
Citation: Xie, L.; Feng, X.; Zhang, C.;

Dong, Y.; Huang, J.; Cheng, J. A

Framework for Soil Salinity

Monitoring in Coastal Wetland

Reclamation Areas Based on

Combined Unmanned Aerial Vehicle

(UAV) Data and Satellite Data. Drones

2022, 6, 257. https://doi.org/

10.3390/drones6090257

Academic Editor: Fei Liu

Received: 8 August 2022

Accepted: 13 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Framework for Soil Salinity Monitoring in Coastal Wetland
Reclamation Areas Based on Combined Unmanned Aerial
Vehicle (UAV) Data and Satellite Data
Lijian Xie, Xiuli Feng *, Chi Zhang, Yuyi Dong, Junjie Huang and Junkai Cheng

Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China
* Correspondence: fengxiuli@nbu.edu.cn; Tel.: +86-1342-932-2315

Abstract: Soil salinization is one of the most important causes of land degradation and desertification,
often threatening land management and sustainable agricultural development. Due to the low
resolution of satellites, fine mapping of soil salinity cannot be completed, while high-resolution
images from UAVs can only achieve accurate mapping of soil salinity in a small area. Therefore,
how to realize fine mapping of salinity on a large scale based on UAV and satellite data is an urgent
problem to be solved. Therefore, in this paper, the most relevant spectral variables for soil salinity
were firstly determined using Pearson correlation analysis, and then the optimal inversion model
was established based on the screened variables. Secondly, the feasibility of correcting satellite data
based on UAV data was determined using Pearson correlation analysis and spectral variation trends,
and the correction of satellite data was completed using least squares-based polynomial curve fitting
for both UAV data and satellite data. Finally, the reflectance received from the vegetated area did not
directly reflect the surface reflectance condition, so we used the support vector machine classification
method to divide the study area into two categories: bare land and vegetated area, and built a model
based on the classification results to realize the advantages of complementing the accurate spectral
information of UAV and large-scale satellite spectral data in the study areas. By comparing the
modeling inversion results using only satellite data with the inversion results based on optimized
satellite data, our method framework could effectively improve the accuracy of soil salinity inversion
in large satellite areas by 6–19%. Our method can meet the needs of large-scale accurate mapping,
and can provide the necessary means and reference for soil condition monitoring.

Keywords: sentinel-2A; unmanned aerial vehicles; soil salinity; classification; inversion

1. Introduction

In recent years, the concentration of soluble salts in the surface or near-surface soil
layers and their distribution range has increased in some areas due to both natural and
anthropogenic factors [1]. This increase in soil salinity poses a serious threat to agricultural
activities, vegetation growth, biodiversity, and sustainable development [2–4]. Having
up-to-date information on spatial distribution and severity of soil salinity is essential for
agricultural management of affected areas. Researchers estimate that about 950 million ha
of land are subjected to soil salinization at the global scale and this area is expanding at a
speed of 2.00 × 106 ha per year [5,6]. High salt concentrations in soils accelerate the process
of land degradation and decrease crop yields and agricultural production.

In China in particular, saline soils cover 34 million square kilometers and are unevenly
distributed in several regions [7]. Among them, the coastal mud flats along the south coast
of Hangzhou Bay are an important reserve resource of wetlands and arable land. Due to the
accelerated urbanization, some land resources have been abused, resulting in the reduction
of arable land resources. To supplement cultivated land resources, some seabed reclamation
areas have been developed. However, the soil type in the initial stage of reclamation is
mainly saline-alkali land, which generally requires a long period of soil improvement
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before it can be used normally. Hence, accurately, and rapidly obtaining information
related to regional soil salinization and its geographical distribution is a prerequisite for
the agricultural utilization of salinized soil.

Traditional methods of soil salinity measurement usually rely on costly field soil
sample collection and laboratory instrument analysis that make frequent large-scale soil
salinity monitoring difficult [8–10]. Because of this, satellite platforms that can provide
massive quantities of information over large spatial areas at low cost and at frequent
intervals have gradually replaced traditional soil salinity monitoring methods [11,12].
However, satellites also have their own disadvantages, such as fixed orbits and long revisit
periods, and satellite data suffer from atmospheric effects and especially from low spatial
resolution. This makes it difficult to perform high-precision, real-time inversions in the
field using satellite monitoring [13].

