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Abstract: Chlorophyll a (chl-a) concentration is an important parameter for evaluating the degree of
water eutrophication. Monitoring it accurately through remote sensing is thus of great significance
for early warnings of water eutrophication, and the inversion of water quality from UAV images
has attracted more and more attention. In this study, a regression method to estimate chl-a was
proposed; it used a small multispectral UAV to collect data and took the vegetation indices as
intermediate variables. For this purpose, ten monitoring points were selected in Erhai Lake, China,
and two months of monitoring and data collection were conducted during a cyanobacterial bloom
period. Finally, 155 sets of valid data were obtained. The imaging data were obtained using a
multispectral UAV, water samples were collected from the lake, and the chl-a concentration was
obtained in the laboratory. Then, the images were preprocessed to extract the information from
different wavebands. The univariate regression of each vegetation index and the regression using
band information were used for comparative analysis. Four machine learning algorithms were used
to build the model: support vector machine (SVM), random forest (RF), extreme learning machine
(ELM), and convolutional neural network (CNN). The results showed that the effect of estimating the
chl-a concentration via multiple regression using vegetation indices was generally better than that via
regression with a single vegetation index and original band information. The CNN model obtained
the best results (R2 = 0.7917, RMSE = 8.7660, and MRE = 0.2461). This study showed the reliability of
using multiple regression based on vegetation indices to estimate the chl-a of surface water.

Keywords: chl-a; multiple regression; UAV; vegetation index; machine learning

1. Introduction

Since eutrophication began to appear in inland lakes in the 1930s, approximately
40–50% of lakes and reservoirs in the world have been affected by eutrophication to
varying degrees, and lake eutrophication has become one of the most intractable water
environmental problems [1]. Chlorophyll a (chl-a) concentration is an important indicator
to measure the abundance of phytoplankton in lake water and an important parameter to
determine water quality, biological status, and eutrophication degree [2,3]. Chl-a, which
is a photosynthetic pigment found in algae species [4], has been considered the largest
weighted factor to calculate the Carlson trophic state indices [5]. Assessments of the timing
and extent of algal biomass and eutrophication states in aquatic ecosystems may frequently
be performed using extensive long-term chl-a concentration measurements [6]. These
eutrophication insights can help us to understand primary production, biogeochemical
cycling, and overall inland water quality, which can result in environmental changes and
useful mitigation tactics [7,8].

Using remote sensing technology to measure a series of parameters indicating wa-
ter quality (temperature, transparency, turbidity, photosynthetic pigment concentration,
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colored dissolved organic matter, etc.), it was shown that this variability in aquatic ecosys-
tems can be effectively captured [9,10]. Data sources are mainly multispectral sensors
carried by satellites, such as Moderate Resolution Imaging Spectroradiometer (MODIS)
Aqua and Terra, Medium Resolution Imaging Spectrometer (MERIS), Operational Land
Imager (OLI), and Sentinel 2-A/B [11–19]. However, low spatial and temporal resolution,
atmospheric correction challenges, cloud cover, slow data–product turn-around times, and
the cost of some satellite products can limit the application of satellite remote sensors
for monitoring water quality in inland systems [20]. In addition, the concentration of
chl-a at the water surface varies at different times of the same day. It increases with the
temperature and is usually highest at noon. This also leads to space-time errors between
water sample data and satellite data during a study [21]. Unmanned aerial systems (UASs)
(remotely piloted remote sensing platforms, i.e., UAVs), show great potential for bridg-
ing the gap between in situ water sampling and satellite remote sensing. UASs collect
high-resolution aerial data with minimal atmospheric disturbance from cloud coverage,
allow flexible flight planning with rapid turn-around times, and are available in a variety
of wavelength combinations [22]. There are already many commercial UAVs equipped
with multiband and multispectral sensors, their performance is stable, and they can meet
daily monitoring needs.

In traditional chl-a remote sensing monitoring research, according to the different
reflectivities of chl-a in different spectral bands, some band algorithms for chl-a were
proposed, such as the single-band threshold, band interpolation algorithms, and band
ratio algorithms [23,24], which are simple and suitable for general estimation. The three-
band method [25,26] and four-band method [27] weaken the influence of turbid water
on chl-a and improve the accuracy of the model. However, the band algorithm requires
specific band data; therefore, it requires special multispectral or hyperspectral sensors. It is
widely used in satellite remote sensing monitoring, and large UAVs are required to carry
hyperspectral equipment in UAV monitoring.

