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Abstract: The reliable and efficient large-scale mapping of date palm trees from remotely sensed data
is crucial for developing palm tree inventories, continuous monitoring, vulnerability assessments,
environmental control, and long-term management. Given the increasing availability of UAV images
with limited spectral information, the high intra-class variance of date palm trees, the variations in
the spatial resolutions of the data, and the differences in image contexts and backgrounds, accurate
mapping of date palm trees from very-high spatial resolution (VHSR) images can be challenging.
This study aimed to investigate the reliability and the efficiency of various deep vision transformers
in extracting date palm trees from multiscale and multisource VHSR images. Numerous vision
transformers, including the Segformer, the Segmenter, the UperNet-Swin transformer, and the
dense prediction transformer, with various levels of model complexity, were evaluated. The models
were developed and evaluated using a set of comprehensive UAV-based and aerial images. The
generalizability and the transferability of the deep vision transformers were evaluated and compared
with various convolutional neural network-based (CNN) semantic segmentation models (including
DeepLabV3+, PSPNet, FCN-ResNet-50, and DANet). The results of the examined deep vision
transformers were generally comparable to several CNN-based models. The investigated deep vision
transformers achieved satisfactory results in mapping date palm trees from the UAV images, with
an mIoU ranging from 85% to 86.3% and an mF-score ranging from 91.62% to 92.44%. Among the
evaluated models, the Segformer generated the highest segmentation results on the UAV-based and
the multiscale testing datasets. The Segformer model, followed by the UperNet-Swin transformer,
outperformed all of the evaluated CNN-based models in the multiscale testing dataset and in the
additional unseen UAV testing dataset. In addition to delivering remarkable results in mapping date
palm trees from versatile VHSR images, the Segformer model was among those with a small number
of parameters and relatively low computing costs. Collectively, deep vision transformers could be
used efficiently in developing and updating inventories of date palms and other tree species.

Keywords: vision transformer; semantic segmentation; tree crown delineation; Segformer; Swin
transformer; Segmenter; dense prediction transformer; CNN

1. Introduction

The date palm (Phoenix dactylifera L.), which is an arborescent monocotyledonous tree
species with unique anatomical features (a single trunk, palm leaves, and fronds), is one of
the most crucial fruit trees in arid and semi-arid regions. The crown of a date palm tree
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is densely covered with long, pinnate leaves, some of which may reach a length of four
meters [1], depending on the tree’s cultivar, age, and climate conditions. Date palm trees
normally grow to a height of between 15 m and 25 m [2]. It was originally grown in the
Middle East and North Africa and has successfully been domesticated and spread to other
areas with a suitable climate and sufficient water resources [3]. The annual production of
the date palm exceeds 9 million tons, cultivated from over 1.38 million hectares [4]. Given
the socioeconomic importance of date palm trees, it is essential to monitor, preserve, and
ensure the precise management of date production.

Because date palm trees are distributed across vast agricultural and urban areas,
very-high spatial resolution (VHSR) remotely sensed data can be utilized to map, detect,
and count date palm trees. Over the past few years, the increasing availability of UAV-
based images has considerably contributed to the development and the success of artificial
intelligence models that accurately delineate individual tree crowns [5–10], count the
number of trees [11–14], and assess the health of the trees [15,16]. Deep learning models,
especially convolutional neural networks (CNNs), have been proven to have excellent
performance in extracting tree crowns and mapping tree species from UAV data through
patch-based classification [17–20], object detection [21–24], semantic segmentation [25–27],
and instance segmentation [28–31].

Semantic segmentation is one of the key pillars in computer vision; it assigns a label to
each image pixel. Numerous fully convolutional networks (FCNs), such as SegNet [32],
U-Net [33], DeepLab V3+ [34], PSPNet [35], and others, have been adopted in forestry
and precision agriculture domains to delineate the tree crowns from various sources
of remotely sensed data. For instance, Gibril et al. [36] proposed a deep U-Net based
on the residual learning framework (ResNet) for the large-scale mapping of date palm
trees from UAV images. The proposed approach surpassed several state-of-the-art FCNs
and achieved an F-score and mean IoU of 91% and 85%, respectively. Anagnostis et al.
(2021) [37] utilized a U-Net model to detect and localize orchard trees from aerial images
with various conditions (i.e., different seasons, different tree ages, and different levels of
weed coverage) and achieved an accuracy of 91%, 90%, and 87% for training, validation,
and testing, respectively. Ferreira et al. (2021) [38] trained DeepLabv3+ architecture
with three backbones (ResNet-18, ResNet-50, and MobileNetV2) to map Brazilian nut
trees from WorldView-3 satellite imagery. The authors reported an F-score ranging from
60.9% to 71.81%. Generally, the commonly used semantic segmentation networks for
tree crown mapping are U-Net [39–46] and DeepLabV3+ [47–50], which have diverse
backbone networks.

