aeroacoustic characteristics, indicating that optimal designs could lead to significant improvements in both aerodynamic and acoustic performance. Full article
Show Figures

Figure 1

26 pages, 8511 KiB  
Article
Robust Control for UAV Close Formation Using LADRC via Sine-Powered Pigeon-Inspired Optimization
by Guangsong Yuan and Haibin Duan
Drones 2023, 7(4), 238; https://doi.org/10.3390/drones7040238 - 29 Mar 2023
Cited by 6 | Viewed by 2438
Abstract
This paper designs a robust close-formation control system with dynamic estimation and compensation to advance unmanned aerial vehicle (UAV) close-formation flights to an engineer-implementation level. To characterize the wake vortex effect and analyze the sweet spot, a continuous horseshoe vortex method with high [...] Read more.
This paper designs a robust close-formation control system with dynamic estimation and compensation to advance unmanned aerial vehicle (UAV) close-formation flights to an engineer-implementation level. To characterize the wake vortex effect and analyze the sweet spot, a continuous horseshoe vortex method with high estimation accuracy is employed to model the wake vortex. The close-formation control system will be implemented in the trailing UAV to steer it to the sweet spot and hold its position. Considering the dynamic characteristics of the trailing UAV, the designed control system is divided into three control subsystems for the longitudinal, altitude, and lateral channels. Using linear active-disturbance rejection control (LADRC), the control subsystem of each channel is composed of two cascaded first-order LADRC controllers. One is responsible for the outer-loop position control and the other is used to stabilize the inner-loop attitude. This control system scheme can significantly reduce the coupling effects between channels and effectively suppress the transmission of disturbances caused by the wake vortex effect. Due to the cascade structure of the control subsystem, the correlation among the control parameters is very high. Therefore, sine-powered pigeon-inspired optimization is proposed to optimize the control parameters for the control subsystem of each channel. The simulation results for two UAV close formations show that the designed control system can achieve stable and robust dynamic performance within the expected error range to maximize the aerodynamic benefits for a trailing UAV. Full article
(This article belongs to the Special Issue Swarm Intelligence in Multi-UAVs)
Show Figures

Figure 1

20 pages, 7470 KiB  
Article
Automated Drone Battery Management System—Droneport: Technical Overview
by Lukáš Bláha, Ondřej Severa, Martin Goubej, Tomáš Myslivec and Jan Reitinger
Drones 2023, 7(4), 234; https://doi.org/10.3390/drones7040234 - 28 Mar 2023
Cited by 7 | Viewed by 7116
Abstract
The popularity of using vertical take-off and landing unmanned aerial systems continues to rise. Although the use of these devices seems to be almost limitless, the main drawback is still the battery capacity and the need to replace or recharge it several times [...] Read more.
The popularity of using vertical take-off and landing unmanned aerial systems continues to rise. Although the use of these devices seems to be almost limitless, the main drawback is still the battery capacity and the need to replace or recharge it several times per hour. This article provides a technical overview of the development of an experimental mechatronic system for automatic drone battery management called Droneport. It was developed as a system with a landing platform, automatic battery exchange and recharging outside the drone, allowing a quick return to the mission. The first part presents its mechanical design, installed instrumentation and software environment. The next part is devoted to the description of the individual hardware components, highlighting the specific problems that had to be solved to optimize size, weight and robustness requirements. The final section summarizes our observations regarding the contribution of this tool to the autonomy of drones or UAVs in general. Full article
(This article belongs to the Special Issue Conceptual Design, Modeling, and Control Strategies of Drones-II)
Show Figures

Figure 1

13 pages, 4763 KiB  
Article
The Use of Unoccupied Aerial Systems (UASs) for Quantifying Shallow Coral Reef Restoration Success in Belize
by Emily Adria Peterson, Lisa Carne, Jamani Balderamos, Victor Faux, Arthur Gleason and Steven R. Schill
Drones 2023, 7(4), 221; https://doi.org/10.3390/drones7040221 - 23 Mar 2023
Cited by 21 | Viewed by 8752
Abstract
There is a growing need for improved techniques to monitor coral reef restoration as these ecosystems and the goods and services they provide continue to decline under threats of anthropogenic activity and climate change. Given the difficulty of fine-scale requirements to monitor the [...] Read more.
There is a growing need for improved techniques to monitor coral reef restoration as these ecosystems and the goods and services they provide continue to decline under threats of anthropogenic activity and climate change. Given the difficulty of fine-scale requirements to monitor the survival and spread of outplanted branching coral fragments, Unoccupied Aerial Systems (UASs) provide an ideal platform to spatially document and quantitatively track growth patterns on shallow reef systems. We present findings from monitoring coral reef restoration combining UAS data with object-oriented segmentation techniques and open-source GIS analysis to quantify the areal extent of species-specific coverage across ~one hectare of shallow fringing reef over a one-year period (2019–2020) in Laughing Bird Caye National Park, southern Belize. The results demonstrate the detection of coral cover changes for three species (Acropora cervicornis, Acropora palmata, and Acropora prolifera) outplanted around the caye since 2006, with overall target coral species cover changing from 2142.58 to 2400.64 square meters from 2019 to 2020. Local ecological knowledge gathered from restoration practitioners was used to validate classified taxa of interest within the imagery collected. Our methods offer a monitoring approach that provides insight into coral growth patterns at a fine scale to better inform adaptive management practices for future restoration actions both within the park and at other reef replenishment target sites. Full article
(This article belongs to the Section Drones in Ecology)
Show Figures

Figure 1

21 pages, 6003 KiB  
Article
A Preliminary Study on the Development of a New UAV Concept and the Associated Flight Method
by Tiberius-Florian Frigioescu, Mihaela Raluca Condruz, Teodor Adrian Badea and Alexandru Paraschiv
Drones 2023, 7(3), 166; https://doi.org/10.3390/drones7030166 - 27 Feb 2023
Cited by 5 | Viewed by 4064
Abstract
This article presents a preliminary study on the development of a new concept for an unmanned aerial vehicle (UAV) design that incorporates the use of four wings and attached systems to improve overall performance, it being classified as a hybrid quadcopter (a quad [...] Read more.
This article presents a preliminary study on the development of a new concept for an unmanned aerial vehicle (UAV) design that incorporates the use of four wings and attached systems to improve overall performance, it being classified as a hybrid quadcopter (a quad tilt wing, tiltrotor UAV). By simulation, it was determined that the developed concept has significant advantages compared with a conventional quadcopter. By implementing this concept, an increase in the maximum speed by 59.21% can be obtained; it reduces time to complete a 10 km route by 36.4%, decreases the energy consumption by 37%, and increases the maximum travel distance by 56.9% at 30% remaining battery capacity. Additionally, the concept improves maneuverability by allowing turning movements to be performed by changing the angle of incidence of the rear wings, resulting in less energy consumption compared to traditional turning methods applied in the case of a conventional quadcopter. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

25 pages, 7129 KiB  
Article
Motion Control System Design for a Novel Water-Powered Aerial System for Firefighting with Flow-Regulating Actuators
by Thinh Huynh and Young-Bok Kim
Drones 2023, 7(3), 162; https://doi.org/10.3390/drones7030162 - 26 Feb 2023
Cited by 5 | Viewed by 2964
Abstract
Flying water-jet propulsion devices, such as jet boards, jet packs, and jet bikes, can execute complex flight maneuvers. However, they require the direct involvement of trained operators to control, and their applications are very limited. In this study, we design an effective controller [...] Read more.
Flying water-jet propulsion devices, such as jet boards, jet packs, and jet bikes, can execute complex flight maneuvers. However, they require the direct involvement of trained operators to control, and their applications are very limited. In this study, we design an effective controller for a novel water-powered aerial system that aims for autonomous firefighting missions, especially at or in bodies water. Unlike existing water-powered systems, an assembly of flow-regulating actuators is proposed to fully operate the system in three-dimensional space. The paper first formulates the system dynamics by coupled partial ordinary differential equations. Then, the nonlinear controller is designed to ensure the desired system motion and stability. The design takes distinct characteristics of the system, such as coupling, under actuation, and effects of the hose conveying the water, into consideration so that the system is stabilized and uniform ultimate boundedness is achieved. Computational studies in comparison with previous control methods validated the superiority and feasibility of the proposed control system. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

