Leveraging UAVs to Enable Dynamic and Smart Aerial Infrastructure for ITS and Smart Cities: An Overview
Abstract
:1. Introduction
2. UAV Applications for Smart Cities and ITS
3. Potential Solutions to UAV Shortcomings as ITS Infrastructure
3.1. Charging Station Placement
3.2. Tour Planning for Flying IoT Gateways
3.3. Urban Navigation for UAVs
3.4. Spatiotemporal UAV Scheduling
4. Perspectives and Future Research Directions
4.1. Front-End Intelligent Drones
4.2. Autonomous UAVs and Collision-Free Navigation
4.3. Security and Privacy
4.4. Noise and Environmental Considerations
4.5. Multitasking UAVs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Bolla, G.M.; Casagrande, M.; Comazzetto, A.; Dal Moro, R.; Destro, M.; Fantin, E.; Colombatti, G.; Aboudan, A.; Lorenzini, E.C. ARIA: Air Pollutants Monitoring Using UAVs. In Proceedings of the 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Rome, Italy, 20–22 June 2018; pp. 225–229. [Google Scholar] [CrossRef]
- Jońca, J.; Pawnuk, M.; Bezyk, Y.; Arsen, A.; Sówka, I. Drone-Assisted Monitoring of Atmospheric Pollution—A Comprehensive Review. Sustainability 2022, 14, 11516. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile Unmanned Aerial Vehicles (UAVs) for Energy-Efficient Internet of Things Communications. IEEE Trans. Wirel. Commun. 2017, 16, 7574–7589. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, M.; Feng, Z.; Li, W.; Zhang, W.; Pan, M. IoT Enabled UAV: Network Architecture and Routing Algorithm. IEEE Internet Things J. 2019, 6, 3727–3742. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Bagaa, M.; Taleb, T. UAV-Based IoT Platform: A Crowd Surveillance Use Case. IEEE Commun. Mag. 2017, 55, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Hildmann, H.; Kovacs, E. Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safety. Drones 2019, 3, 59. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Sakti, S.; Wu, Y.; Nakamura, S. A framework for knowing who is doing what in aerial surveillance videos. IEEE Access 2019, 7, 93315–93325. [Google Scholar] [CrossRef]
- Mohamed, N.; Al-Jaroodi, J.; Jawhar, I.; Idries, A.; Mohammed, F. Unmanned aerial vehicles applications in future smart cities. Technol. Forecast. Soc. Chang. 2020, 153, 119293. [Google Scholar] [CrossRef]
- Niglio, F.; Comite, P.; Cannas, A.; Pirri, A.; Tortora, G. Preliminary Clinical Validation of a Drone-Based Delivery System in Urban Scenarios Using a Smart Capsule for Blood. Drones 2022, 6, 195. [Google Scholar] [CrossRef]
- Molina, P.; Colomina, I.; Victoria, T.; Skaloud, J.; Kornus, W.; Prades, R.; Aguilera, C. Searching lost people with UAVs: The system and results of the close-search project. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Saleri, R.; Cappellini, V.; Nony, N.; De Luca, L.; Pierrot-Deseilligny, M.; Bardiere, E.; Campi, M. UAV photogrammetry for archaeological survey: The Theaters area of Pompeii. In Proceedings of the 2013 Digital heritage international congress (DigitalHeritage), Marseille, France, 28 October–1 November 2013; Volume 2, pp. 497–502. [Google Scholar]
- Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges. IEEE Commun. Mag. 2017, 55, 22–28. [Google Scholar] [CrossRef]
- Caruso, A.; Chessa, S.; Escolar, S.; Barba, J.; López, J.C. Collection of Data with Drones in Precision Agriculture: Analytical Model and LoRa Case Study. IEEE Internet Things J. 2021, 8, 16692–16704. [Google Scholar] [CrossRef]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.G.; Zhan, Z.H.; Kwong, S.; Zhang, J. Evolutionary computation for intelligent transportation in smart cities: A survey. IEEE Comput. Intell. Mag. 2022, 17, 83–102. [Google Scholar] [CrossRef]
- Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A survey on machine-learning techniques for UAV-based communications. Sensors 2019, 19, 5170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abualigah, L.; Diabat, A.; Sumari, P.; Gandomi, A.H. Applications, deployments, and integration of internet of drones (iod): A review. IEEE Sens. J. 2021, 21, 25532–25546. [Google Scholar] [CrossRef]
- Sayeed, M.A.; Kumar, R. An efficient mobility model for improving transmissions in multi-UAVs enabled WSNs. Drones 2018, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Gharibi, M.; Boutaba, R.; Waslander, S.L. Internet of Drones. IEEE Access 2016, 4, 1148–1162. [Google Scholar] [CrossRef]