With the development of artificial intelligence, machine learning has become an
important technology in remote sensing image processing [28–30], and has also been
widely used in water quality monitoring [31]. In many chl-a remote sensing monitoring
studies, Peterson et al. [32,33] used an extreme learning machine (ELM) to estimate chl-a
and obtained good results. An ELM also showed good performance in organic carbon
estimation [34]. Philipp M et al. used a convolutional neural network (CNN) to invert
chl-a and obtained promising results, which were better than those from the Bayesian
regularization (BR) algorithm model [35,36]. Many scholars have used support vector
machines (SVMs) and random forests (RFs) to estimate chl-a, and all of them achieved good
results [37–40]. The effect is better than that of the models established using artificial neural
networks (ANNs) [41,42], dynamic programming (DP) [43], generalized linear models
(GLMs) [44], and other algorithms. Therefore, we chose SVM, RF, ELM, and CNN to
be evaluated.

At present, the estimation model of chl-a is more established by using regression
of the band reflectivity [45–47]. In the monitoring of chl-a using a small multispectral
UAV, multiband multispectral sensors mainly include the red (R), green (G), blue (B), red-
edge (RE), and near-infrared (NIR) bands, which can be used to calculate the vegetation
indices to represent the concentration of chl-a. Based on G. Edna’s correlation analysis on
different vegetation indices and chl-a [48], this study proposed a method to estimate chl-a
concentration by using vegetation indices as an intermediate variable, which provided a
new idea for small multispectral UAV monitoring of chl-a.

In many studies of chl-a remote sensing inversion, many of them analyzed image data
through existing algorithms, but only used a small amount of data as validation, and lacked
a lot of actual data to support their claims [27,49]. Most of the regression algorithms used
to predict chl-a adopt the method of multiple sampling points in one experiment to collect
data, which has a small amount of data and is in the same environment [42,50]. The lack of
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long-term monitoring and data collection makes the performance of the model worse in
complex environments.

In light of this context, this study aimed to monitor the chl-a concentration and multi-
spectral data of Erhai Lake (Yunnan, China) for two months. The main objectives of this
study were as follows: (1) explore the feasibility of using vegetation indices as intermediate
variables to estimate the concentration of chl-a; (2) the effect of using vegetation indices as
an intermediate variable to estimate chl-a concentration was analyzed compared with that
of using single vegetation index and original variable; (3) analyze the applicability of SVM,
RF, ELM, and CNN machine learning algorithms in the estimation of chl-a concentration.

2. Materials and Methods
2.1. Study Area

The data collection area was located in the northwestern part of Erhai Lake, as shown
in Figure 1. Erhai Lake is located in Dali city, Yunnan Province, China (25◦36′–25◦58′

N, 100◦06′–100◦18′ E, 1972 m above sea level). It has an average depth of 10.5 m and a
surface area of about 251 km2. Since the 1990s, with the development of the social economy,
the disturbance from human activities has been increasingly aggravating Erhai Lake, its
water quality has deteriorated, a large number of aquatic plants have disappeared, and
the eutrophication of water has become gradually obvious, which has gradually degraded
the ecological environment of Erhai Lake [51]. The water quality of Erhai Lake is mainly
classified as class II in the dry season and class III in the rainy season, and large blooms
mainly occur around October.
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The concentration of chl-a in the northern coastal area of Erhai Lake was high in
previous years. However, the shore water is shallow, the grass is more abundant, and
the bottom color has a greater impact on measurements. Therefore, 100 m away from the
shore, one sampling point every 120 m and a total of 10 sampling and monitoring points
were selected.

2.2. Data Acquisition and Preprocessing

Multispectral image acquisition and lake water samples were collected from 10 moni-
toring sites over a total of 60 days between September and November 2021. Experiments
were conducted every three days. Due to rain and other weather-related reasons, a field ex-
periment was not possible, and images were affected by surface ships and wind; therefore,
the data were not sufficiently accurate. Therefore, a total of 18 experiments were conducted
and 155 groups of data were collected.

The Phantom 4 Multispectral (P4M) UAV produced by Dajiang Innovation Technology
Co., Ltd. (DJI), Shenzhen, China, was used in this study. DJI P4M and its multispectral
camera were used for image collection in this experiment. The multispectral sensor has a
six-camera array, including a high-definition color sensor and five monochrome sensors: R,
G, B, RE, and NIR. It has a light intensity sensor at the top that captures solar irradiance
and records it in image files. When the data is post-processed, the solar irradiance data can
be used for illumination compensation of the image to eliminate the interference of ambient
light on data acquisition; no whiteboard calibration was required. The specifications of DJI
P4M are shown in Table 1.