16 pages, 6626 KiB  
Article
A Method for Forest Canopy Height Inversion Based on UAVSAR and Fourier–Legendre Polynomial—Performance in Different Forest Types
by Hongbin Luo, Cairong Yue, Hua Yuan, Ning Wang and Si Chen
Drones 2023, 7(3), 152; https://doi.org/10.3390/drones7030152 - 22 Feb 2023
Cited by 2 | Viewed by 3012
Abstract
Mapping forest canopy height at large regional scales is of great importance for the global carbon cycle. Polarized interferometric synthetic aperture radar is an efficient and irreplaceable remote sensing tool. Developing an efficient and accurate method for forest canopy height estimation is an [...] Read more.
Mapping forest canopy height at large regional scales is of great importance for the global carbon cycle. Polarized interferometric synthetic aperture radar is an efficient and irreplaceable remote sensing tool. Developing an efficient and accurate method for forest canopy height estimation is an important issue that needs to be addressed urgently. In this paper, we propose a novel four-stage forest height inversion method based on a Fourier–Legendre polynomial (FLP) with reference to the RVoG three-stage method, using the multi-baseline UAVSAR data from the AfriSAR project as the data source. The third-order FLP is used as the vertical structure function, and a small amount of ground phase and LiDAR canopy height is used as the input to solve and fix the FLP coefficients to replace the exponential function in the RVoG three-stage method. The performance of this method was tested in different forest types (mangrove and inland tropical forests). The results show that: (1) in mangroves with homogeneous forest structure, the accuracy based on the four-stage FLP method is better than that of the RVoG three-stage method. For the four-stage FLP method, R2 is 0.82, RMSE is 6.42 m and BIAS is 0.92 m, while the R2 of the RVoG three-stage method is 0.77, RMSE is 7.33 m, and bias is −3.49 m. In inland tropical forests with complex forest structure, the inversion accuracy based on the four-stage FLP method is lower than that of the RVoG three-stage method. The R2 is 0.50, RMSE is 11.54 m, and BIAS is 6.53 m for the four-stage FLP method; the R2 of the RVoG three-stage method is 0.72, RMSE is 8.68 m, and BIAS is 1.67 m. (2) Compared to the RVoG three-stage method, the efficiency of the four-stage FLP method is improved by about tenfold, with the reduction of model parameters. The inversion time of the FLP method in a mangrove forest is 3 min, and that of the RVoG three-stage method is 33 min. In an inland tropical forest, the inversion time of the FLP method is 2.25 min, and that of the RVoG three-stage method is 21 min. With the application of large regional scale data in the future, the method proposed in this study is more efficient when conditions allow. Full article
Show Figures

Figure 1

17 pages, 15087 KiB  
Article
Fast and High-Quality Monocular Depth Estimation with Optical Flow for Autonomous Drones
by Tomoyasu Shimada, Hiroki Nishikawa, Xiangbo Kong and Hiroyuki Tomiyama
Drones 2023, 7(2), 134; https://doi.org/10.3390/drones7020134 - 14 Feb 2023
Cited by 3 | Viewed by 5382
Abstract
Recent years, autonomous drones have attracted attention in many fields due to their convenience. Autonomous drones require precise depth information so as to avoid collision to fly fast and both of RGB image and LiDAR point cloud are often employed in applications based [...] Read more.
Recent years, autonomous drones have attracted attention in many fields due to their convenience. Autonomous drones require precise depth information so as to avoid collision to fly fast and both of RGB image and LiDAR point cloud are often employed in applications based on Convolutional Neural Networks (CNNs) to estimate the distance to obstacles. Such applications are implemented onboard embedded systems. In order to precisely estimate the depth, such CNN models are in general so complex to extract many features that the computational complexity increases, requiring long inference time. In order to solve the issue, we employ optical flow to aid in-depth estimation. In addition, we propose a new attention structure that makes maximum use of optical flow without complicating the network. Furthermore, we achieve improved performance without modifying the depth estimator by adding a perceptual discriminator in training. The proposed model is evaluated through accuracy, error, and inference time on the KITTI dataset. In the experiments, we have demonstrated the proposed method achieves better performance by up to 34% accuracy, 55% error reduction and 66% faster inference time on Jetson nano compared to previous methods. The proposed method is also evaluated through a collision avoidance in simulated drone flight and achieves the lowest collision rate of all estimation methods. These experimental results show the potential of proposed method to be used in real-world autonomous drone flight applications. Full article
(This article belongs to the Special Issue Edge Computing and IoT Technologies for Drones)
Show Figures

Figure 1

15 pages, 8814 KiB  
Article
Semantic Scene Understanding with Large Language Models on Unmanned Aerial Vehicles
by J. de Curtò, I. de Zarzà and Carlos T. Calafate
Drones 2023, 7(2), 114; https://doi.org/10.3390/drones7020114 - 8 Feb 2023
Cited by 39 | Viewed by 9922
Abstract
Unmanned Aerial Vehicles (UAVs) are able to provide instantaneous visual cues and a high-level data throughput that could be further leveraged to address complex tasks, such as semantically rich scene understanding. In this work, we built on the use of Large Language Models [...] Read more.
Unmanned Aerial Vehicles (UAVs) are able to provide instantaneous visual cues and a high-level data throughput that could be further leveraged to address complex tasks, such as semantically rich scene understanding. In this work, we built on the use of Large Language Models (LLMs) and Visual Language Models (VLMs), together with a state-of-the-art detection pipeline, to provide thorough zero-shot UAV scene literary text descriptions. The generated texts achieve a GUNNING Fog median grade level in the range of 7–12. Applications of this framework could be found in the filming industry and could enhance user experience in theme parks or in the advertisement sector. We demonstrate a low-cost highly efficient state-of-the-art practical implementation of microdrones in a well-controlled and challenging setting, in addition to proposing the use of standardized readability metrics to assess LLM-enhanced descriptions. Full article
Show Figures

Figure 1

16 pages, 4324 KiB  
Article
Object Recognition of a GCP Design in UAS Imagery Using Deep Learning and Image Processing—Proof of Concept Study
by Denise Becker and Jörg Klonowski
Drones 2023, 7(2), 94; https://doi.org/10.3390/drones7020094 - 30 Jan 2023
Cited by 5 | Viewed by 3645
Abstract
Image-based unmanned aircraft systems (UASs) are used in a variety of geodetic applications. Precise 3D terrain surface mapping requires ground control points (GCPs) for scaling and (indirect) georeferencing. In image analysis software (e.g., Agisoft Metashape), the images can be generated to a 3D [...] Read more.
Image-based unmanned aircraft systems (UASs) are used in a variety of geodetic applications. Precise 3D terrain surface mapping requires ground control points (GCPs) for scaling and (indirect) georeferencing. In image analysis software (e.g., Agisoft Metashape), the images can be generated to a 3D point cloud using Structure-from-Motion (SfM). In general, the conventional GCP design for UAS flights is a checkerboard pattern, which is provided in the software and used for automatic marker detection in each image. When changing the pattern, manual work would be required by picking the GCP individually by hand. To increase the level of automation in the evaluation, this article aims to present a workflow that automatically detects a new edge-based GCP design pattern in the images, calculates their center points, and provides this information to the SfM software. Using the proposed workflow based on deep learning (DL) and image processing, the quality of the resulting 3D model can be equated to the result with GCP center points picked by human evaluator. Consequently, the workload can be accelerated with this approach. Full article
Show Figures

Figure 1

25 pages, 9068 KiB  
Article
Large-Scale Date Palm Tree Segmentation from Multiscale UAV-Based and Aerial Images Using Deep Vision Transformers
by Mohamed Barakat A. Gibril, Helmi Zulhaidi Mohd Shafri, Rami Al-Ruzouq, Abdallah Shanableh, Faten Nahas and Saeed Al Mansoori
Drones 2023, 7(2), 93; https://doi.org/10.3390/drones7020093 - 29 Jan 2023
Cited by 23 | Viewed by 5416
Abstract
The reliable and efficient large-scale mapping of date palm trees from remotely sensed data is crucial for developing palm tree inventories, continuous monitoring, vulnerability assessments, environmental control, and long-term management. Given the increasing availability of UAV images with limited spectral information, the high [...] Read more.
The reliable and efficient large-scale mapping of date palm trees from remotely sensed data is crucial for developing palm tree inventories, continuous monitoring, vulnerability assessments, environmental control, and long-term management. Given the increasing availability of UAV images with limited spectral information, the high intra-class variance of date palm trees, the variations in the spatial resolutions of the data, and the differences in image contexts and backgrounds, accurate mapping of date palm trees from very-high spatial resolution (VHSR) images can be challenging. This study aimed to investigate the reliability and the efficiency of various deep vision transformers in extracting date palm trees from multiscale and multisource VHSR images. Numerous vision transformers, including the Segformer, the Segmenter, the UperNet-Swin transformer, and the dense prediction transformer, with various levels of model complexity, were evaluated. The models were developed and evaluated using a set of comprehensive UAV-based and aerial images. The generalizability and the transferability of the deep vision transformers were evaluated and compared with various convolutional neural network-based (CNN) semantic segmentation models (including DeepLabV3+, PSPNet, FCN-ResNet-50, and DANet). The results of the examined deep vision transformers were generally comparable to several CNN-based models. The investigated deep vision transformers achieved satisfactory results in mapping date palm trees from the UAV images, with an mIoU ranging from 85% to 86.3% and an mF-score ranging from 91.62% to 92.44%. Among the evaluated models, the Segformer generated the highest segmentation results on the UAV-based and the multiscale testing datasets. The Segformer model, followed by the UperNet-Swin transformer, outperformed all of the evaluated CNN-based models in the multiscale testing dataset and in the additional unseen UAV testing dataset. In addition to delivering remarkable results in mapping date palm trees from versatile VHSR images, the Segformer model was among those with a small number of parameters and relatively low computing costs. Collectively, deep vision transformers could be used efficiently in developing and updating inventories of date palms and other tree species. Full article
Show Figures