- Guetta, Y.; Shapiro, A. On-Board Physical Battery Replacement System and Procedure for Drones During Flight. IEEE Robot. Autom. Lett. 2022, 7, 9755–9762. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Hellaoui, H.; Bekkouche, O.; Bagaa, M.; Taleb, T. Aerial Control System for Spectrum Efficiency in UAV-to-Cellular Communications. IEEE Commun. Mag. 2018, 56, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Ghorbel, M.B.; Rodríguez-Duarte, D.; Ghazzai, H.; Hossain, M.J.; Menouar, H. Joint Position and Travel Path Optimization for Energy Efficient Wireless Data Gathering Using Unmanned Aerial Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 2165–2175. [Google Scholar] [CrossRef]
- Ghazzai, H.; Feidi, A.; Menouar, H.; Ammari, M.L. An exploratory search strategy for data routing in flying ad hoc networks. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Ghazzai, H.; Menouar, H.; Kadri, A. On the Placement of UAV Docking Stations for Future Intelligent Transportation Systems. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Raza, A.; Bukhari, S.H.R.; Aadil, F.; Iqbal, Z. An UAV-assisted VANET architecture for intelligent transportation system in smart cities. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211031750. [Google Scholar] [CrossRef]
- Ren, Q.; Abbasi, O.; Kurt, G.K.; Yanikomeroglu, H.; Chen, J. Caching and computation offloading in high altitude platform station (HAPS) assisted intelligent transportation systems. IEEE Trans. Wirel. Commun. 2022, 21, 9010–9024. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, W.; Liu, L.; Dev, K.; Qureshi, N.M.F. AoI optimization in the UAV-aided traffic monitoring network under attack: A stackelberg game viewpoint. IEEE Trans. Intell. Transp. Syst. 2022, 24, 932–941. [Google Scholar] [CrossRef]
- Adam, A.B.; Muthanna, M.S.A.; Muthanna, A.; Nguyen, T.N.; Abd El-Latif, A.A. Toward Smart Traffic Management with 3D Placement Optimization in UAV-Assisted NOMA IIoT Networks. IEEE Trans. Intell. Transp. Syst. 2022, 1–11. [Google Scholar] [CrossRef]
- Dai, M.; Luan, T.H.; Su, Z.; Zhang, N.; Xu, Q.; Li, R. Joint Channel Allocation and Data Delivery for UAV-Assisted Cooperative Transportation Communications in Post-Disaster Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16676–16689. [Google Scholar] [CrossRef]
- Huang, H.; Hu, C.; Zhu, J.; Wu, M.; Malekian, R. Stochastic Task Scheduling in UAV-Based Intelligent On-Demand Meal Delivery System. IEEE Trans. Intell. Transp. Syst. 2021, 23, 13040–13054. [Google Scholar] [CrossRef]
- Ho, F.; Geraldes, R.; Gonçalves, A.; Rigault, B.; Sportich, B.; Kubo, D.; Cavazza, M.; Prendinger, H. Decentralized multi-agent path finding for UAV traffic management. IEEE Trans. Intell. Transp. Syst. 2020, 23, 997–1008. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Y.; Li, F.; Durrani, T.S. Throughput Maximization for RIS-UAV Relaying Communications. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19569–19574. [Google Scholar] [CrossRef]
- Singh, C.H.; Mishra, V.; Jain, K.; Shukla, A.K. FRCNN-Based Reinforcement Learning for Real-Time Vehicle Detection, Tracking and Geolocation from UAS. Drones 2022, 6, 406. [Google Scholar] [CrossRef]
- Lucic, M.C.; Ghazzai, H.; Massoud, Y. A Generalized Dynamic Planning Framework for Green UAV-Assisted Intelligent Transportation System Infrastructure. IEEE Syst. J. 2020, 14, 4786–4797. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, J.; Wu, Y.; Mitton, N. A centrality-based RSU deployment approach for vehicular ad hoc networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ghazzai, H.; Menouar, H.; Kadri, A.; Massoud, Y. Future UAV-Based ITS: A Comprehensive Scheduling Framework. IEEE Access 2019, 7, 75678–75695. [Google Scholar] [CrossRef]
- Balouchzahi, N.M.; Fathy, M.; Akbari, A. Optimal road side units placement model based on binary integer programming for efficient traffic information advertisement and discovery in vehicular environment. IET Intell. Transp. Syst. 2015, 9, 851–861. [Google Scholar] [CrossRef]
- Sundar, K.; Rathinam, S. Algorithms for Routing an Unmanned Aerial Vehicle in the Presence of Refueling Depots. IEEE Trans. Autom. Sci. Eng. 2014, 11, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Ghazzai, H.; Kadri, A.; Ben Ghorbel, M.; Menouar, H.; Massoud, Y. A Generic Spatiotemporal UAV Scheduling Framework for Multi-Event Applications. IEEE Access 2018, 7, 215–229. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Le, L.B. Flight Scheduling and Trajectory Control in UAV-Based Wireless Networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC’20), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Imanberdiyev, N.; Fu, C.; Kayacan, E.; Chen, I. Autonomous navigation of UAV by using real-time model-based reinforcement learning. In Proceedings of the 14th International Conference on Control, Automation, Robotics and Vision (ICARCV’16), Phuket, Thailand, 13–15 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Bouhamed, O.; Ghazzai, H.; Besbes, H.; Massoud, Y. A Generic Spatiotemporal Scheduling for Autonomous UAVs: A Reinforcement Learning-Based Approach. IEEE Open J. Veh. Technol. 2020, 1, 93–106. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Zhang, X.; Zhang, X. Autonomous navigation of UAV in large-scale unknown complex environment with deep reinforcement learning. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP’17), Montreal, QC, Canada, 14–16 November 2016; pp. 858–862. [Google Scholar]