As a new remote sensing platform, UAVs have the advantages of high time efficiency,
high spatial resolution, low altitude flight under clouds, and high mobility, etc. They can
quickly and accurately complete the task of monitoring salinity in a given area [14,15].
Compared with satellites, UAVs have shortcomings in monitoring soil salinity on a large
scale, however, and are not permitted in certain areas due to privacy concerns. Although
an inversion model based on UAV imagery boasts a higher accuracy, satellite remote
sensing remains the best source of basic imagery when acquiring information over a large
region [16]. Therefore, combining the high spatial resolution of UAV remote sensing
with the large-scale monitoring of satellite remote sensing to achieve high-precision and
large-scale soil salinity monitoring has become a hot issue in current research.

For saline cultivated land covered with crops, it is impossible to obtain the spectral
reflectance of a soil surface directly by the UAV multispectral camera, as would be the case
with bare ground. Therefore, to improve the inversion accuracy of soil salt in cultivated land,
many studies have introduced the spectral index. Dong et al. developed five soil salinity
inversion models for different soil moisture levels (drought levels) to evaluate regional
soil salinity conditions based on the canopy response salinity index (CRSI), normalized
vegetation index (NDVI), and automatic water extraction index (AWEI) derived from
Landsat TM -8 OLI images [17]. Similarly, Wang et al. constructed cubist and partial
least square regression (PLSR) models for regional soil salinity inversion using various
relevant covariates (e.g., terrain attributes, remotely sensed spectral indices of vegetation
and salinity from the landsat8 OLI satellite) on electrical conductivity (EC) [18].

Although remote-sensing-based regression models are sensor dependent since differ-
ent sensors have distinct spectral channels, performing spectral index analysis operations
can effectively improve the sensitivity of the surface observation data to the parameters
of an inversion model [19]. However, due to the different sensor parameters of UAV and
satellites and the different scales of data acquisition, when applying a model to corrected
satellite data, in addition to the errors brought by the correction of satellite data based on
UAVs, there can also be a certain instability in the application of the corrected satellite data
by a model constructed based on UAV data. Therefore, it is important to find an alternative
to integrating UAV and satellite images.

Considering the factors discussed above, in this study the coastal saline soil area on
the south coast of Hangzhou Bay was chosen as the study area in which to perform the
following: (1) determination of inversion steps for bare soil and vegetated areas based on
UAV images and field measurement data, respectively, and selecting the best model; (2) de-
termination of the satellite data correction method based on the relationship between the
reflectance and spectral index corresponding to the UAV and satellite images; (3) selection
of samples to classify the study area and obtain the distribution range of vegetated and bare
soil areas, and the subsequent application of the inversion process and the best inversion
model established in the first step to the quality-enhanced satellite data for modeling again
to achieve accurate soil salinity inversion over a large area.

The purpose of this paper was to construct an inversion framework based on UAV
data and satellite data for accurate mapping of soil salinity in large scale regions. The key
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of this study is the selection of inversion variables and the construction of a method to
correct satellite data based on UAV data, as well as the verification of the robustness of the
constructed soil salinity inversion model based on the classification results. So, the rest of
the paper is organized as follows. Section 2 introduces the study area and data sources. In
Section 3 we present the proposed method in detail. Section 4 illustrates the experimental
results, and in Section 5 the applicability of the method is discussed. Section 6 provides
the conclusions.

2. Study Area and Data Source

The study area is located in the south coast of Hangzhou Bay (Figure 1a) in the
northeastern part of Zhejiang province, China and is connected to the Qiantang River in the
west and the East China Sea in the east. Due to the accumulation of inlet sediment in the bay,
partly moved southward by wave and tidal dynamics, the south coast of Hangzhou Bay has
become one of the largest and most well-developed estuarine tidal flats in the world [20].
The region borders the Yangtze River delta plain and the volcanic hills of southeastern
Zhejiang province, and the terrain is dominated by plains and low hills, with a humid
subtropical monsoon climate; it has a long summer and a slightly shorter spring and
autumn. The average annual sunshine hours are 2038, with an annual sunshine percentage
of 47%. Average annual temperature is 16–21 ◦C and the average annual precipitation
is over 1000 mm. Catastrophic weather events in the territory are dominated by water,
drought, winds, and tides [21].
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Figure 1. (a) The geographical location of the study area; (b) Ningbo soil classification map.