Given their remarkable performance in natural language processing, transformers [51]
have been adopted in computer vision and have achieved outstanding performance. Vision
transformers (ViT) use a pure transformer architecture, which is an effective backbone net-
work that learns global features through a self-attention mechanism, as a feature extractor
in image recognition [52], object detection [53,54], and semantic segmentation tasks [55].
The input images are subdivided into small square patches (which are treated in the same
way as tokens). These small patches are then flattened into vectors and are discretely
embedded using linear projection. The positional embedding of these small patches is
incorporated in order to preserve their positional information. Then, the sequence is fed
into numerous multi-head attention layers, which generate the final representation. Trans-
formers have larger receptive fields than CNN-based models and a higher representation
power, and they can attain global contextual information through self-attention mecha-
nisms [56]. Recently, several remote sensing studies have explored the potential of using
several vision transformers in image classification [57,58], object detection [59,60], semantic
segmentation [61–66], and instance segmentation [67].

In the context of individual tree crown mapping and detection, the Swin transformer
(which is a hierarchal vision transformer) was adopted as the backbone of a variety of deep
learning architectures. Gibril et al. [68] evaluated the performance and the generalizability
of various instance segmentation algorithms with varying backbones in detecting and
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mapping individual date palm trees from multiscale UAV images. The efficiency of various
backbones, including residual learning networks (ResNets) and the Swin transformer, was
scrutinized. The mask-region convolutional neural network that was based on the Swin
transformer backbone demonstrated outstanding performance, and it outperformed those
with different ResNet architectures and depths. The superiority of the Swin transformer
was attributed to its ability to attain global contextual information through the gradual
increase in its receptive field. Lan et al. [69] proposed a lightweight object detection model
that was based on the YOLOX detector and the tiny version of the Swin transformer as a
backbone network for the real-time UAV patrol orchard mission. The YOLOX network that
was based on the Swin transformer backbone showed an improvement in its accuracy (by
1.9%) and its size over the original YOLOX network. Alshammari and Shahin [70] adopted
a SwinTU-net, which is an encoder–decoder semantic segmentation model that is based on
a U-Net design and a Swin transformer backbone, for segmenting olive trees from UAV
images. The authors’ experimental results showed that the performance of the SwinTU-net
model surpassed similar studies in identifying olive trees.

The vast majority of previous studies on date palm have focused on developing and
evaluating CNN-based models using a single data source and limited study areas. The
large-scale mapping of date palm trees from multisource VHSR images can be challenging
because different imaging systems acquire remotely sensed data with varying spatial and
radiometric resolutions. Moreover, the limited spectral information of VHSR images, the
high intraclass variance of date palm trees (i.e., the cultivar, the age, the crown size, and the
height), and the complexity of the image backgrounds can contribute to decreasing the gen-
eralizability of the deep learning models. Given their ability to capture robust local–global
feature representations, which can boost the accuracy of palm tree mapping, the adoption
of transformer-based models is proposed in this study to address the aforementioned
challenges. Although a broad spectrum of CNNs demonstrates excellent performance in
delineating the crowns of different tree species from various sources of remotely sensed
data, the effectiveness and the efficiency of varying vision transformers in extracting tree
species from multiscale and multisource VHSR images have not been fully explored.

The present study mainly aims to provide an end-to-end, efficient, and transferable
deep learning approach for the large-scale mapping of date palm trees from multiscale
UAV-based aerial images. The contributions of this study can be summarized as follows:
(1) exploring and evaluating the performance of numerous state-of-the-art transformer-
based DL models (i.e., the Segformer, the Segmenter, the UperNet-Swin, and the dense
prediction transformer) with various levels of model complexities in the delineation of
date palm trees; (2) assessing the generalizability of the deep transformer-based models on
multiple testing data with varying spatial resolutions; (3) conducting an in-depth analysis
on the transferability of the evaluated vision transformers and various CNN-based models
(i.e., DeepLabV3+, PSPNet, FCN-ResNet-50, and DANet) to other VHSR images that were
acquired from different geographical regions.

2. Materials
2.1. Study Area

The study area, which is shown in Figure 1, is positioned in the eastern region of Ajman
Emirate, United Arab Emirates (UAE). The study site covers 30 km2 and is characterized
by diverse agricultural farms and residential areas. The date palm trees in the study area
are planted in agricultural and urban landscapes and vary in density, cultivar, age, crown
size, and height. The climatic conditions in the area range from arid to hyper-arid, with
average temperatures between 18 ◦C and 34 ◦C, and a maximum temperature of over
40 ◦C in the summer season.
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Figure 1. Study area: (a) UAE map; (b) location of the study area; (c–e) an example of multisource images.

2.2. Data Acquisition

This study utilized multisource and multiscale RGB images for training and evaluating
various deep vision transformer models for the large-scale segmentation of date palm trees.
The datasets consist of large-scale UAV orthomosaic images and two very-high-resolution
aerial photographs.