Figure 1

32 pages, 10030 KiB  
Article
An Improved Probabilistic Roadmap Planning Method for Safe Indoor Flights of Unmanned Aerial Vehicles
by Qingeng Jin, Qingwu Hu, Pengcheng Zhao, Shaohua Wang and Mingyao Ai
Drones 2023, 7(2), 92; https://doi.org/10.3390/drones7020092 - 28 Jan 2023
Cited by 28 | Viewed by 3398
Abstract
Unmanned aerial vehicles (UAVs) have been widely used in industry and daily life, where safety is the primary consideration, resulting in their use in open outdoor environments, which are wider than complex indoor environments. However, the demand is growing for deploying UAVs indoors [...] Read more.
Unmanned aerial vehicles (UAVs) have been widely used in industry and daily life, where safety is the primary consideration, resulting in their use in open outdoor environments, which are wider than complex indoor environments. However, the demand is growing for deploying UAVs indoors for specific tasks such as inspection, supervision, transportation, and management. To broaden indoor applications while ensuring safety, the quadrotor is notable for its motion flexibility, particularly in the vertical direction. In this study, we developed an improved probabilistic roadmap (PRM) planning method for safe indoor flights based on the assumption of a quadrotor model UAV. First, to represent and model a 3D environment, we generated a reduced-dimensional map using a point cloud projection method. Second, to deploy UAV indoor missions and ensure safety, we improved the PRM planning method and obtained a collision-free flight path for the UAV. Lastly, to optimize the overall mission, we performed postprocessing optimization on the path, avoiding redundant flights. We conducted experiments to validate the effectiveness and efficiency of the proposed method on both desktop and onboard PC, in terms of path-finding success rate, planning time, and path length. The results showed that our method ensures safe indoor UAV flights while significantly improving computational efficiency. Full article
Show Figures

Figure 1

18 pages, 10028 KiB  
Article
Fast Marching Techniques for Teaming UAV’s Applications in Complex Terrain
by Santiago Garrido, Javier Muñoz, Blanca López, Fernando Quevedo, Concepción A. Monje and Luis Moreno
Drones 2023, 7(2), 84; https://doi.org/10.3390/drones7020084 - 25 Jan 2023
Cited by 2 | Viewed by 2829
Abstract
In this paper, we present a study on coverage missions carried out by UAV formations in 3D environments. These missions are designed to be applied in tracking and search and rescue missions, especially in the case of accidents. In this manner, the presented [...] Read more.
In this paper, we present a study on coverage missions carried out by UAV formations in 3D environments. These missions are designed to be applied in tracking and search and rescue missions, especially in the case of accidents. In this manner, the presented method focuses on the path planning stage, the objective of which is to compute a convenient trajectory to completely cover a certain area in a determined environment. The methodology followed uses a Gaussian mixture to approximate a probability of containment distribution along with the Fast Marching Square (FM2) as path planner. The Gaussians permit to define a zigzag trajectory that optimizes the path. Next, a first 2D geometric path perpendicular to the Voronoi diagram of the Gaussian distribution is calculated, obtained by skeletonization. To this path, the height above the ground is added plus the desired flight height to make it 3D. Finally, the FM2 method for formations is applied to make the path smooth and safe enough to be followed by UAVs. The simulation experiments show that the proposed method achieves good results for the zigzag path in terms of smoothness, safety and distance to cover the desired area through the formation of UAVs. Full article
Show Figures

Figure 1

20 pages, 7106 KiB  
Article
An Intelligent Fault Diagnosis Approach for Multirotor UAVs Based on Deep Neural Network of Multi-Resolution Transform Features
by Luttfi A. Al-Haddad and Alaa Abdulhady Jaber
Drones 2023, 7(2), 82; https://doi.org/10.3390/drones7020082 - 24 Jan 2023
Cited by 72 | Viewed by 5778
Abstract
As a modern technological trend, unmanned aerial vehicles (UAVs) are extensively employed in various applications. The core purpose of condition monitoring systems, proactive fault diagnosis, is essential in ensuring UAV safety in these applications. In this research, adaptive health monitoring systems perform blade [...] Read more.
As a modern technological trend, unmanned aerial vehicles (UAVs) are extensively employed in various applications. The core purpose of condition monitoring systems, proactive fault diagnosis, is essential in ensuring UAV safety in these applications. In this research, adaptive health monitoring systems perform blade balancing fault diagnosis and classification. There seems to be a bidirectional unpredictability within each, and this paper proposes a hybrid-based transformed discrete wavelet and a multi-hidden-layer deep neural network (DNN) scheme to compensate for it. Wide-scale, high-quality, and comprehensive soft-labeled data are extracted from a selected hovering quad-copter incorporated with an accelerometer sensor via experimental work. A data-driven intelligent diagnostic strategy was investigated. Statistical characteristics of non-stationary six-leveled multi-resolution analysis in three axes are acquired. Two important feature selection methods were adopted to minimize computing time and improve classification accuracy when progressed into an artificial intelligence (AI) model for fault diagnosis. The suggested approach offers exceptional potential: the fault detection system identifies and predicts faults accurately as the resulting 91% classification accuracy exceeds current state-of-the-art fault diagnosis strategies. The proposed model demonstrated operational applicability on any multirotor UAV of choice. Full article
Show Figures

Figure 1

16 pages, 1622 KiB  
Article
Leveraging UAVs to Enable Dynamic and Smart Aerial Infrastructure for ITS and Smart Cities: An Overview
by Michael C. Lucic, Omar Bouhamed, Hakim Ghazzai, Abdullah Khanfor and Yehia Massoud
Drones 2023, 7(2), 79; https://doi.org/10.3390/drones7020079 - 23 Jan 2023
Cited by 21 | Viewed by 4035
Abstract
Micro-unmanned aerial vehicles (UAVs), also known as drones, have been recognized as an emerging technology offering a plethora of applications touching various aspects of our lives, such as surveillance, agriculture, entertainment, and intelligent transportation systems (ITS). Furthermore, due to their low cost and [...] Read more.
Micro-unmanned aerial vehicles (UAVs), also known as drones, have been recognized as an emerging technology offering a plethora of applications touching various aspects of our lives, such as surveillance, agriculture, entertainment, and intelligent transportation systems (ITS). Furthermore, due to their low cost and ability to be fitted with transmitters, cameras, and other on-board sensors, UAVs can be seen as potential flying Internet-of-things (IoT) devices interconnecting with their environment and allowing for more mobile flexibility in the network. This paper overviews the beneficial applications that UAVs can offer to smart cities, and particularly to ITS, while highlighting the main challenges that can be encountered. Afterward, it proposes several potential solutions to organize the operation of UAV swarms, while addressing one of their main issues: their battery-limited capacity. Finally, open research areas that should be undertaken to strengthen the case for UAVs to become part of the smart infrastructure for futuristic cities are discussed. Full article
Show Figures