- Bouhamed, O.; Ghazzai, H.; Besbes, H.; Massoud, Y. Q-learning based routing scheduling for a multi-task autonomous agent. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019; pp. 634–637. [Google Scholar]
- Yan, C.; Xiang, X. A Path Planning Algorithm for UAV Based on Improved Q-Learning. In Proceedings of the 2nd International Conference on Robotics and Automation Sciences (ICRAS’18), Wuhan, China, 23–25 June 2018. [Google Scholar] [CrossRef]
- Sichkar, V.N. Reinforcement Learning Algorithms in Global Path Planning for Mobile Robot. In Proceedings of the International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM’19), Sochi, Russia, 25–29 March 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Bouhamed, O.; Ghazzai, H.; Besbes, H.; Massoud, Y. A UAV-Assisted Data Collection for Wireless Sensor Networks: Autonomous Navigation and Scheduling. IEEE Access 2020, 8, 110446–110460. [Google Scholar] [CrossRef]
Reference | Title | Application Domain | Employed Algorithm |
---|---|---|---|
[27] | An UAV-assisted VANET architecture for intelligent transportation system in smart cities. | Communication and data exchange | Simulation of ad hoc network architecture |
[28] | Caching and computation offloading in high altitude platform station (HAPS) assisted intelligent transportation systems. | Data processing and edge computing | Computation framework for ITS (high-altitude platform station) |
[29] | AoI optimization in the UAV-aided traffic monitoring network under attack: A stackelberg game viewpoint. | Traffic monitoring | Game theory: Stackelberg game |
[30] | Toward Smart Traffic Management With 3D Placement Optimization in UAV-Assisted NOMA IIoT Networks. | Traffic management | Improved adaptive whale optimization algorithm |
[31] | Joint Channel Allocation and Data Delivery for UAV-Assisted Cooperative Transportation Communications in Post-Disaster Networks | Emergency situation | Game theory: Stackelberg game |
[32] | Stochastic Task Scheduling in UAV-Based Intelligent On-Demand Meal Delivery System | Goods delivery | Iterated heuristic framework, stochastic event scheduling |
[33] | Decentralized multi-agent path finding for UAV traffic management | Traffic management | novel multiagent path finding: (a) prioritization approach and (b) pairwise negotiation approach |
[34] | Throughput Maximization for RIS-UAV Relaying Communications | Data transfer | Formulate nonconvex optimization problem with three subproblems: (a) passive beamforming optimization, (b) trajectory optimization, and (c) power allocation optimization |
[35] | FRCNN-Based Reinforcement Learning for Real-Time Vehicle Detection, Tracking and Geolocation from UAS | Surveillance | Adaptive filtering, top-hat and bottom-hat transformations, Kanade–Lucas–Tomasi trackers, density-based spatial clustering of applications with noise (DBSCAN) clustering, efficient reinforcement connecting algorithm, and fast regional convolutional neural network (Fast-RCNN) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucic, M.C.; Bouhamed, O.; Ghazzai, H.; Khanfor, A.; Massoud, Y. Leveraging UAVs to Enable Dynamic and Smart Aerial Infrastructure for ITS and Smart Cities: An Overview. Drones 2023, 7, 79. https://doi.org/10.3390/drones7020079
Lucic MC, Bouhamed O, Ghazzai H, Khanfor A, Massoud Y. Leveraging UAVs to Enable Dynamic and Smart Aerial Infrastructure for ITS and Smart Cities: An Overview. Drones. 2023; 7(2):79. https://doi.org/10.3390/drones7020079
Chicago/Turabian StyleLucic, Michael C., Omar Bouhamed, Hakim Ghazzai, Abdullah Khanfor, and Yehia Massoud. 2023. "Leveraging UAVs to Enable Dynamic and Smart Aerial Infrastructure for ITS and Smart Cities: An Overview" Drones 7, no. 2: 79. https://doi.org/10.3390/drones7020079
APA StyleLucic, M. C., Bouhamed, O., Ghazzai, H., Khanfor, A., & Massoud, Y. (2023). Leveraging UAVs to Enable Dynamic and Smart Aerial Infrastructure for ITS and Smart Cities: An Overview. Drones, 7(2), 79. https://doi.org/10.3390/drones7020079