Table 1. DJI P4M UAV parameters.

Aircraft

Type Quadcopter
Position accuracy Vertical: ± 0.5 m; horizontal: ± 1.5 m
Take-off weight 1484 g

Time of flight About 27 min
Wind loading rating 10 m/s

Image position compensation Relative positions are compensated in
photo EXIF coordinates

Image sensor

Visible light channel Pixels: 2 million 80 thousand

Multispectral
sensor: all sensors
have 2 megapixels

G channel Spectral band: 450 ± 16 nm
B channel Spectral band: 560 ± 16 nm
R channel Spectral band: 650 ± 16 nm

RE channel Spectral band: 730 ± 16 nm
NIR channel Spectral band: 840 ± 26 nm

Data from DJI website; http://www.dji.com/cn/p4-multispectral/specs (accessed on 30 September 2022).

The flight path was delimited on DJI GS Pro software to pass through each monitoring
point. The flight altitude was 10 m, the camera angle was −90◦, and the exposure was
automatic. The resolution of the photos obtained was 1600 × 1300, with an accuracy of
approximately 0.53 cm/pixel.

Each experiment began at 1 p.m. when temperatures were the highest and the chl-a
concentrations were the highest throughout the day. First, the UAV flew according to the
predetermined route to obtain multispectral images. Then, water sample collection was
carried out. Water samples were collected at a depth of 20 cm from the surface of the water
using a water sampler. Finally, the water quality parameters (chl-a concentration, turbidity,
and water temperature) of the water samples were tested in the laboratory.

For the water samples, we used the chl-a concentration module of the HX-200 multi-
parameter controller produced by Beijing Hongxinhengce Technology Co., Ltd. (Beijing,
China) to analyze the chl-a concentration. It makes use of the characteristics of chl-a with
absorption peaks and reflection peaks in the spectrum. The monochromatic light at the
absorption peak band of the chl-a spectrum was emitted into the water. The chl-a in
the water absorbs the energy of the light and reflects monochromatic light with another

http://www.dji.com/cn/p4-multispectral/specs
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wavelength. The light intensity reflected by chl-a is directly proportional to the content of
chl-a in the water, which is used to calculate the concentration of chl-a.

To collect higher-resolution images, the UAV was flown at a lower altitude and the
surface of the lake would ripple under the influence of the wind, causing the image to be
affected by the reflection of light. Therefore, the main processing of the image was the
extraction and removal of reflective areas. Finally, the data from non-reflective areas were
determined to reduce the influence of reflection on the results.

The fuzzy C-means (FCM) algorithm is a common clustering algorithm based on
the fuzzy theory introduced by J. C. Birdek [52]. It maximizes the similarity of data
objects within classes and minimizes the similarity of data objects between classes. It is an
improvement on the traditional C-means clustering. It divides the samples according to
the degree of the image pixels belonging to the clustering center and has been widely used
in image segmentation. The reflective area extraction effect of the FCM algorithm is shown
in Figure 2.
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Figure 2. Extraction of the reflective area of the image: (a) original visible light image and
(b) reflection area extraction effect image.

After the extraction of the reflective region in the visible image, the non-reflective
region was covered on the multispectral band image using a mask, and the non-reflective
region of the multispectral band image was extracted. Then, the gray value of each
multispectral band image was extracted and all gray values of each image were averaged.
Finally, the reflectance of different bands was calculated according to the gray value.

2.3. Vegetation Index

According to the vegetation indices (band ratio algorithm) containing the five bands
R, G, B, RE, and NIR in relevant studies, 28 common vegetation indices with formulas were
finally selected for this research, among which 14 contained only the RGB visible band and
14 contained the RE or NIR band. The vegetation indices and their formulas are shown in
Table 2.
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Table 2. Vegetation indices and their formulas and value ranges.

Vegetation Index Formula Value Range

Normalized difference vegetation index [49] NDVI = (NIR− R)/(NIR + R) [−1,1]
Normalized difference vegetation structure index [53] NDVSI = (NIR− (R + G)/2)/(NIR + (R + G)/2) [−1,1]

Normalized green–blue difference index [54] NGBDI = (G− B)/(G + B) [−1,1]
Normalized green–red difference index [54] NGRDI = (G− R)/(G + R) [−1,1]

Ratio normalized difference vegetation index [55] RNDVI = ((NIR− R)/(NIR + R)) ∗ (NIR/R) (−∞, +∞)
Ratio vegetation index [56] RVI = NIR/R (0, +∞)