Figure 1

31 pages, 7826 KiB  
Article
Deep Learning Architecture for UAV Traffic-Density Prediction
by Abdulrahman Alharbi, Ivan Petrunin and Dimitrios Panagiotakopoulos
Drones 2023, 7(2), 78; https://doi.org/10.3390/drones7020078 - 22 Jan 2023
Cited by 9 | Viewed by 5155
Abstract
The research community has paid great attention to the prediction of air traffic flows. Nonetheless, research examining the prediction of air traffic patterns for unmanned aircraft traffic management (UTM) is relatively sparse at present. Thus, this paper proposes a one-dimensional convolutional neural network [...] Read more.
The research community has paid great attention to the prediction of air traffic flows. Nonetheless, research examining the prediction of air traffic patterns for unmanned aircraft traffic management (UTM) is relatively sparse at present. Thus, this paper proposes a one-dimensional convolutional neural network and encoder-decoder LSTM framework to integrate air traffic flow prediction with the intrinsic complexity metric. This adapted complexity metric takes into account the important differences between ATM and UTM operations, such as dynamic flow structures and airspace density. Additionally, the proposed methodology has been evaluated and verified in a simulation scenario environment, in which a drone delivery system that is considered essential in the delivery of COVID-19 sample tests, package delivery services from multiple post offices, an inspection of the railway infrastructure and fire-surveillance tasks. Moreover, the prediction model also considers the impacts of other significant factors, including emergency UTM operations, static no-fly zones (NFZs), and variations in weather conditions. The results show that the proposed model achieves the smallest RMSE value in all scenarios compared to other approaches. Specifically, the prediction error of the proposed model is 8.34% lower than the shallow neural network (on average) and 19.87% lower than the regression model on average. Full article
(This article belongs to the Special Issue AAM Integration: Strategic Insights and Goals)
Show Figures

Figure 1

20 pages, 6265 KiB  
Article
Estimating the Economic Viability of Advanced Air Mobility Use Cases: Towards the Slope of Enlightenment
by Jan Pertz, Malte Niklaß, Majed Swaid, Volker Gollnick, Sven Kopera, Kolin Schunck and Stephan Baur
Drones 2023, 7(2), 75; https://doi.org/10.3390/drones7020075 - 20 Jan 2023
Cited by 11 | Viewed by 4894
Abstract
While different vehicle configurations enter the AAM market, airlines declare different ticket fares for their operations. This research investigates the operating cost of an airline and the economic viability with the announced fare per km rates. For this purpose, three use cases in [...] Read more.
While different vehicle configurations enter the AAM market, airlines declare different ticket fares for their operations. This research investigates the operating cost of an airline and the economic viability with the announced fare per km rates. For this purpose, three use cases in the metropolitan area of Hamburg showcase representative applications of an AAM system, whereby a flight trajectory model calculates a flight time in each case. The direct operating cost are investigated for each use case individually and are sub-classified in five categories: fee, crew, maintenance, fuel and capital costs. Here, each use case has its own cost characteristics, in which different cost elements dominate. Additionally, a sensitivity analysis shows the effect of a variation of the flight cycles and load factor, that influences the costs as well as the airline business itself. Based on the occurring cost, a profit margin per available seat kilometer lead to a necessary fare per km, that an airline has to charge. Full article
(This article belongs to the Special Issue AAM Integration: Strategic Insights and Goals)
Show Figures

Figure 1

26 pages, 16651 KiB  
Article
Oxpecker: A Tethered UAV for Inspection of Stone-Mine Pillars
by Bernardo Martinez Rocamora, Jr., Rogério R. Lima, Kieren Samarakoon, Jeremy Rathjen, Jason N. Gross and Guilherme A. S. Pereira
Drones 2023, 7(2), 73; https://doi.org/10.3390/drones7020073 - 19 Jan 2023
Cited by 20 | Viewed by 6372
Abstract
This paper presents a state-of-the-art tethered unmanned aerial vehicle (TUAV) for structural integrity assessment of underground stone mine pillars. The TUAV, powered by its tether, works in tandem with an unmanned ground vehicle (UGV) that hosts the TUAV batteries, a self-leveled landing platform, [...] Read more.
This paper presents a state-of-the-art tethered unmanned aerial vehicle (TUAV) for structural integrity assessment of underground stone mine pillars. The TUAV, powered by its tether, works in tandem with an unmanned ground vehicle (UGV) that hosts the TUAV batteries, a self-leveled landing platform, and the tether management system. The UGV and the TUAV were named Rhino and Oxpecker, respectively, given that the TUAV stays landed on the UGV while the ensemble moves inside a mine. The mission of Oxpecker is to create, using a LiDAR sensor, 3D maps of the mine pillars to support time-lapse hazard mapping and time-dependent pillar degradation analysis. Given the height of the pillars (7–12 m), this task cannot be executed by Rhino alone. This paper describes the drone’s hardware and software. The hardware includes the tether management system, designed to control the tension of the tether, and the tether perception system, which provides information that can be used for localization and landing in global navigation satellite systems (GNSS)-denied environments. The vehicle’s software is based on a state machine that controls the several phases of a mission (i.e., takeoff, inspection, and landing) by coordinating drone motion with the tethering system. The paper also describes and evaluates our approach for tether-based landing and autonomous 3D mapping of pillars. We show experiments that illustrate and validate our system in laboratories and underground mines. Full article
(This article belongs to the Special Issue Drones in the Wild)
Show Figures

Figure 1

20 pages, 1312 KiB  
Article
Cooperative Truck–Drone Delivery Path Optimization under Urban Traffic Restriction
by Ying-Ying Weng, Rong-Yu Wu and Yu-Jun Zheng
Drones 2023, 7(1), 59; https://doi.org/10.3390/drones7010059 - 14 Jan 2023
Cited by 15 | Viewed by 5072
Abstract
In the traditional express delivery sector, trucks are the most available and efficient transportation mode in urban areas. However, due to the pressures of traffic congestion and air pollution problems, many cities have implemented strict measures to restrict trucks’ access to many zones [...] Read more.
In the traditional express delivery sector, trucks are the most available and efficient transportation mode in urban areas. However, due to the pressures of traffic congestion and air pollution problems, many cities have implemented strict measures to restrict trucks’ access to many zones during specified time periods, which has caused significant effects on the business of the industry. Due to their advantages, which include high speed, flexibility, and environmental friendliness, drones have great potential for being combined with trucks for efficient delivery in restricted traffic zones. In this paper, we propose a cooperative truck and drone delivery path optimization problem, in which a truck carrying cargo travels along the outer boundary of the restricted traffic zone to send and receive a drone, and the drone is responsible for delivering the cargo to customers. The objective of the problem is to minimize the completion time of all delivery tasks. To efficiently solve this problem, we propose a hybrid metaheuristic optimization algorithm to cooperatively optimize the outer path of the truck and the inner path of the drone. We conduct experiments on a set of test instances; the results demonstrate that the proposed algorithm exhibits a competitive performance compared to other selected popular optimization algorithms. Full article
(This article belongs to the Special Issue Cooperation of Drones and Other Manned/Unmanned Systems)
Show Figures

Figure 1

34 pages, 1115 KiB  
Article
Autonomous Unmanned Aerial Vehicles in Bushfire Management: Challenges and Opportunities
by Shouthiri Partheepan, Farzad Sanati and Jahan Hassan
Drones 2023, 7(1), 47; https://doi.org/10.3390/drones7010047 - 10 Jan 2023
Cited by 47 | Viewed by 15531
Abstract
The intensity and frequency of bushfires have increased significantly, destroying property and living species in recent years. Presently, unmanned aerial vehicle (UAV) technology advancements are becoming increasingly popular in bushfire management systems because of their fundamental characteristics, such as manoeuvrability, autonomy, ease of [...] Read more.
The intensity and frequency of bushfires have increased significantly, destroying property and living species in recent years. Presently, unmanned aerial vehicle (UAV) technology advancements are becoming increasingly popular in bushfire management systems because of their fundamental characteristics, such as manoeuvrability, autonomy, ease of deployment, and low cost. UAVs with remote-sensing capabilities are used with artificial intelligence, machine learning, and deep-learning algorithms to detect fire regions, make predictions, make decisions, and optimize fire-monitoring tasks. Moreover, UAVs equipped with various advanced sensors, including LIDAR, visual, infrared (IR), and monocular cameras, have been used to monitor bushfires due to their potential to provide new approaches and research opportunities. This review focuses on the use of UAVs in bushfire management for fire detection, fire prediction, autonomous navigation, obstacle avoidance, and search and rescue to improve the accuracy of fire prediction and minimize their impacts on people and nature. The objective of this paper is to provide valuable information on various UAV-based bushfire management systems and machine-learning approaches to predict and effectively respond to bushfires in inaccessible areas using intelligent autonomous UAVs. This paper aims to assemble information about the use of UAVs in bushfire management and to examine the benefits and limitations of existing techniques of UAVs related to bushfire handling. However, we conclude that, despite the potential benefits of UAVs for bushfire management, there are shortcomings in accuracy, and solutions need to be optimized for effective bushfire management. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