The UAV dataset was acquired in the winter of 2019 between 9:00 a.m. and 1:00 p.m.,
using a SenseFly eBee-Plus UAV system equipped with a S.O.D.A. (sensor optimized for
drone applications) digital camera. The camera captures visible-color images (RGB) with a
resolution of 1.2 MP and an image size of 5472 × 3648 pixels (3:2). It can capture images in
a variety of lighting conditions (e.g., sunny, cloudy, and shady) due to its automatic white
balance feature. To cover the entire study site, the area was divided into small blocks (i.e.,
small flight missions) because of the limited battery time (a maximum endurance of 59 min)
and range of the radio communication links of the UAV system.

The flight missions were planned, controlled, and visualized using SenseFly eMotion
software. The flight missions were carried out at an average height of 100 m above elevation
data, with frontal and lateral image overlaps of 85% and 80%, respectively. A survey-grade
GNSS receiver was also set up as a reference station to concurrently record the data during
the flights in a static mode. The very-high-resolution aerial images used in this study
were acquired in the summer of 2017 and 2015, with a spatial resolution of 20 cm and
15 cm, respectively.
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3. Methodology

The framework of this study, which is shown in Figure 2, consists of the following five
main stages: (1) data preprocessing, (2) data preparation and split (Section 3.2), (2) model
experiments (Section 3.5), (3) generalizability evaluation (Section 3.6), (4) transferability
analysis (Section 3.7), and (5) application to large-scale images (Section 3.8).
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3.1. Data Preprocessing

In this study, the UAV GNSS data (UAV flight log files) and the ground GNSS RINEX
(receiver-independent exchange format) data were processed in eMotion software to rectify
the positions of the UAV where the images were obtained during the flights and obtain
geotagged images. After completing the necessary corrections, the geotagged images
were imported into Pix4D mapper software (v.4.4.10; Prilly, Switzerland) to generate one
orthomosaic RGB image with an average ground sampling distance (GSD) of 5 cm.

3.2. Data Preparation and Split

Developing a powerful deep-learning model for the segmentation of date palm trees
requires high-quality and adequate ground-truth data. For the purpose of developing a
generic and transferable deep learning model, comprehensive mutlidate vector layers were
manually prepared by encircling the pixels of the crowns of the date palm trees (areas
occupied by palm leaves) from the multisource RGB images based on a visual assessment.
Another analyst meticulously checked and improved the vector layers to ensure that the
date palm tree crowns were delineated properly. Overall, the prepared vector data consists
of 50,000 date palm trees (prepared from the UAV data with a GSD of 5 cm) and 65,740 and
52,335 date palm trees (prepared from two aerial images with a GSD of 15 cm and 20 cm,
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respectively). The revised multiscale vector layers of the date palm trees were converted
into raster layers (binary masks).

In this study, three distinct regions, which were covered with varying types and sizes
of date palm trees (Figure 1), were dedicated to training, validating, and testing deep vision
transformer models. The site dedicated to training accounts for about 75% of the areas
covered with palm trees, while the remaining 25% were kept for validating and testing the
performance of the segmentation models. The remotely sensed data of the three regions
and the corresponding mask were divided into equal-sized (512 × 512) image–mask pairs.
Given the differences in the spatial resolutions of the various datasets, the number of
generated image tiles varied from one dataset to another. A total of 21,045 UAV image tiles
and their corresponding masks were obtained from the training region. A set of 3784 UAV
image–mask pairs were obtained from the validation area, while a total of 3491 image–mask
pairs were obtained from the testing region. Table 1 lists the number of generated images
from each dataset using the training, validation, and testing regions. Figure 3 shows the
samples of the generated multisource image tiles and their corresponding masks.

Table 1. A summary of the multiscale image tiles generated from the training, validation, and
testing regions.

UAV Data Orthophoto Orthophoto Total

Acquisition 2019 2017 2015 -
Spatial resolution 5 cm 20 cm 15 cm -
Training samples 21,045 5687 16,531 43,263

Validation samples 3784 221 682 4687
Testing samples 3491 218 657 4366
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3.3. Semantic Segmentation Models

This research investigated the performance of various deep vision transformers on
multiscale UAV and multisource datasets. First, the deep learning models were trained
and evaluated using UAV data (with 5 cm GSD). The trained models were used to evaluate
the performance of the models in mapping the date palm trees from multiscale UAV data
with various GSD (i.e., 10, 15, 20, 25, and 30 cm). Second, the performance of the deep
learning models trained on multiscale RGB images (UAV and two aerial images) was
also evaluated. The following subsections provide a brief description of the utilized deep
vision transformers.