Red–green–blue vegetation index [57] RGBVI =
(
G2 − R ∗ B

)
/
(
G2 + R∗B

)
[−1,1]

Red-edge chlorophyll index [58] CIREDEDGE = (NIR/RE)− 1 [−1, +∞)
Red–green ratio index [54] RGRI = R/G (0, +∞)

Visible atmospherically resistant index [59] VARICREEN = G− R/G + R− B (−∞, +∞)
Visible band difference vegetation index [54] VDVI = (2 ∗ G− R− B)/(2 ∗ G + R + B) [−1,1]

Vegetative [60] VEG = G/
(

Ra ∗ B1−a)(a = 0.667) (−∞, +∞)
Blue–green ratio index [61] BGRI = B/G (−∞, +∞)

ENGBDI [61] ENGBDI =
(
G2 − B2)/(G2 + B2) [−1,1]

Two-band enhanced vegetation index [62] EVI2 = (2.5 ∗ (NIR− R))/(NIR + 2.4 ∗ R + 1) [−0.71,1.25]
Blue normalized vegetation index [63] BNDVI = (NIR− B)/(NIR + B) [−1,1]

Color index of vegetation extraction [64] CIVE = 0.441 ∗ R− 0.881 ∗ G + 0.385 ∗ B + 18.787 [17.906,19.586]
Difference vegetation index [65] DVI = NIR− R [−1,1]

Enhanced normalized difference vegetation index [66] ENDVI = (NIR + G− 2 ∗ B)/(NIR + G + 2 ∗ B) [−1,1]
Excess green index [54] EXG = 2 ∗ G− R− B [−2,2]

Excess green minus excess red [54] EXGR = EXG− 1.4 ∗ R− G [−4.4,2]
Green chlorophyll index [58] CIGREEN = (NIR/G)− 1 [−1, +∞)

Green normalized difference vegetation index [67] GNDVI = (NIR− G)/(NIR + G) [−1,1]
Green–red ratio index [68] GRRI = G/R (0, +∞)

KIVU [69] KIVU = (B− R)/G (−∞, +∞)
Modified simple ratio red edge [70] MSRRE = ((NIR/RE)− 1)/((NIR/RE) + 1) (−1,1)

Modified single ratio [67] MSR = ((NIR/R)− 1)/((NIR/R) + 1) (−1,1)
Normalized difference red-edge index [71] NDRE = (NIR− RE)/(NIR + RE) [−1,1]

B, blue; G, green; NIR, near-infrared; R, red; RE, red edge. Data from the IDB website; https://www.indexdatabase.
de/ (accessed on 25 August 2022).

2.4. Modeling Techniques

The algorithms used for image preprocessing and regression in this study were all
completed in MATLAB software, version 2019a. The parameters in the following models
were the results after the gradient test.

2.4.1. Support Vector Machine (SVM)

An SVM is a kind of generalized linear classifier that classifies bivariate data according
to supervised learning. Its decision boundary is a hyperplane with a maximum margin to
solve the learning samples, and the problem can be transformed into a convex quadratic
programming problem [72]. Compared with logistic regression and neural networks,
support vector machines provide a clearer and more powerful way to learn complex
nonlinear equations. The optimization problem of an SVM considers both empirical
risk and structural risk minimization; therefore, it is stable. An SVM is mainly used for
classification and regression analysis. The main parameters of the SVM model in this study
were as follows: SVM type(-s), 3 (epsilon-SVR); kernel type(-t), 2 (radial basis function);
cost(-c), 2.2; gamma(-g), 2.8; epsilon(-p), 0.01. The main parameters of the vegetation index
univariate regression, original variable multiple regression, and vegetation indices multiple
regression models remained the same.

2.4.2. Random Forest (RF)

In 2001, Leo Breiman combined classification trees into an RF, that is, the use of
variables and data were randomized to obtain a certain number of classification trees. Then,
the results of the classification trees were summarized, and the random forest algorithm
was proposed [73]. An RF is a type of ensemble learning. Ensemble learning is a very

https://www.indexdatabase.de/
https://www.indexdatabase.de/
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popular machine learning strategy, and almost all problems can be improved by using its
ideas, and it is more stable when analyzing small sample data. The basic starting point is to
gather algorithms and various strategies together. Ensemble learning can be used for both
classification problems and regression problems, and it is often seen in the field of machine
learning. The main parameters of the RF model in this study were as follows: leaf, 5; tree,
500. The main parameters of the vegetation index univariate regression, original variable
multiple regression, and vegetation indices multiple regression models remained the same.