26 pages, 8913 KiB  
Article
Small Fixed-Wing UAV Radar Cross-Section Signature Investigation and Detection and Classification of Distance Estimation Using Realistic Parameters of a Commercial Anti-Drone System
by Ioannis K. Kapoulas, Antonios Hatziefremidis, A. K. Baldoukas, Evangelos S. Valamontes and J. C. Statharas
Drones 2023, 7(1), 39; https://doi.org/10.3390/drones7010039 - 6 Jan 2023
Cited by 14 | Viewed by 12527
Abstract
Various types of small drones constitute a modern threat for infrastructure and hardware, as well as for humans; thus, special-purpose radar has been developed in the last years in order to identify such drones. When studying the radar signatures, we observed that the [...] Read more.
Various types of small drones constitute a modern threat for infrastructure and hardware, as well as for humans; thus, special-purpose radar has been developed in the last years in order to identify such drones. When studying the radar signatures, we observed that the majority of the scientific studies refer to multirotor aerial vehicles; there is a significant gap regarding small, fixed-wing Unmanned Aerial Vehicles (UAVs). Driven by the security principle, we conducted a series of Radar Cross Section (RCS) simulations on the Euclid fixed-wing UAV, which has a wingspan of 2 m and is being developed by our University. The purpose of this study is to partially fill the gap that exists regarding the RCS signatures and identification distances of fixed-wing UAVs of the same wingspan as the Euclid. The software used for the simulations was POFACETS (v.4.1). Two different scenarios were carried out. In scenario A, the RCS of the Euclid fixed-wing UAV, with a 2 m wingspan, was analytically studied. Robin radar systems’ Elvira Anti Drone System is the simulated radar, operating at 8.7 to 9.65 GHz; θ angle is set at 85° for this scenario. Scenario B studies the Euclid RCS within the broader 3 to 16 Ghz spectrum at the same θ = 85° angle. The results indicated that the Euclid UAV presents a mean RCS value (σ ¯) of −17.62 dBsm for scenario A, and a mean RCS value (σ ¯) of −22.77 dBsm for scenario B. These values are much smaller than the values of a typical commercial quadcopter, such as DJI Inspire 1, which presents −9.75 dBsm and −13.92 dBsm for the same exact scenarios, respectively. As calculated in the study, the Euclid UAV can penetrate up to a distance of 1784 m close to the Elvira Anti Drone System, while the DJI Inspire 1 will be detected at 2768 m. This finding is of great importance, as the obviously larger fixed-wing Euclid UAV will be detected about one kilometer closer to the anti-drone system. Full article
Show Figures

Figure 1

19 pages, 3065 KiB  
Article
Visual-Inertial Odometry Using High Flying Altitude Drone Datasets
by Anand George, Niko Koivumäki, Teemu Hakala, Juha Suomalainen and Eija Honkavaara
Drones 2023, 7(1), 36; https://doi.org/10.3390/drones7010036 - 4 Jan 2023
Cited by 18 | Viewed by 10731
Abstract
Positioning of unoccupied aerial systems (UAS, drones) is predominantly based on Global Navigation Satellite Systems (GNSS). Due to potential signal disruptions, redundant positioning systems are needed for reliable operation. The objective of this study was to implement and assess a redundant positioning system [...] Read more.
Positioning of unoccupied aerial systems (UAS, drones) is predominantly based on Global Navigation Satellite Systems (GNSS). Due to potential signal disruptions, redundant positioning systems are needed for reliable operation. The objective of this study was to implement and assess a redundant positioning system for high flying altitude drone operation based on visual-inertial odometry (VIO). A new sensor suite with stereo cameras and an inertial measurement unit (IMU) was developed, and a state-of-the-art VIO algorithm, VINS-Fusion, was used for localisation. Empirical testing of the system was carried out at flying altitudes of 40–100 m, which cover the common flight altitude range of outdoor drone operations. The performance of various implementations was studied, including stereo-visual-odometry (stereo-VO), monocular-visual-inertial-odometry (mono-VIO) and stereo-visual-inertial-odometry (stereo-VIO). The stereo-VIO provided the best results; the flight altitude of 40–60 m was the most optimal for the stereo baseline of 30 cm. The best positioning accuracy was 2.186 m for a 800 m-long trajectory. The performance of the stereo-VO degraded with the increasing flight altitude due to the degrading base-to-height ratio. The mono-VIO provided acceptable results, although it did not reach the performance level of the stereo-VIO. This work presented new hardware and research results on localisation algorithms for high flying altitude drones that are of great importance since the use of autonomous drones and beyond visual line-of-sight flying are increasing and will require redundant positioning solutions that compensate for potential disruptions in GNSS positioning. The data collected in this study are published for analysis and further studies. Full article
(This article belongs to the Special Issue Resilient UAV Autonomy and Remote Sensing)
Show Figures

Figure 1

17 pages, 2492 KiB  
Article
Water Chlorophyll a Estimation Using UAV-Based Multispectral Data and Machine Learning
by Xiyong Zhao, Yanzhou Li, Yongli Chen, Xi Qiao and Wanqiang Qian
Drones 2023, 7(1), 2; https://doi.org/10.3390/drones7010002 - 21 Dec 2022
Cited by 25 | Viewed by 4681
Abstract
Chlorophyll a (chl-a) concentration is an important parameter for evaluating the degree of water eutrophication. Monitoring it accurately through remote sensing is thus of great significance for early warnings of water eutrophication, and the inversion of water quality from UAV images has attracted [...] Read more.
Chlorophyll a (chl-a) concentration is an important parameter for evaluating the degree of water eutrophication. Monitoring it accurately through remote sensing is thus of great significance for early warnings of water eutrophication, and the inversion of water quality from UAV images has attracted more and more attention. In this study, a regression method to estimate chl-a was proposed; it used a small multispectral UAV to collect data and took the vegetation indices as intermediate variables. For this purpose, ten monitoring points were selected in Erhai Lake, China, and two months of monitoring and data collection were conducted during a cyanobacterial bloom period. Finally, 155 sets of valid data were obtained. The imaging data were obtained using a multispectral UAV, water samples were collected from the lake, and the chl-a concentration was obtained in the laboratory. Then, the images were preprocessed to extract the information from different wavebands. The univariate regression of each vegetation index and the regression using band information were used for comparative analysis. Four machine learning algorithms were used to build the model: support vector machine (SVM), random forest (RF), extreme learning machine (ELM), and convolutional neural network (CNN). The results showed that the effect of estimating the chl-a concentration via multiple regression using vegetation indices was generally better than that via regression with a single vegetation index and original band information. The CNN model obtained the best results (R2 = 0.7917, RMSE = 8.7660, and MRE = 0.2461). This study showed the reliability of using multiple regression based on vegetation indices to estimate the chl-a of surface water. Full article
(This article belongs to the Special Issue Yield Prediction Using Data from Unmanned Aerial Vehicles)
Show Figures

Figure 1

14 pages, 2738 KiB  
Article
Vegetation Cover Estimation in Semi-Arid Shrublands after Prescribed Burning: Field-Ground and Drone Image Comparison
by Antonio J. Pérez-Luque, María Eugenia Ramos-Font, Mauro J. Tognetti Barbieri, Carlos Tarragona Pérez, Guillermo Calvo Renta and Ana Belén Robles Cruz
Drones 2022, 6(11), 370; https://doi.org/10.3390/drones6110370 - 21 Nov 2022
Cited by 6 | Viewed by 4174
Abstract
The use of drones for vegetation monitoring allows the acquisition of large amounts of high spatial resolution data in a simple and fast way. In this study, we evaluated the accuracy of vegetation cover estimation by drones in Mediterranean semi-arid shrublands (Sierra de [...] Read more.
The use of drones for vegetation monitoring allows the acquisition of large amounts of high spatial resolution data in a simple and fast way. In this study, we evaluated the accuracy of vegetation cover estimation by drones in Mediterranean semi-arid shrublands (Sierra de Filabres; Almería; southern Spain) after prescribed burns (2 years). We compared drone-based vegetation cover estimates with those based on traditional vegetation sampling in ninety-six 1 m2 plots. We explored how this accuracy varies in different types of coverage (low-, moderate- and high-cover shrublands, and high-cover alfa grass steppe); as well as with diversity, plant richness, and topographic slope. The coverage estimated using a drone was strongly correlated with that obtained by vegetation sampling (R2 = 0.81). This estimate varied between cover classes, with the error rate being higher in low-cover shrublands, and lower in high-cover alfa grass steppe (normalized RMSE 33% vs. 9%). Diversity and slope did not affect the accuracy of the cover estimates, while errors were larger in plots with greater richness. These results suggest that in semi-arid environments, the drone might underestimate vegetation cover in low-cover shrublands. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