Hangzhou Bay has experienced a rapid expansion of coastal reclamation in recent
years to supplement land resources in a manner that can be regarded as a typical case of
coastal reclamation in China’s rapidly developing regions [22]. As shown in Figure 1b, the
soil types from sea to land are, in order, coastal saline soil, tidal soil and paddy soil. The
first two have a high salt content and the anthropogenically modified paddy soils have
a short soil formation time and are slightly alkaline. Although the cultivated land after
reclamation has been transformed by various soil desalination measures, soil desalination
is a long process and the problem of soil salinization is still a major factor that affects
agricultural production in the region.
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2.1. Acquisition of Soil Salinity Data

As shown in Figure 1a, the study area covers 3.83 km2. In total, 174 soil samples were
collected in the study area; each sample was collected from the four corners and the center
of the sampling quadrat, with a size of 10 m × 10 m. The geographic coordinates of the
sampling sites were obtained using a handheld Trimble Geo Explorer GPS device (Trimble
Navigation Ltd., Inc., Sunnyvale, CA, USA), and the sampling was conducted on 14 January
2021, including both bare soil areas yet to be cultivated and vegetated areas covered by
crops. Soil sampling was performed at the soil surface (0~10 cm), and physicochemical
characteristics such as soil salinity were measured in the laboratory. The soil samples were
air-dried and sieved with a 1 mm sieve and mixed with distilled water at a ratio of 1:5
in a flask [23]. The soil salinity was then determined from the linear regression equation
derived by predecessors, SSC = 2.18EC + 0.727 [24], where SSC represents the soil salinity
content in units of g/kg. The average value of repeated measurements was taken as the
measured soil salinity at each sampling point. To ensure the data were as accurate and
representative as possible, 6 anomalous outlier samples were removed, leaving 168 for use
in the study (Table 1). Figure 2 shows the spatial distribution of soil salinity content. The
maximum value of soil salinity content in the study area is 7.437 g/kg, and the minimum
value is 0.541 g/kg.

Table 1. Salinization classification and sample distribution.

Soil Salinity Level Non-Saline Mild Salinization Moderate
Salinization Severe Salinization Saline Soil

Salt content */(g·kg−1) <1.0 1.0–2.0 2.0–4.0 4.0–6.0 >6.0
Number of samples (ratio) 38(23%) 50 (30%) 53 (31%) 22 (13%) 5 (3%)

Note: * based on Bao, 2010 [25].
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2.2. Acquisition and Processing of UAV Imagery

The platform used for remote sensing was the XMISSION multi-rotor UAV produced
by XAG, which is equipped with an XCam Multi-Spectrum agricultural multispectral
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camera. This camera can receive a total of four bands of information, green (G), red (R),
red edge (R-edge), and near infrared (NIR) with wavelengths of 550 nm, 660 nm, 735 nm,
and 790 nm (Table 2). The data were collected on 14 January 2021, from 11 a.m. to 15 p.m.
in clear, cloudless weather. The flight altitude was set to 110 m, the heading overlap rate
and side overlap rate were both 70%, white reflectors were arranged on the ground for
radiation correction, and an appropriate number of ground control points was selected.
The acquired images were synthesized using Pix4Dmapper software (Pix4D, S.A., Prilly,
Switzerland), and geographic alignment, radiometric correction, and geometric correction
were performed in ENVI 5.3 (Exelis Visual Information Solutions, Inc., Boulder, CO, USA)
to obtain multispectral image data with a resolution of 0.13 m.

Table 2. Band information of the S2A data and UAV data.

Sentinel-2A Data UAV Data

Bands
Central

Wavelength
(nm)

Resolution
(m) Bands

Central
Wavelength

(nm)

Resolution
(m)

B3-Green 560 10 Green 550 0.13
B4-Red 665 10 Red 660 0.13

B6-Vegetation
red edge 740 20 Red Edge 735 0.13

B7-Vegetation
red edge 783 20 Near-infrared 790 0.13

2.3. Acquisition and Processing of Sentinel-2A Satellite Data

Maintaining similar dates for field sampling, UAV images, and satellite images is
required for accurate soil salinity inversion. The Sentinel-2A products from the website
of the European Space Agency (ESA, http://www.esa.int/ (accessed on 15 January 2021))
were used as satellite remote sensing image data, and the multispectral image was acquired
at a similar time to the UAV image. The Sentinel-2A satellite has 13 spectral bands, from
visible to shortwave-infrared bands, and three spatial resolutions, including 10 m (four
bands), 20 m (six bands), and 60 m (three bands) ground resolution, which can monitor the
growth, and obtain information on crop planting and land use changes. First, radiometric
calibration and atmospheric correction were performed using the Sen2cor plug-in released
by the ESA. The data were then resampled with Sentinel Application Platform (SNAP)
software to generate 10 m spatial resolution images and export the data. Soil salinity
inversion was based on differentiated fusion of satellite image and ground spectra. Finally,
the images were stitched together using ENVI 5.3 software (Exelis Visual Information
Solutions, Inc., Boulder, CO, USA) and cropped using the study area boundary vector file
to obtain the Sentinel-2A image of the study area. In order to be consistent with the UAV
image bands (Table 2), the B3\B4\B6\B7 bands of the Sentinel-2A images were selected for
this study.