2.4.3. Extreme Learning Machine (ELM)

An ELM is a kind of machine learning system or method based on a feedforward
neural network (FNN), which is suitable for both supervised and unsupervised learning
problems [74]. The most significant feature of an ELM is that the input weights and the bias
of hidden nodes are randomly generated within a given range, which was shown to have
high learning efficiency and strong generalization ability. The main purpose of training is
to solve the weights of the input layer. An ELM is widely used in classification, regression,
clustering, feature learning, and other problems [75]. The main parameters of the ELM
model in this study were as follows: number of hidden neurons (N), 30; transfer function
(TF), sig (sigmoidal function); type, 0 (regression). The main parameters of the vegetation
index univariate regression, original variable multiple regression, and vegetation indices
multiple regression models remained the same.

2.4.4. Convolutional Neural Networks (CNN)

A CNN is a class of feedforward neural networks with a deep structure and convolu-
tional computation, which is one of the representative algorithms of deep learning [76]. A
CNN imitates biological visual perception mechanism construction, which can carry out
supervised learning and unsupervised learning. The convolution kernel parameter shares
in the hidden layers and the sparsity of the connections between layers allow the CNN
to use grid-like topological features with less computation. The main parameters of the
CNN model in this study were as follows. In the univariate regression of the vegetation
index, only the final regression layer was used. The multiple regression model included
one convolution layer, one pooling layer, and two fully connected layers. Convolution
layer: convolution kernel size, 3 × 1; step length, 16; podding, same. Pooling layer: pool
kernel size, 2 × 1; step length, 2. The number of neurons in the two fully connected layers:
both were 9 in the original multivariate regression model; in the multivariate regression
model of vegetation indices, both were 52. Training parameters: epoch, 50; batch size, 4;
learn rate, 0.005. The training parameters of all CNN models were the same.

2.5. Modeling Strategy and Validation Metrics

In this study, the performance of the model was evaluated using the coefficient of
determination (R2) [56], root-mean-square error (RMSE) [57], and mean relative error
(MRE) [51], where the related formulas are as follows:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (2)

MRE =
∑n

i=1
ŷi−yi

yi

n
(3)

where yi is the measured value, ŷi is the predicted value, y is the average of the measured
values, and n denotes the number of samples.

The larger the R2 and the smaller the RMSE and MRE, the better the model performance.
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2.6. Data Analysis

The maximum, minimum, median, mean, and standard deviation of the observed
chl-a concentration data were analyzed statistically. Furthermore, the significance analysis
of the estimated concentration of chl-a was carried out. The software used was IBM SPSS
Statistics (v. 25.0).

3. Results
3.1. Descriptive Statistics

To build and test the model, the total dataset was randomly divided into a training set
and a test set. In this study, the Rand perm function was used for random classification.
The original ratio was 3:1, but the number cannot contain decimals, and considering the
convenience of calculation and statistics, the number of training sets was 120, and the
rest were test sets. The statistical values of the training and test datasets for the chl-a
concentration estimation are shown in Table 3. The datasets were analyzed using the
maximum, minimum, median, mean, and standard deviation. According to the data in
Table 3, the distribution of the whole dataset and training and testing datasets was similar.
Therefore, the training set and test set could be used to establish the model and test the
model accuracy.

Table 3. Descriptive statistics of the whole dataset, training dataset, and test dataset.

Dataset Sample
Size

Maximum
(µg/L)

Minimum
(µg/L)

Median
(µg/L)

Mean
(µg/L)

Standard Deviation
(µg/L)

Whole dataset 155 84.74 8.03 19.26 24.89 15.12
Training dataset 120 81.32 8.03 18.67 23.63 13.68

Test dataset 35 84.74 11.75 23.62 29.23 18.65

3.2. Univariate Regression Results of Vegetation Indices

Table 4 shows the test results of the univariate regression model established using the
four algorithms on 28 vegetation indices. According to the analysis of the best results of
each vegetation index among the four algorithms, there were 10 vegetation indices with R2

values greater than 0.5 (9 of which contained NIR bands), 6 of which were between 0.3 and
0.5, and 12 of which were less than 0.3. The DVI achieved the best results using the ELM
model (R2 = 0.6923). In the univariate regression of the vegetation index, the ELM achieved
the best results in most vegetation index regressions, especially when the R2 values were
greater than 0.5. The second was the RF, which performed better than the CNN and SVM
in most cases.

Table 4. Coefficient of determination (R2) values of vegetation index univariate regression.