14 pages, 3717 KiB  
Article
GGT-YOLO: A Novel Object Detection Algorithm for Drone-Based Maritime Cruising
by Yongshuai Li, Haiwen Yuan, Yanfeng Wang and Changshi Xiao
Drones 2022, 6(11), 335; https://doi.org/10.3390/drones6110335 - 31 Oct 2022
Cited by 37 | Viewed by 5691
Abstract
Drones play an important role in the development of remote sensing and intelligent surveillance. Due to limited onboard computational resources, drone-based object detection still faces challenges in actual applications. By studying the balance between detection accuracy and computational cost, we propose a novel [...] Read more.
Drones play an important role in the development of remote sensing and intelligent surveillance. Due to limited onboard computational resources, drone-based object detection still faces challenges in actual applications. By studying the balance between detection accuracy and computational cost, we propose a novel object detection algorithm for drone cruising in large-scale maritime scenarios. Transformer is introduced to enhance the feature extraction part and is beneficial to small or occluded object detection. Meanwhile, the computational cost of the algorithm is reduced by replacing the convolution operations with simpler linear transformations. To illustrate the performance of the algorithm, a specialized dataset composed of thousands of images collected by drones in maritime scenarios is given, and quantitative and comparative experiments are conducted. By comparison with other derivatives, the detection precision of the algorithm is increased by 1.4%, the recall is increased by 2.6% and the average precision is increased by 1.9%, while the parameters and floating-point operations are reduced by 11.6% and 7.3%, respectively. These improvements are thought to contribute to the application of drones in maritime and other remote sensing fields. Full article
Show Figures

Figure 1

12 pages, 3897 KiB  
Article
Parameter Optimization and Impacts on Oilseed Rape (Brassica napus) Seeds Aerial Seeding Based on Unmanned Agricultural Aerial System
by Songchao Zhang, Meng Huang, Chen Cai, Hua Sun, Xiaohui Cheng, Jian Fu, Qingsong Xing and Xinyu Xue
Drones 2022, 6(10), 303; https://doi.org/10.3390/drones6100303 - 17 Oct 2022
Cited by 2 | Viewed by 2158
Abstract
Aerial seeding based on the unmanned agricultural aerial system (UAAS) improves the seeding efficiency of oilseed rape (OSR) seeds, and solves the problem of OSR planting in mountainous areas where it is inconvenient to use ground seeding machines. Therefore, the UAAS has been [...] Read more.
Aerial seeding based on the unmanned agricultural aerial system (UAAS) improves the seeding efficiency of oilseed rape (OSR) seeds, and solves the problem of OSR planting in mountainous areas where it is inconvenient to use ground seeding machines. Therefore, the UAAS has been applied in aerial seeding to a certain degree in China. The effective broadcast seeding width (EBSW), broadcast seeding density (BSD) and broadcast seeding uniformity (BSU) are the important indexes that affect the aerial seeding efficiency and quality of OSR seeds. In order to investigate the effects of flight speed (FS) and flight height (FH) on EBSW, BSD and BSU, and to achieve the optimized parameter combinations of UAAS T30 on aerial seeding application, three levels of FS (4.0 m/s, 5.0 m/s and 6.0 m/s) and three levels of FH (2.0 m, 3.0 m and 4.0 m) experiments were carried out in the field with 6.0 kg seeds per ha. The results demonstrated that the EBSW was not constant as the FS and FH changed. In general, the EBSW showed a change trend of first increasing and then decreasing as the FH increased under the same FS, and showed a trend of decreasing as FS increased under the same FH. The EBSWs were over 3.0 m in the nine treatments, in which the maximum was 5.44 m (T1, 4.0 m/s, 2.0 m) while the minimum was 3.2 m (T9, 6.0 m/s, 4.0 m). The BSD showed a negative change correlation as the FS changed under the same FH, and the BSD decreased as the FH increased under 4.0 m/s FS, while it first increased and then decreased under the FS of 5.0 m/s and 6.0 m/s. The maximum BSD value was 140.12 seeds/m2 (T1, 4.0 m/s, 2.0 m), while the minimum was 40.17 seeds/m2 (T9, 6.0 m/s, 4.0 m). There was no obvious change in the trend of the BSU evaluated by the coefficients of variation (CV): the minimum CV was 13.01% (T6, 6.0 m/s, 3.0 m) and the maximum was 64.48% (T3, 6.0 m/s, 2.0 m). The statistical analyses showed that the FH had significant impacts on the EBSWs (0.01 < p-value < 0.05), the FS and the interaction between FH and FS both had extremely significant impacts on EBSWs (p-value < 0.01). The FH had extremely significant impacts on BSD (p-value < 0.01), the FS had no impacts on BSD (p-value > 0.05), and the interaction between FH and FS had significant impacts on BSD (0.01 < p-value < 0.05). There were no significant differences in the broadcast sowing uniformity (BSU) among the treatments. Taking the EBSW, BSD and BSU into consideration, the parameter combination of T5 (T9, 5.0 m/s, 3.0 m) was selected for aerial seeding. The OSR seed germination rate was over 36 plants/m2 (33 days) on average, which satisfied the requirements of OSR planting agronomy. This study provided some technical support for UAAS application in aerial seeding. Full article
(This article belongs to the Special Issue Feature Papers for Drones in Agriculture and Forestry Section)
Show Figures

Figure 1

25 pages, 8647 KiB  
Article
Automatic Tuning and Turbulence Mitigation for Fixed-Wing UAV with Segmented Control Surfaces
by Abdul Sattar, Liuping Wang, Ayaz Ahmed Hoshu, Shahzeb Ansari, Haider-e Karar and Abdulghani Mohamed
Drones 2022, 6(10), 302; https://doi.org/10.3390/drones6100302 - 16 Oct 2022
Cited by 4 | Viewed by 3725
Abstract
Unlike bigger aircraft, the small fixed-wing unmanned aerial vehicles face significant stability challenges in a turbulent environment. To improve the flight performance, a fixed-wing UAV with segmented aileron control surfaces has been designed and deployed. A total of four ailerons are attached to [...] Read more.
Unlike bigger aircraft, the small fixed-wing unmanned aerial vehicles face significant stability challenges in a turbulent environment. To improve the flight performance, a fixed-wing UAV with segmented aileron control surfaces has been designed and deployed. A total of four ailerons are attached to the main wing and grouped into inner and outer aileron pairs. The controllers are automatically tuned by utilizing the frequency response data obtained via the frequency sampling filter and the relay with embedded integrator experiments. The hardware validation experiments are performed in the normal and turbulent flight environments under three configurations: inner aileron pair only, outer aileron pair only and collective actuation of all the aileron pairs. The error-threshold-based control is introduced to handle collective actuation of aileron pairs. The experiments have manifested that the collective usage of all aileron segments improves the roll attitude stability by a margin of 38.69% to 43.51% when compared to the independent actuation of aileron pairs in a turbulent atmosphere. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

21 pages, 2787 KiB  
Article
Monitoring and Cordoning Wildfires with an Autonomous Swarm of Unmanned Aerial Vehicles
by Fabrice Saffre, Hanno Hildmann, Hannu Karvonen and Timo Lind
Drones 2022, 6(10), 301; https://doi.org/10.3390/drones6100301 - 14 Oct 2022
Cited by 38 | Viewed by 6235
Abstract
Unmanned aerial vehicles, or drones, are already an integral part of the equipment used by firefighters to monitor wildfires. They are, however, still typically used only as remotely operated, mobile sensing platforms under direct real-time control of a human pilot. Meanwhile, a substantial [...] Read more.
Unmanned aerial vehicles, or drones, are already an integral part of the equipment used by firefighters to monitor wildfires. They are, however, still typically used only as remotely operated, mobile sensing platforms under direct real-time control of a human pilot. Meanwhile, a substantial body of literature exists that emphasises the potential of autonomous drone swarms in various situational awareness missions, including in the context of environmental protection. In this paper, we present the results of a systematic investigation by means of numerical methods i.e., Monte Carlo simulation. We report our insights into the influence of key parameters such as fire propagation dynamics, surface area under observation and swarm size over the performance of an autonomous drone force operating without human supervision. We limit the use of drones to perform passive sensing operations with the goal to provide real-time situational awareness to the fire fighters on the ground. Therefore, the objective is defined as being able to locate, and then establish a continuous perimeter (cordon) around, a simulated fire event to provide live data feeds such as e.g., video or infra-red. Special emphasis was put on exclusively using simple, robust and realistically implementable distributed decision functions capable of supporting the self-organisation of the swarm in the pursuit of the collective goal. Our results confirm the presence of strong nonlinear effects in the interaction between the aforementioned parameters, which can be closely approximated using an empirical law. These findings could inform the mobilisation of adequate resources on a case-by-case basis, depending on known mission characteristics and acceptable odds (chances of success). Full article
Show Figures

