Object Recognition of a GCP Design in UAS Imagery Using Deep Learning and Image Processing—Proof of Concept Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. GCP Design and Study Area
2.2. Methodology
2.2.1. Dataset Preparation, Augmentation, and Split
2.2.2. Object Detection Using RetinaNet50
2.2.3. Image Processing
3. Results and Discussion
3.1. Object Detection
3.2. Calculation of the GCP Center Point and Recognition of the ID
3.3. Evaluation in Agisoft Metashape
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALS | Airborne laser scanning |
AP | Average precision |
API | Application programming interface |
AR | Average recall |
CNN | Convolutional neural network |
DL | Deep learning |
DNN | Deep neural network |
FN | False negative |
FP | False positive |
FPN | Feature pyramid network |
GCP | Ground control point |
GPU | Graphics processing unit |
GSD | Ground sample distance |
HPC | High-performance computing |
IoU | Intersection of union |
NMS | Nonmaximal suppression |
noN | No detected number |
mAP | Mean average precision |
MS COCO | Microsoft Common Objects in Context |
OCR | Optical character recognition |
P | Precision |
R | Recall |
R-CNN | Region-based convolutional neural network |
RTK | Real-time kinematic |
SfM | Structure-from-Motion |
SSD | Single-shot detector |
TLS | Terrestrial laser scanning |
TP | True positive |
UAS | Unmanned aircraft system |
UAV | Unmanned aerial vehicle |
XML | Extensible markup language |
YOLO | You only look once |
References
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Analyse des Deutschen Drohnenmarktes. Available online: https://www.bdli.de/sites/default/files/global_upload_upload/Analyse%20des%20deutschen%20Drohnenmarktes.pdf (accessed on 5 December 2022).
- Neitzel, F.; Klonowski, J. Mobile 3D mapping with a low-cost UAV system. In Proceedings of the ISPRS Zurich 2011 Workshop, Zurich, Switzerland, 14–16 September 2011; Volume XXXVIII-1/C22, pp. 39–44. [Google Scholar]
- Küng, O.; Strecha, C.; Fua, P.; Gurdan, D.; Achtelik, M.; Doth, K.-M.; Stumpf, J. Simplified building models extraction from ultra-light uav imagery. In Proceedings of the ISPRS Zurich 2011 Workshop, Zurich, Switzerland, 14–16 September 2011; Volume XXXVIII-1/C22, pp. 217–222. [Google Scholar]
- Przybilla, H.-J.; Bäumker, M. Untersuchungen zur Qualität des Realtime Kinematic GNSS Systems der DJI Phantom 4 RTK. In Proceedings of the 40th Wissenschaftlich-Technische Jahrestagung der DGPF, Stuttgart, Germany, 4–6 March 2020; pp. 47–61. [Google Scholar]
- Mian, O.; Lutes, J.; Lipa, G.; Hutton, J.; Gavelle, E.; Borghini, S. Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points. In Proceedings of the International Conference on Unmanned Aerial Vehicles in Geomatics, Toronto, Canada, 30 August–2 September 2015; Volume XL-1/W4, pp. 397–402. [Google Scholar]
- Gerke, M.; Przybilla, H.J. Accuracy analysis of photogrammetric UAV image blocks: Influence of onboard RTK-GNSS and cross flight patterns. Photogramm. Fernerkund. Geoinf. 2016, 1, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Przybilla, H.J.; Bäumker, M.; Luhmann, T.; Hastedt, H.; Eilers, M. Interaction between direct georeferencing, control point configuration and camera self-calibration for RTK-Based UAV photogrammetry. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 485–492. [Google Scholar] [CrossRef]
- Aicardi, I.; Dabove, P.; Lingua, A.M.; Piras, M. Integration between TLS and UAV photogrammetry techniques for forestry applications. Iforest Biogeosci. For. 2016, 10, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Son, S.W.; Kim, D.W.; Sung, W.G.; Yu, J.J. Integrating UAV and TLS Approaches for Environmental Management: A Case Study of a Waste Stockpile Area. Remote Sens. 2020, 12, 1615. [Google Scholar] [CrossRef]
- Abdelazeem, M.; Elamin, A.; Afifi, A.; El-Rabbany, A. Multi-sensor point cloud data fusion for precise 3D mapping. Egypt. J. Remote Sens. Space Sci. 2021, 24, 835–844. [Google Scholar] [CrossRef]
- Zang, Y.; Yang, B.; Li, J.; Guan, H. An Accurate TLS and UAV Image Point Clouds Registration Method for Deformation Detection of Chaotic Hillside Areas. Remote Sens. 2019, 11, 647. [Google Scholar] [CrossRef] [Green Version]
- Janßen, J.; Medic, T.; Kuhlmann, H.; Holst, C. Decreasing the Uncertainty of the Target Center Estimation at Terrestrial Laser Scanning by Choosing the Best Algorithm and by Improving the Target Design. Remote Sens. 2019, 11, 845. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Li, Y.; Dong, H.; Li, H.; Zhang, X.; Zhang, B.; Xiao, Z. Multi-block SSD based on small object detection for UAV railway scene surveillance. Chin. J. Aeronaut. 2020, 33, 1747–1755. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Christian, S.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Walambe, R.; Marathe, A.; Kotecha, K. Multiscale Object Detection from Drone Imagery Using Ensemble Transfer Learning. Drones 2021, 5, 66. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ybat—YOLO BBox Annotation Tool. Available online: https://github.com/drainingsun/ybat (accessed on 9 December 2022).