Vegetation
Index SVR RF ELM CNN

NDVI 0.4649 ** 0.5760 ** 0.4783 ** 0.4246 **
NDVSI 0.3799 * 0.4865 ** 0.5660 ** 0.3701 *
NGBDI 0.0571 0.3313 * 0.2453 * 0.0612
NGRDI 0.0005 0.4952 ** 0.2711 * 0.0002
RNDVI 0.6063 ** 0.5762 ** 0.5742 ** 0.6111 **

RVI 0.5863 ** 0.5746 ** 0.4573 ** 0.5080 **
RGBVI 0.0354 0.0312 0.0123 0.0348

CIREDEDGE 0.0468 0.0062 0.0088 0.0408
RGRI 0.0038 0.4723 ** 0.1863 0.0013

VARIGREEN 0.0142 0.1536 0.2286 * 0.0008
VDVI 0.0356 0.0073 0.0029 0.0355
VEG 0.0172 0.0396 0.1450 0.0161
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Table 4. Cont.

Vegetation
Index SVR RF ELM CNN

BGRI 0.0577 0.3520 * 0.4116 * 0.0732
ENGBDI 0.0490 0.3525 * 0.3511 * 0.0625

EVI2 0.4439 ** 0.5758 ** 0.5200 ** 0.4395 *
BNDVI 0.2685 ** 0.2907 * 0.2730 * 0.2663 *
CVIE 0.0842 0.0086 0.0003 0.0842
DVI 0.4282 * 0.6057 ** 0.6923 ** 0.4249 *

ENDVI 0.1299 0.1461 0.1071 0.1297
EXG 0.0682 0.0001 0.0001 0.0682

EXGR 0.5798 ** 0.6030 ** 0.6794 ** 0.5800 **
CIGREEN 0.3376 * 0.3194 * 0.6213 ** 0.3516 *

GNDVI 0.2982 * 0.3310 * 0.6235 ** 0.3128 *
GRRI 0.0030 0.4883 ** 0.1844 0.0001
KIVU 0.0470 0.0506 0.2461 * 0.0465

MSRRE 0.0435 0.0058 0.0048 0.0418
MSR 0.4649 ** 0.5832 ** 0.4835 ** 0.4246 **

NDRE 0.0435 0.0052 0.0048 0.0418
Levels of significance: * p-value < 0.05; ** p < 0.01.

3.3. Original Band Reflectance Regression Results

We used data from the five original bands as independent variables for regression as a
reference, and the results are shown in Table 5. The results showed that the ELM model
achieved the best results (R2 = 0.7202, RMSE = 8.3023, and MRE = 0.2728), and in terms
of the R2, RMSE, and MRE values, the results were significantly better than the models
established by other algorithms.

Table 5. Original band reflectance regression results.

Algorithm R2 RMSE (µg/L) MRE

SVM 0.6753 ** 9.0535 0.2907
RF 0.6426 ** 10.0772 0.3084

ELM 0.7202 ** 8.3023 0.2728
CNN 0.6598 ** 9.6963 0.3040

Level of significance: ** p < 0.01.

3.4. Multiple Regression Results of the Vegetation Indices

First, linear correlation analysis was conducted between the vegetation indices and
the chl-a concentration (represented by R2), and the analysis results are shown in Figure 3.
The figure shows that the variable with the highest correlation was the RNDVI, and its R2

value was 0.3435. The RNDVI was originally developed to differentiate between vegetation
and soil to estimate crop growth without the need to measure near-infrared wavelengths,
and it is not typically included in UAS aquatic ecosystem monitoring studies. There
were 12 variables with correlations greater than 0.1, among which 11 vegetation index
formulas required NIR band data. Moreover, the 10 vegetation indices with R2 values
greater than 0.5 in the univariate regression of the vegetation indices were all in the above
12 vegetation indices.

To explore the difference between the effects of multiple regression with the vegetation
indices as the independent variable and univariate regression with the vegetation index,
28 planting indices were used as the independent variables; the multiple regression results
of the model that was established using the four regression algorithms are shown in
Table 6. The results showed that the CNN model achieved the best results (R2 = 0.7917,
RMSE = 8.7660, and MRE = 0.2461), followed by the ELM model, RF model, and SVM
model. The results of the evaluation indices R2, RMSE, and MRE values, were consistent
with the above conclusions.
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Table 6. Results of the multiple regression of the vegetation indices.

Algorithm R2 RMSE (µg/L) MRE

SVM 0.5800 ** 12.4570 0.2894
RF 0.7086 ** 10.3713 0.2891

ELM 0.7810 ** 9.5050 0.2576
CNN 0.7917 ** 8.7660 0.2461

Level of significance: ** p < 0.01.