Figure 1

17 pages, 3034 KiB  
Article
Aerial Drone Surveys Reveal the Efficacy of a Protected Area Network for Marine Megafauna and the Value of Sea Turtles as Umbrella Species
by Liam C. D. Dickson, Stuart R. B. Negus, Christophe Eizaguirre, Kostas A. Katselidis and Gail Schofield
Drones 2022, 6(10), 291; https://doi.org/10.3390/drones6100291 - 7 Oct 2022
Cited by 9 | Viewed by 4517
Abstract
Quantifying the capacity of protected area networks to shield multiple marine megafauna with diverse life histories is complicated, as many species are wide-ranging, requiring varied monitoring approaches. Yet, such information is needed to identify and assess the potential use of umbrella species and [...] Read more.
Quantifying the capacity of protected area networks to shield multiple marine megafauna with diverse life histories is complicated, as many species are wide-ranging, requiring varied monitoring approaches. Yet, such information is needed to identify and assess the potential use of umbrella species and to plan how best to enhance conservation strategies. Here, we evaluated the effectiveness of part of the European Natura 2000 protected area network (western Greece) for marine megafauna and whether loggerhead sea turtles are viable umbrella species in this coastal region. We systematically surveyed inside and outside coastal marine protected areas (MPAs) at a regional scale using aerial drones (18,505 animal records) and combined them with distribution data from published datasets (tracking, sightings, strandings) of sea turtles, elasmobranchs, cetaceans and pinnipeds. MPAs covered 56% of the surveyed coastline (~1500 km). There was just a 22% overlap in the distributions of the four groups from aerial drone and other datasets, demonstrating the value of combining different approaches to improve records of coastal area use for effective management. All four taxonomic groups were more likely to be detected inside coastal MPAs than outside, confirming sufficient habitat diversity despite varied life history traits. Coastal habitats frequented by loggerhead turtles during breeding/non-breeding periods combined overlapped with 76% of areas used by the other three groups, supporting their potential use as an umbrella species. In conclusion, this study showed that aerial drones can be readily combined with other monitoring approaches in coastal areas to enhance the management of marine megafauna in protected area networks and to identify the efficacy of umbrella species. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

19 pages, 3415 KiB  
Article
Decentralized Sampled-Data Fuzzy Tracking Control for a Quadrotor UAV with Communication Delay
by Yong Hoon Jang, Tae Joon Han and Han Sol Kim
Drones 2022, 6(10), 280; https://doi.org/10.3390/drones6100280 - 27 Sep 2022
Cited by 9 | Viewed by 2429
Abstract
This study deals with the decentralized sampled-data fuzzy tracking control of a quadrotor unmanned aerial vehicle (UAV) considering the communication delay of the feedback signal. A decentralized Takagi–Sugeno (T–S) fuzzy approach is adopted to represent the quadrotor UAV as two subsystems: the position [...] Read more.
This study deals with the decentralized sampled-data fuzzy tracking control of a quadrotor unmanned aerial vehicle (UAV) considering the communication delay of the feedback signal. A decentralized Takagi–Sugeno (T–S) fuzzy approach is adopted to represent the quadrotor UAV as two subsystems: the position control system and the attitude control system. Unlike most previous studies, a novel decentralized controller considering the communication delay for the position control system is proposed. In addition, to minimize the increase in computational complexity, the Lyapunov–Krasovskii functional (LKF) is configured as the only state required for each subsystem. The design conditions guaranteeing the tracking performance of the quadrotor UAV are derived as linear matrix inequalities (LMIs) that are numerically solved. Lastly, the validity of the proposed design method is verified by comparing the results through simulation examples with and without communication delay. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

14 pages, 6516 KiB  
Article
Aerial Branch Sampling to Detect Forest Pathogens
by Ryan L. Perroy, Philip Meier, Eszter Collier, Marc A. Hughes, Eva Brill, Timo Sullivan, Thomas Baur, Nina Buchmann and Lisa M. Keith
Drones 2022, 6(10), 275; https://doi.org/10.3390/drones6100275 - 24 Sep 2022
Cited by 7 | Viewed by 4097
Abstract
Diagnostic testing to detect forest pathogens requires the collection of physical samples from affected trees, which can be challenging in remote or rugged environments. As an alternative to traditional ground-based sampling at breast height by field crews, we examined the feasibility of aerially [...] Read more.
Diagnostic testing to detect forest pathogens requires the collection of physical samples from affected trees, which can be challenging in remote or rugged environments. As an alternative to traditional ground-based sampling at breast height by field crews, we examined the feasibility of aerially sampling and testing material collected from upper canopy branches using a small unoccupied aerial system (sUAS). The pathogen of interest in this study is Ceratocystis lukuohia, the fungal pathogen responsible for Ceratocystis wilt of ‘ōhi‘a, a vascular wilt disease which has caused widespread mortality to ‘ōhi‘a in native forests across the state of Hawai‘i. To characterize the minimum branch diameter needed to successfully detect the pathogen of interest in infected trees, we tested 63 branch samples (0.8–9.6 cm in diameter) collected from felled trees inoculated with C.lukuohia on Hawai‘i Island. Subsequently, we aerially sampled branches from ten symptomatic ‘ōhi‘a (Metrosideros polymorpha) trees using two different branch sampling systems, the Flying Tree Top Sampler from ETH Zurich and the new Kūkūau branch sampler system introduced in this work, producing 29 branch samples with a maximum diameter of 4.2 cm and length of >2 m. We successfully detected the target fungal pathogen from the collected branches and found that branch diameter, leaf presence and condition, as well as wood moisture content are important factors in pathogen detection in sampled branches. None of the smallest branch samples (those <1 cm in diameter) tested positive for C.lukuohia, while 77% of the largest diameter branch samples (5–10 cm) produced positive results. The Kūkūau branch sampler system is capable of retrieving branches up to 7 cm diameter, providing important capacity for pathogenic research requiring larger diameter samples for successful diagnostic testing. Inconclusive and/or non-detection laboratory results were obtained from sample materials that were either too desiccated or from a branch with asymptomatic leaves, suggesting there is an optimal temporal window for sampling. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

19 pages, 4609 KiB  
Article
A Framework for Soil Salinity Monitoring in Coastal Wetland Reclamation Areas Based on Combined Unmanned Aerial Vehicle (UAV) Data and Satellite Data
by Lijian Xie, Xiuli Feng, Chi Zhang, Yuyi Dong, Junjie Huang and Junkai Cheng
Drones 2022, 6(9), 257; https://doi.org/10.3390/drones6090257 - 16 Sep 2022
Cited by 16 | Viewed by 3493
Abstract
Soil salinization is one of the most important causes of land degradation and desertification, often threatening land management and sustainable agricultural development. Due to the low resolution of satellites, fine mapping of soil salinity cannot be completed, while high-resolution images from UAVs can [...] Read more.
Soil salinization is one of the most important causes of land degradation and desertification, often threatening land management and sustainable agricultural development. Due to the low resolution of satellites, fine mapping of soil salinity cannot be completed, while high-resolution images from UAVs can only achieve accurate mapping of soil salinity in a small area. Therefore, how to realize fine mapping of salinity on a large scale based on UAV and satellite data is an urgent problem to be solved. Therefore, in this paper, the most relevant spectral variables for soil salinity were firstly determined using Pearson correlation analysis, and then the optimal inversion model was established based on the screened variables. Secondly, the feasibility of correcting satellite data based on UAV data was determined using Pearson correlation analysis and spectral variation trends, and the correction of satellite data was completed using least squares-based polynomial curve fitting for both UAV data and satellite data. Finally, the reflectance received from the vegetated area did not directly reflect the surface reflectance condition, so we used the support vector machine classification method to divide the study area into two categories: bare land and vegetated area, and built a model based on the classification results to realize the advantages of complementing the accurate spectral information of UAV and large-scale satellite spectral data in the study areas. By comparing the modeling inversion results using only satellite data with the inversion results based on optimized satellite data, our method framework could effectively improve the accuracy of soil salinity inversion in large satellite areas by 6–19%. Our method can meet the needs of large-scale accurate mapping, and can provide the necessary means and reference for soil condition monitoring. Full article
(This article belongs to the Special Issue UAS in Smart Agriculture)
Show Figures