3.3.1. Segformer

The Segformer [71], which is a powerful and efficient transformer-based semantic
segmentation framework, is based on an encoder–decoder architecture (Figure 4). The
encoder includes a set of four transformer blocks for multiscale feature learning. The trans-
former blocks comprise the following three modules: efficient self-attention, a mixed
feed-forward network (Mix-FFN), and overlap patch merging blocks. The input im-
ages (i.e., h, w, and c) are divided into small patches (i.e., 4 × 4), and the patches are
passed to a hierarchical transformer encoder to extract multi-level features in order to
boost the performance of semantic segmentation. The efficient self-attention module
employs a sequence reduction technique [72] to lessen the computational cost. Unlike
traditional ViT, which utilizes fixed resolution position encodings (PEs) to incorporate posi-
tional information, the Segformer uses convolutional layers in the feed-forward network
(FFN) for data-driven positional encoding. The Mix-FFN provides positional informa-
tion by considering the effect of zero padding to leak location information [69] by using
3 × 3 convolutions in the FFN [73]. The overlap patch merging module generates fea-
ture maps of the same process size without overlapping, resulting in hierarchical feature
representation representing local and global information. The multiscale features, which
include low-resolution coarse features, and high-resolution fine features, are aggregated at
resolutions of 1/4, 1/8, 1/16, and 1/32 of the original images. An example of multiscale
feature maps generated by the Segformer is shown in Figure 5. The complexity of the
Segformer depends on the selection of the depth of the mix transformer (MiT) encoder,
which varies from B0 to B5 [71]. This study investigated the performance of MiT B2, B3,
and B4 encoders.

The decoder encompasses four main steps and employs lightweight multi-layer per-
ceptrons (MLPs) that combine local and global attention to fuse multiscale feature outputs
from different layers and predict the final segmentation results. First, the extracted multi-
level features are fed to the MLP layer to unify the channel dimension. Second, the features
are upsampled to 1/4 and concatenated. Third, the concatenated feature maps are fused by
an MLP layer, and the fused features are ultimately passed to another MLP layer to predict
the segmentation mask. The decoder design is unique and produces a robust representation
without computationally intensive modules.

3.3.2. UperNet-Swin Transformer

The design of the unified perceptual parsing network (UperNet) [74] is an encoder–
decoder semantic segmentation network based on a feature pyramid network (FPN) [75]
and a pyramid pooling module (PPM) from PSPNet [35]. The FPN constructs bottom-up
(downsampling feature maps) pathways, top-down (upsampling feature maps) pathways,
and lateral connections. While the bottom-up pathway extracts multiscale feature maps
(depending on the selected backbone network), the top-down pathway increases the
spatial dimensions of the feature maps by a factor of two. The PPM is applied to the
final layer of the bottom-up network before it is fed into the top-down pathway via
lateral connections. Through the lateral connections, the top-down and bottom-up feature
maps are integrated to create low- (semantically strong features) and high-resolution
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(semantically weak features) feature maps. Additional information on the FPN and PPM
can be found in [35,75].
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Figure 5. Examples of the multiscale feature maps extracted by the Segformer.

In this study, the Swin transformer was used as the encoder of UperNet. The Swin
transformer [76] is an effective multistage hierarchical vision transformer architecture
whose representation is obtained via the shifted window scheme, which is used to extract
multi-level features and model the long-range dependencies in the data. The shifted
windowing technique improves efficiency by confining self-attention computation to non-
overlapping local windows while enabling cross-window connections. The architecture
of the Swin transformer encompasses four stages, including several operations to extract
multiscale feature maps, patch partition, patch merging, linear embedding, and Swin
transformer blocks, as shown in Figure 6.
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Figure 6. The encoder is based on Swin Transformer (Swin-tiny version).

Similar to ViT, the input image is partitioned into non-overlapping patches (i.e., 4 × 4),
and each patch is regarded as a token. The feature of each token is set as the concatenation
of raw multichannel pixel values. For instance, the feature dimension of a 4 × 4 patch is
4 × 4 × 3 = 48 pixels. The raw-valued feature is projected into an arbitrary dimension
(labeled as C) by the linear embedding layer. For the different variants of the Swin trans-
former, tiny, small, and base models, C is 96, 96, and 128, respectively. The patch tokens
(feature vectors) are then passed through a set of transformer blocks for feature represen-
tation learning. A Swin transformer block comprises window multi-head self-attention
(W-MSA), shifted window multi-head self-attention, and multi-layer perceptron (MLP). A
LayerNorm (LN) layer is employed before each MSA module and MLP. In the interim, a
residual connection is implemented after every module. After each stage, a patch merging
layer is used to reduce the number of tokens and produce a hierarchical representation. For
the Swin-tiny, Swin-small, and Swin-base models, the number of layers in stages 1, 2, 3,
and 4 are {2, 2, 6, 2}, {2, 2, 18, 2}, and {2, 2, 18, 2}, respectively. This study investigated the
performance of Swin-tiny, Swin-small, and Swin-base encoders.