The results of the multiple regression test data of the vegetation indices are shown
in Figure 4. As seen from the figure, the dispersion degree increased with decreasing R2

values, the CNN model was the most stable, and the dispersion degree was the lowest.
Because there were fewer data with high concentrations, the prediction results of the model
with high concentrations were not as good as those with low concentrations. In particular,
the SVM model had poor performance when predicting high concentrations.

Finally, we used the combination of vegetation indices and original band data as
independent variables for regression, and the results are shown in Table 7. The best
performance was from the CNN model (R2 = 0.7710, RMSE = 9.1317, and MRE = 0.2485),
but its performance was inferior to that of the vegetation index multiple regression model.

Table 7. Multivariate regression results of the vegetation index and original band information.

Algorithm R2 RMSE (µg/L) MRE

SVM 0.5489 ** 12.8715 0.2963
RF 0.7065 ** 10.3394 0.2904

ELM 0.7299 ** 9.9185 0.2751
CNN 0.7710 ** 9.1317 0.2485

Levels of significance: ** p < 0.01.
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In general, compared with the univariate regression of the vegetation index and the
original band information regression, the effect of the multiple regression of the vegetation
indices was significantly improved. Among the different algorithms, ELM displayed the
best performance in the univariate regression of the vegetation index using band informa-
tion regression, and the CNN displayed the best performance in the multiple vegetation
indices variable regression. The CNN multivariate model based on the vegetation in-
dices achieved the best results among all the models (R2 = 0.7917, RMSE = 8.7660, and
MRE = 0.2461).

4. Discussion
4.1. Correlation between Vegetation Index and Chl-a

Many multiband multispectral sensors are specifically designed to record the peak
reflectance and absorption characteristics of chl-a. The band of the multispectral sensor of
the DJI P4M UAV used in this study has some similarities with the characteristic band of
chl-a. Studies using UAVs and satellites to monitor water quality also found that vegetation
indices including red and near-infrared bands, such as the RVI and NDVI, perform well
when estimating chl-a [77,78]. In the univariate regression of the vegetation index in this
study, the ELM model of the vegetation index DVI achieved the best result (R2 = 0.6923), and
the regression results of RVI and NVDI were also greater than 0.5. The DVI is mainly used to
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detect vegetation growth status and vegetation coverage; the NDVI is the most widespread
vegetation index and it can reflect the background influences of the plant canopy, such as
soil and dead leaves [79]; and the RVI is very sensitive to vegetation coverage. Moreover,
there were 10 vegetation indices with R2 values greater than 0.5, of which 9 contained the
NIR band and 7 contained the NIR and R bands. This was also consistent with the results
that water with a higher chl-a concentration is significantly different from ordinary water
in the NIR band [80]. The importance of the NIR band in the results also suggested that
UAVs equipped with multispectral sensors have advantages in chl-a estimation over UAVs
equipped with ordinary HD cameras. In this study, the DVI achieved the best results, but
there were slight differences in the best-realized vegetation index among different studies,
which indicated that the vegetation indices could produce different results when using
data under different circumstances; therefore, it was not rigorous enough to use a single
vegetation index to represent the concentration of chl-a.

4.2. Improvement of the Chl-a Estimation Effect Using Multiple Regression of Vegetation Indices

In the multiple regression of the vegetation indices, the CNN model achieved the
best result (R2 = 07917, RMSE = 8.7660, and MRE = 0.2461). Compared with the wave
segment reflectance, the effect of multiple regression was significantly improved. In
addition, among the models established by the four algorithms, only the accuracy of the
SVM model decreased (R2 decreased by 0.0073), while the accuracy of the other algorithm
models increased, among which the R2 values of the RF increased by 0.0660 and the
R2 values of the ELM increased by 0.0608. In particular, the effect of the CNN model
was significantly improved (R2 values increased by 0.1319). This indicated that using
the vegetation indices as an intermediate variable could explore more information in the
data and increase the number of features, which was more conducive to the regression
model established by the machine learning algorithm, thus improving the chl-a regression
effect. The linear correlation analysis results between the vegetation indices and chl-a
concentration showed that the R2 value of the RNDVI was the largest (R2 = 0.3435) and
the correlation was generally small; therefore, it is not reliable to use a single vegetation
index to represent the chl-a concentration. By using vegetation index univariate regression,
there was a nonlinear relationship between the chl-a concentration and R2 values that were
significantly improved, but the effect of using vegetation indices multiple regression was
better. This also showed that a single vegetation index had many features that could not
be involved, and the multiple regression of multiple vegetation indices could enrich these
features and make the regression estimation more accurate. Using the combination of
vegetation indices and original band data as independent variables, the results showed that
the performance was lower than that of the multivariate regression of vegetation indices.
It showed that this combination produced some redundancy, resulting in poor model
performance. The multivariate regression of vegetation indices was the most suitable for
the estimation of chl-a concentration with multispectral data.