- Everingham, M.; Gool, L.V.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- TensorFlow 2 Detection Model Zoo. Available online: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md (accessed on 28 November 2022).
- TensorFlow Object Detection API. Available online: https://github.com/tensorflow/models/tree/master/research/object_detection (accessed on 28 November 2022).
- Fleury, D.; Fleury, A. Implementation of Regional-CNN and SSD Machine Learning Object Detection Architectures for the Real Time Analysis of Blood Borne Pathogens in Dark Field Microscopy. Preprints 2018, 2018070119. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Jaccard, P. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. De La Soc. Vaud. Des. Sci. Nat. 1901, 37, 547–579. [Google Scholar]
- Padilla, R.; Netto, S.L.; Da Silva, E.A.B. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; pp. 237–242. [Google Scholar]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Hough, P.V.C. Method and Means for Recognizing Complex Patterns. U.S. Patent US3069654A, 18 December 1962. [Google Scholar]
- Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close-Range Photogrammetry and 3D Imaging; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Laroca, R.; Barroso, V.; Diniz, M.; Gonçalves, G.; Schwartz, W.; Menotti, D. Convolutional Neural Networks for Automatic Meter Reading. J. Electron. Imaging 2019, 28, 13023. [Google Scholar] [CrossRef]
- Sarika, N.; Sirisala, N.; Velpuru, M.S. CNN based Optical Character Recognition and Applications. In Proceedings of the 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021; pp. 666–672. [Google Scholar]
- Le Cun, Y.; Cortes, C.; Burges, C.J.C. The MNIST Database of Handwritten Digits. 2012. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 8 December 2022).
- Baldominos, A.; Saez, Y.; Isasi, P. A Survey of Handwritten Character Recognition with MNIST and EMNIST. Appl. Sci. 2019, 9, 3169. [Google Scholar] [CrossRef]
Setting | Value |
---|---|
Exposure time | 1/1000 s |
ISO value | 200 |
Hyperfocal distance | 6 m |
Aperture | 7.1 |
Operation | Value | Description |
---|---|---|
Flip horizontally | - | Flip the image horizontally |
Flip vertically | - | Flip the image vertically |
Rotation | 180° | Rotate the image |
Model Name | Speed (ms) | COCO mAP | Output |
---|---|---|---|
SSD ResNet50 V1 FPN 1024 × 1024 (RetinaNet50) | 87 | 38.3 | Boxes |
COCO (%) | AP | AP50 | AP75 | AR1 | AR10 |
---|---|---|---|---|---|
Validation dataset | 76.2 | 98.0 | 89.3 | 53.2 | 83.6 |
Test dataset | 40.1 | 78.1 | 42.7 | 26.0 | 61.5 |
Image Name | Detected Number | Target Number | Δx, Δy (px) |
---|---|---|---|
DSC04416.jpg | 6|noN | 6|8 | −0.41, 0.59|−0.15, 0.16 |
DSC04417.jpg | noN|noN | 2|8 | 0.00, −0.57|0.09, 0.2 |
DSC04418.jpg | 2|noN | 2|8 | −0.17, 0.23|−0.32, 0.04 |
DSC04419.jpg | 3 | 3 | 0.27, 0.39 |
DSC04420.jpg | 2|3 | 2|3 | −0.16, −0.46|−0.82, −0.16 |
DSC04421.jpg | noN|noN | 2|8 | 0.24, −0.23|−0.3, 0.32 |
DSC04422.jpg | noN|noN | 5|8 | 0.02, 0.30|−0.26, 1.06 |
DSC04423.jpg | 6 | 5 | −0.2, 0.41 |
DSC04426.jpg | noN|noN | 3|8 | 0.75, −0.14|−0.49, 0.96 |
DSC04427.jpg | 3 | 3 | −0.35, 0.46 |
DSC04434.jpg | 3|5|noN | 3|5|8 | 0.29, 0.21|0.29, 0.15|0.49, −0.35 |
Total | 9 | 20 |
GCP | Projections | Picked GCP (px) | Picked GCP (cm) | Calculated GCP (px) | Calculated GCP (cm) |
---|---|---|---|---|---|
2 | 4 | 0.608 | 1.44 | 0.592 | 1.47 |
3 | 5 | 1.333 | 0.72 | 1.359 | 0.70 |
5 | 3 | 0.451 | 1.23 | 0.460 | 1.25 |
6 | 1 | 0.146 | 1.65 | 0.143 | 1.61 |
8 | 7 | 0.899 | 2.41 | 0.754 | 2.49 |
Total error | 0.912 | 1.59 | 0.874 | 1.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, D.; Klonowski, J. Object Recognition of a GCP Design in UAS Imagery Using Deep Learning and Image Processing—Proof of Concept Study. Drones 2023, 7, 94. https://doi.org/10.3390/drones7020094
Becker D, Klonowski J. Object Recognition of a GCP Design in UAS Imagery Using Deep Learning and Image Processing—Proof of Concept Study. Drones. 2023; 7(2):94. https://doi.org/10.3390/drones7020094
Chicago/Turabian StyleBecker, Denise, and Jörg Klonowski. 2023. "Object Recognition of a GCP Design in UAS Imagery Using Deep Learning and Image Processing—Proof of Concept Study" Drones 7, no. 2: 94. https://doi.org/10.3390/drones7020094
APA StyleBecker, D., & Klonowski, J. (2023). Object Recognition of a GCP Design in UAS Imagery Using Deep Learning and Image Processing—Proof of Concept Study. Drones, 7(2), 94. https://doi.org/10.3390/drones7020094