3.3.3. Segmenter

The Segmenter [77], which is a transformer-based encoder–decoder architecture, maps
a series of patch embeddings to pixel-level class annotations. The encoder is constructed
using the vision transformer ViT [52] and considers all of the ”tiny”, ”small”, ”base,” and
”large” models. The input images are divided into a sequence of patches. Each patch
is flattened into a 1D vector and linearly projected to a patch embedding to generate a
sequence of patch embeddings. Learnable position embeddings are incorporated into
the sequence of patches in order to retain the positional information. The transformer
encoder consists of a set of transformer layers. Each layer encompasses a multi-headed
self-attention (MSA) block, a two-layer point-wise MLP block with layer norm (LN) applied
before each block, and residual connections that are added after each block. The decoder
(mask transformer) maps the encoder’s patch-level encodings to the patch-level class
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scores. These patch-level class scores are then upsampled to pixel-level scores via bilinear
interpolation. Additional information on the Segmenter can be found in [77].

3.3.4. Dense Prediction Transformer

The dense prediction transformer (DPT) [78], which is an encoder–decoder architec-
ture, leverages vision transformers [52] as a backbone for dense prediction tasks and as a
convolutional decoder. The input images are subdivided into image patches, and then the
patches are flattened into vectors and individually embedded using a linear projection. The
image embeddings are coupled with a learnable position embedding to incorporate this
information into the representation. The tokens are transformed by employing consecutive
blocks of multi-headed self-attention (MHSA) [51] that link the tokens to each other and
transform the representation. Given that the tokens have a one-to-one correspondence with
image patches, the transformer maintains the number of tokens throughout all computa-
tions; thus, the ViT encoder preserves the spatial resolution of the initial embedding across
all transformer stages. A three-stage reassemble operation is used to restore image-like rep-
resentations from the output tokens of the arbitrary layers of the transformer encoder [78].
Tokens from the different stages of the vision transformer are assembled into image-like
representations at various resolutions and are merged progressively into full-resolution
predictions using a convolutional decoder.

3.4. Evaluation Metrics

This study used various evaluating metrics to quantify and analyze the effectiveness
of different deep vision transformers in segmenting date palm trees from multisource
remotely sensed data. The evaluating metrics include precision, recall, mean accuracy
(mAcc), mean intersection-over-union (mIOU), and mean F-score (mF-score). These metrics
have been widely employed for segmentation evaluation, which computes the degree of
agreement between the manually annotated masks and the semantically segmented pixels
by transformers. This can be expressed mathematically by Equations (1)–(6).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP + TN

(TP + TN + FP + FN)
(3)

IoU =
TP

(FP + TP + FN)
(4)

mIoU =
1
2
(IoU backgrounds +IoUdate palm tree) (5)

F − score = 2 × Precision × Recall
Precision + Recall

(6)

where TP, TN, FP, and FN denote the true positive, true negative, false positive, and false
negative, respectively.

3.5. Experimental Setup

The experiments were carried out using Pytorch [79] and MMsegmentation frame-
works [80]. The deep learning models were trained on a Linux cluster with an Intel
Xeon processor, eight NVIDIA Tesla K80 graphics processing units, 512 GB of RAM, and
100 TB of storage. The encoder of all of the models was initialized using ImageNet pre-
trained weights. The optimizer and loss functions were the AdamW (Adam with de-
coupled weight decay) and the cross-entropy loss, respectively. The initial learning rate,
coefficients of momentum, and weight decay were assigned as 0.001, 0.9, and 0.0005, respec-
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tively. The batch size was set to utilize the eight GPUs fully. The models were trained for
50,000 iterations and evaluated every 2000 iterations during the training using the valida-
tion dataset, and the best models were used in further analysis.

3.6. Generalization Capability Analysis

The spatial resolution of the VHSR data is one of the key factors that affect the appear-
ance of date palm trees in the remotely sensed data, thereby limiting the generalizability of
the deep learning models. In this study, the evaluated deep vision transformers were first
trained on UAVs with a ground space distance of 5 cm. The generalizability of the trained
models in mapping date palm trees from multiscale UAV images was assessed on different
testing UAV datasets with various s (e.g., 10, 15, 20, 25, and 30 cm).

3.7. Transferability Analysis

The models were trained on the UAV dataset alone and were also trained on the
combined multisource data. To elucidate the transferability of the evaluated deep vision
transformers, the performance of the models was scrutinized on an independent public
dataset [81]. The independent UAV dataset was acquired in Al Ain City with a spatial
resolution of 10 cm. A total of 1078 image tiles (containing 9883 date palm trees) and their
corresponding annotation of the date palm tree structure in Pascal VOC format (bounding
boxes of the palm trees in XML format) [82] were selected. In this study, the crown of the
date palm trees in these UAV data was manually demarcated using the LabelMe software
(an open-source python annotation tool). The annotations were then converted into binary
masks using labelme2voc.py [82] and utilized to assess the transferability of the various
semantic segmentation models.