Compared with satellites and UAVs equipped with hyperspectral sensors, small
multispectral UAVs are easy to operate and save labor and material costs. In the estimation
of chl-a with hyperspectral data, most of them used the characteristic bands of chl-a for
regression [22,38,78,81]. However, since the band of multispectral data is not completely
the same as the characteristic band of chl-a, it becomes the best choice to estimate the
concentration of chl-a via regression using vegetation indices as the intermediate variable.

4.3. Adaptability of the Algorithm

In the results of univariate regression using the vegetation indices and multiple re-
gression using band reflectance, the ELM algorithm outperformed the other algorithms.
The ELM has a single hidden layer and is considered better than other shallow learning
systems, such as the SVM, in terms of the learning rate and generalization ability [74].
When using the vegetation indices for multiple regression, the CNN model achieved the
best results. In univariate regression, since the single variable could not be convolved, only
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the regression layer was used in the CNN algorithm, and its effect was worse than that of
other algorithms. When using the vegetation indices for multiple regression, 28 vegetation
indices were convolved and, finally, regression was performed. It provided better results
than the other algorithms. This shows that when the number of features was large, the
CNN could better extract effective features and improve the regression results [82]. An
SVM and RF have a certain degree of robustness but do not have a deep structure; in
the face of complex situations, the effect will be worse, but is suitable for small-sample
analysis [83,84]. A CNN has an automatic feature extraction capability, which is more
suitable for analysis in complex situations [85].

4.4. Deficiency and Prospects

In this study, the vegetation indices were used as an intermediate variable to estimate
the concentration of chl-a. After verification, this method was more suitable for small
multi-spectral UAVs monitoring the concentration of chl-a. In this study, the concentration
of chl-a was mainly below 50 µg/L, and there were few data above 50 µg/L. Therefore, the
high-concentration data were slightly insufficient in the model training, which could lead
to greater error in the prediction of high concentrations compared with low concentrations.
In the future, more data will be added to increase the model performance. In this study,
28 vegetation indices were used for analysis. The use of hyperspectral sensors that have
a higher spectral resolution can also be considered for use. In this way, more vegetation
indices can be calculated [86] so that the chl-a estimation model displays better performance
in complex environments.

5. Conclusions

To explore the method of chl-a estimation for small multispectral UAVs, this study
proposed a multiple regression method using the vegetation indices as an intermediate
variable. Then, the FCM clustering segmentation algorithm was used to extract and remove
the reflective area in the image, and then the gray value of other areas of the image was
extracted and the mean value was taken. The next step was to calculate the reflectance
according to the extracted gray value to calculate 28 vegetation indices. Then, the calculated
vegetation index was used as the independent variable and the detected chl-a was used as
the dependent variable, and the data set was divided into the training set and the test set
using random classification. Finally, the data sets were established and tested using SVM,
RF, ELM, and CNN regression algorithms, and R2, RMSE, and MRE were used to evaluate
the model performance to identify the model with the best performance. The univariate
regression of the vegetation index and the multiple regression of the original band data
were used as references. Using the above process, the following findings were obtained in
this study:

(1) It was feasible to establish a chl-a regression estimation model with the vegetation
indices as an intermediate variable. Moreover, compared with the previous regression
estimation using band data and using a single vegetation index to express chl-a
concentration, the effect was significantly improved.

(2) Previous studies found that, due to different data and other reasons, when a single
vegetation index is used to represent chl-a, the best-performing vegetation index is
not completely consistent. The best-performing vegetation index in this study was
the DVI, which was different from many studies. Therefore, it is not reliable to use
a single vegetation index to represent the chl-a concentration. Only by combining
multiple vegetation indices can we find more features in the data and make the results
more convincing.

(3) The ELM model displayed the best performance in the univariate regression of the
vegetation index and multiple regression of the original band data. In the multiple
regression of the vegetation indices, the CNN model obtained the best results. There-
fore, in the case of univariate regression and fewer variables, the ELM could analyze
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data better and faster. In the case of more variables, the CNN could better utilize the
advantages of the convolutional layer and extract more features from the data.
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