3. Methods

To improve the accuracy of soil salinity prediction in large-scale regions, we propose a
soil salinity inversion framework that combines UAV data and satellite data (Figure 3). The
method consists of three parts: correlation analysis between soil salinity and spectral vari-
ables to determine sensitive parameters for modeling and inversion; correlation analysis of
spectral variables between UAV data and satellite data to determine the feasibility of opti-
mizing satellite data based on UAV data; and using the mask obtained after classification to
extract the optimized satellite image vegetation area and bare soil area data for modeling.
The key to the research is to determine whether the basic characteristic spectra of UAV
images and satellite images are similar. Due to the problem of resolution, satellite data
cannot accurately obtain the spectral information of ground objects, and UAV data cannot
obtain large-scale regional data due to hardware reasons. To achieve precise acquisition

http://www.esa.int/
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of large-scale soil salinity, it is thus necessary to use UAV data to correct satellite data so
that the spectral variable values of satellite data are more accurate. Therefore, similarity
analysis between spectral variables is necessary for establishing the correction of satellite
data based on UAV data.
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To accomplish this, the spectral index was first generated by the band combination
operations (arithmetic operations between bands), and all the measured data were subjected
to Pearson correlation analysis with the UAV band data and the calculated spectral index.
The band or band combination with a larger absolute value of correlation coefficient
(|r|) was selected as the sensitive band or spectral parameter. Second, according to
the relationship between spectral variables, basic characteristic spectra were extracted
from UAV and satellite images and normalized as the basic matrix of spectral data. A
polynomial fitting function for optimizing Sentinel-2A spectral variables based on UAV
was established by numerical regression [26,27]. Finally, the optimal modeling method in
the vegetation area and bare soil area established in the first step was used to model the
satellite data after polynomial function optimization, and the resulting model was then
applied to the vegetation area and bare soil area data extracted by mask to complete the
soil salinity inversion.
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3.1. Soil Salinity Inversion Model Based on UAV Imagery
3.1.1. Filter Sensitive Variables

To filter the sensitive variables appropriate, the reflectance values of the UAV images
that correspond to the sampling points in the test area were first extracted by ArcGIS 10.3
(Environmental Systems Research Institute, Inc., Redlands, CA, USA) based on the sample
coordinates. The spectral indicators (Table 3) were then generated by combining the bands,
and the soil samples and spectral indicators were subjected to Pearson correlation analysis
to filter out the sensitive bands and sensitive spectral indicators with correlation coefficients
|r| > 0.5. This process was implemented in Matlab2018a.

Table 3. Spectral indicators.

No. Name Formula Reference

1 Green — —
2 Red — —
3 R-edge — —
4 NIR — —
5 Salinity index VI (S6) (R + NIR)/G [28]
6 Intensity Index 1 (INT1) (G + R)/2

[29]7 Intensity Index 2 (INT2) (G + R + NIR)/2
8 Salinity Index 1 (SI1) 0.5× (G× R)

[28]9 Salinity Index 2 (SI2)
(
G2 + R2 + NIR2)0.5

10 Salinity Index 3 (SI3)
(
G2 + R2)0.5

11 Salinity index I red-edge 1 (SI1-R-edge) (G× R− edge)0.5

[30]12 Salinity index I red-edge 2 (SI2-R-edge)
(
G2 + R− edge2 + NIR2)0.5

13 Salinity index I red-edge 3 (SI3-R-edge)
(
G2 + R− edge2)0.5

14 Salinity Index (SI-T) R/NIR
[7]15 Ratio Vegetation Index (RVI) NIR/G

16 difference vegetation index (DVI) NIR− R
17 difference vegetation index red-edge (DVI-R-edge) NIR− R− edge [31]
18 Triangle vegetation index (TVI)

(
NIR−R
NIR+R + 0.5

)0.5 [32]

19 Soil Adjusted Vegetation Index (SAVI) (1 + L)× NIR−R
NIR+R+L , L = 0.5 [33]

20 Normalized Difference Green Index (NDGI) (G − R)/(G + R) [34]
21 Simple Ratio (SR) NIR/R [35]
22 Brightness index (BI)

(
R2 + NIR2)0.5 [36]

23 Normalized Difference Vegetation Index (NDVI) (NIR− R)/(R + NIR) [7]
24 Normalized Difference Salinity Index (NDSI) (R− NIR)/(R + NIR) [36]