3.8. Model Application to Large-Scale Images

Developing deep learning models requires the VHSR images to be divided into equal
image tiles (i.e., 512 × 512) because of the enormous size of the remotely sensed data
and the formidable amount of computation required (Section 3.2). Following the training
and evaluation stages of the different segmentation models, the process of employing
the developed segmentation model to map the date palm trees from large-scale images
involved the division of the large image into small, geotagged image tiles by using the
GDAL library (i.e., GDAL retile). The generated tiles were then passed to the segmentation
models, and the results were saved as binary geotagged images. Then, a virtual dataset
(VRT, i.e., a mosaic form of the lists of the geotagged results) was built, and the final mosaic
of the result was generated (i.e., GDAL translate module). The results were converted
to vector data by applying watershed or multiresolution segmentation, followed by a
threshold, and converted again to a vector layer (Shapefile or Geojason). Alternatively, the
measure.find_contours module could be applied in the scikit-image library to segregate and
extract the coordinates of the boundary of the date palm trees, and the coordinates could
be saved to Geojason/Shapefile by using the Fiona or Shapely libraries.

4. Results
4.1. Evaluation of Vision Transformers Based on UAV Data
4.1.1. Results of Date Palm Tree Segmentation

This study investigated the potential of different vision transformers with varying
complexities, including the Segformer, the Segmenter, the Swin transformer, and the
DPT, for large-scale date palm tree mapping. The segmentation models were trained and
evaluated based on a comprehensive UAV dataset. The semantic segmentation metrics,
which includes the mIoU, the F-measure, and the mAcc of the different transformer-based
models on the testing dataset, are shown in Figure 7. The evaluated models successfully
delineated the date palm trees with the mIoU, the mF-score, and the mAcc ranging from
85–86.3%, 91.6–92.4%, and 91.3–92.5%, respectively. Figure 8 depicts a set of examples
that were selected from the testing dataset, their corresponding ground-truth label, and
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the results of the Segmenter with ViT-small, the DPT with ViT-base, the UperNet with
Swin-tiny, and the Segformer with MiT-b2.
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4.1.2. Results of Generalizability Evaluation

The acquisition of UAV data at large scale may necessitate flying at different altitudes
in different regions and would depend on the granted flight permissions; thus, the spatial
resolution of the data varies accordingly. The accuracy of the semantic segmentation
models for date palm tree mapping is expected to drop with the decrease in the spatial
resolution of the data. Thus, the evaluated vision transformers were trained on the UAV
dataset with a ground space distance of 5 cm. The models were evaluated by testing the
UAV datasets with different GSDs (i.e., 10, 15, 20, 25, and 30 cm) in order to assess the
generalizability of the segmentation models on multiscale UAV data. Figure 9 lists the
results of the generalizability evaluation. The evaluated vision transformers, except for
the Segmenter, maintained an almost similar range of mIoU when they were applied to a
GSD of 10 cm. When the models were applied to a testing dataset with a GSD of 15 cm,
the Segformer-MiT-b4 and the UperNet-Swin-small outperformed the rest of the models
and scored an mIoU of 80.74% and 80.09%, respectively. The mIoU was reduced by 11% to
23.5% when the spatial resolution of the data was reduced by 1/4 (20 cm). The Segformer
and the UperNet-Swin demonstrated excellent generalization capacities for mapping date
palm trees from multiscale UAV data (with a GSD ranging from 5 to 20 cm).

4.2. Results of Vision Transformers Developed on Multisource Data

The deep vision transformers were trained and evaluated on a comprehensive multi-
date and multisource remotely sensed data (including a UAV-data (GSD of 5 cm) and two
orthophotos (GSD of 15 and 20 cm)) in order to develop a generic semantic segmentation
model for mapping date palm trees from different sources of VHSR images that enables
creating and updating palm tree inventories. Figure 10 displays the mIoU, the mFscore,
and the mAcc that were generated from the combined testing dataset (Table 1). Among
the evaluated vision transformers, the generic Segformer and UperNet-Swin models could
map the date palm trees with an mFscore of 92% and an mIoU of 85.7%. The Segmenter
model was the least accurate and achieved an mFscore ranging from 90.14% to 91.24%
and an mIoU ranging from 82.6% to 84.4%. Figure 11 exemplifies the results of different
semantic segmentation models for images that were selected from the multiscale testing
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data. From left to right are the raw image, the ground-truth label, and the result of the
Segmenter-ViT-small, the DPT-base, the UperNet-Swin-tiny, and the Segformer-MiT-b2.
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Figure 8. Segmentation results of date palm trees for a set of images (a–i) obtained from the UAV
testing dataset. The left column lists the randomly selected images followed by the ground truth
data and the results of Segmeter with ViT-small, DPT with ViT-base, UperNet with Swin-tiny, and
Segformer with MiT-b2.
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4.3. Results of the Transferability Evaluation