Figure 1

11 pages, 1416 KiB  
Communication
Evaluating Thermal and Color Sensors for Automating Detection of Penguins and Pinnipeds in Images Collected with an Unoccupied Aerial System
by Jefferson T. Hinke, Louise M. Giuseffi, Victoria R. Hermanson, Samuel M. Woodman and Douglas J. Krause
Drones 2022, 6(9), 255; https://doi.org/10.3390/drones6090255 - 15 Sep 2022
Cited by 13 | Viewed by 2955
Abstract
Estimating seabird and pinniped abundance is central to wildlife management and ecosystem monitoring in Antarctica. Unoccupied aerial systems (UAS) can collect images to support monitoring, but manual image analysis is often impractical. Automating target detection using deep learning techniques may improve data acquisition, [...] Read more.
Estimating seabird and pinniped abundance is central to wildlife management and ecosystem monitoring in Antarctica. Unoccupied aerial systems (UAS) can collect images to support monitoring, but manual image analysis is often impractical. Automating target detection using deep learning techniques may improve data acquisition, but different image sensors may affect target detectability and model performance. We compared the performance of automated detection models based on infrared (IR) or color (RGB) images and tested whether IR images, or training data that included annotations of non-target features, improved model performance. For this assessment, we collected paired IR and RGB images of nesting penguins (Pygoscelis spp.) and aggregations of Antarctic fur seals (Arctocephalus gazella) with a small UAS at Cape Shirreff, Livingston Island (60.79 °W, 62.46 °S). We trained seven independent classification models using the Video and Image Analytics for Marine Environments (VIAME) software and created an open-access R tool, vvipr, to standardize the assessment of VIAME-based model performance. We found that the IR images and the addition of non-target annotations had no clear benefits for model performance given the available data. Nonetheless, the generally high performance of the penguin models provided encouraging results for further improving automated image analysis from UAS surveys. Full article
(This article belongs to the Special Issue UAV Design and Applications in Antarctic Research)
Show Figures

Figure 1

11 pages, 13603 KiB  
Article
Investigating Errors Observed during UAV-Based Vertical Measurements Using Computational Fluid Dynamics
by Hayden Hedworth, Jeffrey Page, John Sohl and Tony Saad
Drones 2022, 6(9), 253; https://doi.org/10.3390/drones6090253 - 13 Sep 2022
Cited by 7 | Viewed by 4589
Abstract
Unmanned Aerial Vehicles (UAVs) are a popular platform for air quality measurements. For vertical measurements, rotary-wing UAVs are particularly well-suited. However, an important concern with rotary-wing UAVs is how the rotor-downwash affects measurement accuracy. Measurements from a recent field campaign showed notable discrepancies [...] Read more.
Unmanned Aerial Vehicles (UAVs) are a popular platform for air quality measurements. For vertical measurements, rotary-wing UAVs are particularly well-suited. However, an important concern with rotary-wing UAVs is how the rotor-downwash affects measurement accuracy. Measurements from a recent field campaign showed notable discrepancies between data from ascent and descent, which suggested the UAV downwash may be the cause. To investigate and explain these observed discrepancies, we use high-fidelity computational fluid dynamics (CFD) simulations to simulate a UAV during vertical flight. We use a tracer to model a gaseous pollutant and evaluate the impact of the rotor-downwash on the concentration around the UAV. Our results indicate that, when measuring in a gradient, UAV-based measurements were ∼50% greater than the expected concentration during descent, but they were accurate during ascent, regardless of the location of the sensor. These results provide an explanation for errors encountered during vertical measurements and provide insight for accurate data collection methods in future studies. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles in Atmospheric Research)
Show Figures

Figure 1

15 pages, 459 KiB  
Article
Capacity Optimization of Next-Generation UAV Communication Involving Non-Orthogonal Multiple Access
by Mubashar Sarfraz, Muhammad Farhan Sohail, Sheraz Alam, Muhammad Javvad ur Rehman, Sajjad Ahmed Ghauri, Khaled Rabie, Hasan Abbas and Shuja Ansari
Drones 2022, 6(9), 234; https://doi.org/10.3390/drones6090234 - 2 Sep 2022
Cited by 17 | Viewed by 3375
Abstract
Unmanned air vehicle communication (UAV) systems have recently emerged as a quick, low-cost, and adaptable solution to numerous challenges in the next-generation wireless network. In particular, UAV systems have shown to be very useful in wireless communication applications with sudden traffic demands, network [...] Read more.
Unmanned air vehicle communication (UAV) systems have recently emerged as a quick, low-cost, and adaptable solution to numerous challenges in the next-generation wireless network. In particular, UAV systems have shown to be very useful in wireless communication applications with sudden traffic demands, network recovery, aerial relays, and edge computing. Meanwhile, non-orthogonal multiple access (NOMA) has been able to maximize the number of served users with the highest traffic capacity for future aerial systems in the literature. However, the study of joint optimization of UAV altitude, user pairing, and power allocation for the problem of capacity maximization requires further investigation. Thus, a capacity optimization problem for the NOMA aerial system is evaluated in this paper, considering the combination of convex and heuristic optimization techniques. The proposed algorithm is evaluated by using multiple heuristic techniques and deployment scenarios. The results prove the efficiency of the proposed NOMA scheme in comparison to the benchmark technique of orthogonal multiple access (OMA). Moreover, a comparative analysis of heuristic techniques for capacity optimization is also presented. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

34 pages, 13097 KiB  
Article
Coverage Path Planning Based on the Optimization Strategy of Multiple Solar Powered Unmanned Aerial Vehicles
by Wenxin Le, Zhentao Xue, Jian Chen and Zichao Zhang
Drones 2022, 6(8), 203; https://doi.org/10.3390/drones6080203 - 11 Aug 2022
Cited by 17 | Viewed by 4133
Abstract
In some specific conditions, UAVs are required to obtain comprehensive information of an area or to operate in the area in an all-round way. In this case, the coverage path planning (CPP) is required. This paper proposes a solution to solve the problem [...] Read more.
In some specific conditions, UAVs are required to obtain comprehensive information of an area or to operate in the area in an all-round way. In this case, the coverage path planning (CPP) is required. This paper proposes a solution to solve the problem of short endurance time in the coverage path planning (CPP) problem of multi-solar unmanned aerial vehicles (UAVs). Firstly, the energy flow efficiency based on the energy model is proposed to evaluate the energy utilization efficiency during the operation. Moreover, for the areas with and without obstacles, the coverage path optimization model is proposed based on the undirected graph search method. The constraint equation is defined to restrict the UAV from accessing the undirected graph according to certain rules. A mixed integer linear programming (MILP) model is proposed to determine the flight path of each UAV with the objective of minimizing operation time. Through the simulation experiment, compared with the Boustrophedon Cellular Decomposition method for coverage path planning, it is seen that the completion time is greatly improved. In addition, considering the impact of the attitude angle of the solar powered UAV when turning, the operation time and the total energy flow efficiency are defined as the optimization objective. The bi-objective model equation is established to solve the problem of the CPP. A large number of simulation experiments show that the optimization model in this paper selects different optimization objectives and applies to different shapes of areas to be covered, which has wide applicability and strong feasibility. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Figure 1

32 pages, 12554 KiB  
Article
MCO Plan: Efficient Coverage Mission for Multiple Micro Aerial Vehicles Modeled as Agents
by Liseth Viviana Campo, Agapito Ledezma and Juan Carlos Corrales
Drones 2022, 6(7), 181; https://doi.org/10.3390/drones6070181 - 21 Jul 2022
Cited by 4 | Viewed by 2932
Abstract
Micro aerial vehicle (MAV) fleets have gained essential recognition in the decision schemes for precision agriculture, disaster management, and other coverage missions. However, they have some challenges in becoming massively deployed. One of them is resource management in restricted workspaces. This paper proposes [...] Read more.
Micro aerial vehicle (MAV) fleets have gained essential recognition in the decision schemes for precision agriculture, disaster management, and other coverage missions. However, they have some challenges in becoming massively deployed. One of them is resource management in restricted workspaces. This paper proposes a plan to balance resources when considering the practical use of MAVs and workspace in daily chores. The coverage mission plan is based on five stages: world abstraction, area partitioning, role allocation, task generation, and task allocation. The tasks are allocated according to agent roles, Master, Coordinator, or Operator (MCO), which describe their flight autonomy, connectivity, and decision skill. These roles are engaged with the partitioning based on the Voronoi-tessellation but extended to heterogeneous polygons. The advantages of the MCO Plan were evident compared with conventional Boustrophedon decomposition and clustering by K-means. The MCO plan achieved a balanced magnitude and trend of heterogeneity between both methods, involving MAVs with few or intermediate resources. The resulting efficiency was tested in the GAMA platform, with gained energy between 2% and 10% in the mission end. In addition, the MCO plan improved mission times while the connectivity was effectively held, even more, if the Firefly algorithm generated coverage paths. Full article
(This article belongs to the Special Issue Intelligent Coordination of UAV Swarm Systems)
Show Figures

Figure 1

Back to TopTop