The evaluated semantic segmentation models were first trained and evaluated on UAV
data, then developed and assessed on multisource/multidate VHSR data. The UAV and
multisource data were comprehensive and covered date palm trees with diverse character-
istics (e.g., density, crown size, age, and height) and the surrounding environments (e.g.,
different vegetation, soil, and urban backgrounds). In order to ensure the transferability
of the deep vision transformer to other VHSR images that were obtained by different
sensors at other geographical locations, the semantic segmentation models were assessed
on a public UAV dataset that was acquired in the Al Ain emirate [81]. Table 2 lists the
transferability analysis of the models that were trained on the UAV-based data and the
generic models that were trained on the combined multisource data. The results of the
transferability analysis revealed that the evaluated models effectively delineated the date
palm trees and achieved remarkable segmentation results from the unseen dataset. Both of
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the models that were trained on the UAV and multiscale data almost maintained a similar
range of accuracies. An example of the high degree of transferability to the unseen VHSR
data is shown in Figure 12.
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Figure 11. Segmentation results of date palm trees for a set of randomly selected multiscale images
(a–i) chosen from the multiscale testing dataset. The left column lists the randomly selected images
followed by the ground truth data and the results of the Segmenter-ViT-small, DPT-base, UperNet-
Swin-tiny, and Segformer-MiT-b2.
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Table 2. Quantitative transferability results of the segmentation models trained on UAV and multi-
source data.

UAV-Based Models Generic Multisource Models

mIoU mF-
Score mAcc mIoU mF-

Score mAcc

Segformer_MiT-b2 86 92.39 92.53 85.84 92.31 92.96
Segformer_MiT-b3 86.2 92.52 93.15 85.84 92.31 92.96
Segformer_MiT-b4 86.36 92.61 92.69 85.83 92.3 92.91
Segmenter-ViT-tiny 84.7 91.61 91.34 82.72 90.41 90.01

Segmenter-ViT-small 85.5 92.09 92.06 85.13 91.88 91.92
Segmenter-ViT-base 85.64 92.18 92.7 85.22 91.93 92.5
UperNet-Swin-tiny 85.57 92.14 92.51 85.14 91.88 91.62

UperNet-Swin-small 85.87 92.31 91.87 85.6 92.15 92.29
UperNet-Swin-base 85.9 92.34 92.82 85.73 92.24 92.63

DPT-base 85.45 92.06 91.69 84.92 91.76 92.37Drones 2023, 7, x FOR PEER REVIEW 18 of 26 
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Figure 12. Segmentation results of date palm trees for a set of randomly selected images (a–f)
chosen from the unseen dataset. The left column lists the randomly selected images, followed by the
ground truth data and the results of the Segmenter-ViT-small, DPT-base, UperNet-Swin-tiny, and
Segformer-MiT-b.
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5. Discussion

The automatic development and update of date palm tree inventories are essential
for their consistent monitoring, health and risk assessment, and sustainable management.
In contrast to conventional field surveys, remote sensing provides an efficient means
for observing and monitoring date palm trees at wide scales with very high resolutions.
Deep learning techniques, especially CNNs, have shown remarkable performance in the
extraction of date palm trees from UAV images through various object detection [83–85],
semantic segmentation [36], and instance segmentation [68] models. The CNNs capture
semantically rich information in the images through learnable layered convolutions. As
the convolutional filters operate at the local level of the image, they hinder the capturing
of global information and long-range semantic information interaction. Moreover, the
details and the accuracy of CNN-based models are often reduced due to the loss of spatial
information as a result of pooling/downsampling operations. However, some CNN-
based techniques, such as DeepLab [34], can capture multiscale features by enlarging
receptive fields through the utilization of dilated convolutions and the spatial pyramid
pooling technique.

Given the limited spectral information of RGB images, the high intraclass variance of
palm trees, the variations in context and background, and the differences in the spatial reso-
lutions of the data, the accurate mapping of date palm trees from multisource and multidate
data remains a challenge. In the current study, the evaluated deep vision transformers
demonstrated remarkable performance in delineating date palm trees from UAV and mul-
tiscale VHSR images. The Segformer model, followed by the UperNet-Swin transformer
model, achieved the highest segmentation results in both the UAV-based testing dataset
(mF-score of 92.42% and mIoU of 86.3%) and the multiscale testing dataset (mF-score of
92.11% and mIoU of 85.8%). Figure 13 shows the results of the Segformer-MiT-b2 applied
to a large subset that was extracted from the different multiscale images.

Prior to comparing the performance of the evaluated vision transformers with different
CNN-based models, the FCN [86], PSPNet [35], DeepLab V3+ [34], and dual attention
network for scene segmentation (DANet) [87] were trained and evaluated using multisource
data. Moreover, the transferability of the CNN-based models to the unseen independent
dataset was assessed. The residual learning network (ResNet-50) [88] was regarded as the
backbone of the different CNN-based models. Figure 14a and b present the comparative
performance of the transformer and the CNN-based models on the multiscale testing dataset
and an unseen independent dataset, respectively. Figure 14c and d show a comparison
of the number of parameters and the computational costs (in floating-point operations
per second (FLOPs)) of the different models, respectively. Figure 14e and f display the
training and the testing time of the transformer and the CNN-based models, respectively.
The Segformer and UperNet-Swin models outperformed all of the evaluated CNN-based
models on the multiscale and independent testing datasets. The Segmenter model, followed
by the Segformer, entailed the lowest number of parameters, the lowest computational
cost, and the least amount of training and inference time. Although the UperNet-Swin
model showed excellent performance in mapping the date palm trees from different VHSR
images, it was among the most computationally expensive models.

In general, the findings of this research are in line with those of several recent studies
on remote sensing [89–92]. For instance, Tang et al. [89] employed Segformer (based on
MiT-b4) to identify coseismic landslides from UAV images. The Segformer was compared
with popular CNN-based semantic segmentation models, including Attention-Unet, U2Net,
DeepLabV3, Fast-SCNN, and HRNet. The findings of their study demonstrated that the
Segformer model was superior to the CNNs in landslide detection. Gonçalves et al. [91]
compared the performances of the Segformer and the DPT with those of various CNN-
based models (i.e., PSPNet, FCN, DeepLabV3+, OCRNet, and ISANet) in mapping the
burned areas in the Brazilian Pantanal wetland from PlanetScope imagery. The Segformer
model, followed by the DPT, outperforms the CNN-based models, and are the most accurate
models in distinguishing the burned areas from the not-burned areas. In the present study,
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the performance of the Segformer and the UperNet-Swin surpassed that of previous date
palm tree mapping from UAV-based images, which was based on U-Net with a backbone of
ResNet-50 [36]. The current study demonstrated an improvement in F-measure and mIoU
of 1.4% and 1.3%, respectively.
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an orthophoto with a GSD of 20 cm; (b,e,h) an orthophoto with a GSD of 15 cm, and (c,f,i) UAV data
with a GSD of 5 cm.

Although the manual preparation of ground-truth (GT) data via visual assessment
and radius delimitation procedures may sometimes result in creating boundaries that are
slightly larger or smaller than the boundaries of the date palm trees, the actual boundaries
of the date palm trees can be automatically learned by deep learning models regardless
of the minor errors that may exist in the data. For instance, Figure 15a and b show
the GT and the results that were obtained by the Segformer for the UAV image, and
Figure 15c and d present the differences between the GT and the Segformer results for the
aerial images. However, the discrepancy between the GT samples and the result of the
segmentation models may consequently decrease the accuracy metrics. The Segformer
model can effectively delineate the date palm trees that vary in size, shape, and density.
Notably, the model is powerful and was able to delineate small date palm trees that had
not been recognized by the analyst.
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per image.
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6. Conclusions

This study aimed to develop an end-to-end, reliable, and transferable deep learning
approach for the large-scale mapping of date palm trees from multiscale UAV-based and
multisource aerial images. The effectiveness of different deep vision transformers with
various model complexities was explored and examined for the delineation of date palm
trees, including the Segformer (MiT B2, B3, and B4), the Segmenter (ViT-tiny, ViT-small,
and ViT-base), the UperNet-Swin transformer (tiny, small, and base), and the DPT (ViT-
B). The semantic segmentation models were trained and evaluated on comprehensive
UAV-based and multidate aerial images. The generalization capability of the evaluated
vision transformers, which were developed on the UAV dataset, was examined on a
multiscale UAV dataset (with spatial resolutions ranging from 5 cm to 30 cm). Moreover,
the transferability of the vision transformer model to unseen UAV data that were acquired
at different geographical regions was assessed and compared with that of several state-of-
the-art CNN-based models.

The evaluated deep vision transformers showed promising results in mapping date
palm trees from UAV images, with an mIoU ranging from 85% to 86.3% and an mF-score
ranging from 91.62% to 92.44%. The Segformer model achieved the highest segmentation
results in the UAV testing dataset (mF-score of 92.44% and mIoU of 86.3%) and the multi-
scale testing dataset (mF-score of 92.11% and mIoU of 85.8%). Moreover, the Segformer
model, followed by the UperNet-Swin transformer, surpassed all of the evaluated CNN-
based models (including DeepLabV+, PSPNet, FCN-R50, and DANet) in the multiscale
and the independent testing datasets. The Segformer model not only produced remarkable
results in date palm tree mapping but was also among the models with a small number of
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parameters and low computational cost. Overall, the performance of the evaluated deep
vision transformers was comparable to the CNN-based models and demonstrated consider-
able generalization capabilities and transferability to different VHSR images. Deep vision
transformers can efficiently be used for the accurate mapping and delineation of date palm
trees from multidate and multiscale VHSR remotely sensed data, enabling the development
and update of databases for different studies, as well as the consistent monitoring of date
palm trees. Moreover, deep vision transformers can be efficiently utilized in segmentation
tasks in versatile earth-related applications.
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