3.1.2. The Construction of the Optimal Inversion Model

Among the sample data collected, there were 107 samples in the bare land area and
61 samples in the vegetation coverage area. Multiple linear regression (MLR), random
forest (RF), support vector machine (SVM), and back propagation neural network (BPNN)
modeling methods were used in this paper. MLR, PLSR, SVM, and BPNN were all im-
plemented in Python3.7 using the sklearn library, and Keras2.2.0. The parameters in the
model need to be optimized before applying the calibration model, making them so-called
“hyperparameters” that have a large impact on the model performance [37]. Therefore,
we used a grid search method to optimize the model’s hyperparameters. The prediction
performance of different models was evaluated by the method of five-fold cross validation.
Here, all measured values were randomly divided into five groups, among which four
groups were selected as the training set and the remaining one group was selected as the
validation set. Compared with randomly dividing the training set and the validation set,
five-fold cross validation increases a model’s reliability [38].

The coefficient of determination (R2), mean absolute error (MAE), and root mean
square error (RMSE) were used to evaluate the accuracy of model modeling and valida-
tion [31,39–42]. R2 measures how well the model fits the data, and RMSE reflects the
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deviation between the observed and predicted values. The closer R2 was to 1, and the
smaller the MAE and RMSE, the higher the model accuracy and the better the effect.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (1)

MAE =
1
n ∑n

i=1|yi − ŷi| (2)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (3)

where yi and ŷi are measured and predicted values, respectively. y is the average of
observed values, n is the total number of validation plots.

3.2. Data Optimization and Partition Mask Acquisition
3.2.1. Optimizing Satellite Spectral Variables Based on UAV Data

Numerical regression methods usually use polynomial functions to establish corre-
spondences between data so that one set of data is approximated by fitting to another set
of data. In this paper, we established the polynomial fitting function for optimizing the
Spectral parameters of Sentinel-2A based on UAV regression and then used the fitting
function to optimize the Spectral parameters of the Sentinel-2A data. Previously, since
UAVs and satellites have different resolutions, the average reflectance of multiple pixels in
each band of the UAV image corresponding to the reflectance of one pixel of the Sentinel-2A
image was used as a way of exploring the link between them [13]. The regression fit is in
polynomial form as follows [26,27,43]:

F′i = p0 f n
i + p1 f n−1

i + p2 f n−2
i + . . . + pn (4)

where p0, p1 . . . pn−1 are spectral optimization parameters, pn is the optimization residual,
F′i is the normalized UAV reflectance and fi is the normalized satellite reflectance, i is the
number of spectral reflectance, and n is the power of the equation.

3.2.2. Acquisition of Mask Data for Salt Inversion

The surface of the study area is usually composed of both vegetation coverage and
bare soil. When using all the samples for inversion, since the spectral parameters obtained
from the vegetation coverage area are not the actual spectral parameters of the bare soil on
the surface, there will be certain errors whether the inversion is performed from spectral
variables or spectral indicators. Therefore, in order to improve the soil salinity inversion
accuracy of the satellite data, we first classified satellite images to obtain the range of bare
soil area and vegetation coverage area, and then established inversion models for these two
areas separately. The obtained classification results come from the supervised classification
method on ENVI5.3 (Exelis Visual Information Solutions, Inc., Boulder, CO, USA) software.

4. Experimental Results and Analysis
4.1. Screening of Soil Salinity-Sensitive Bands and Spectral Parameters
4.1.1. Sensitive Bands

The |r| values between the ground-measured soil salinity and the reflectance in the
UAV imagery are shown in Figure 4. The reflectance values in the green, red, red-edge, and
near-infrared bands of the UAV images correspond to G, R, R-edge, and NIR, respectively,
in the inversion model. The correlations between salinity and reflectance were above 0.5 in
both bare soil and vegetated areas. The R-edge band in the bare soil area had the strongest
correlation, and the near-infrared band in the vegetation area had the strongest correlation,
at 0.6036 and 0.7056, respectively.
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4.1.2. Sensitive Spectral Parameters

In order to improve the inversion accuracy of the model, we calculated some spectral
indices and screened out the most highly sensitive indices as variables for modeling. As
shown in Figure 5, among the 20 spectral indices calculated, those with correlations greater
than 0.5, including INT1, INT2, SI1, SI2, SI3, SI1-R-edge, SI2-R-edge, SI3-R-edge, and BI,
were selected for modeling.
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4.2. Soil Salinity Inversion Model Based on UAV Imagery

Based on the UAV imagery, the soil salinity inversion model was constructed by
different regression methods using independent variables of characteristic bands, sensitive
indices, and all characteristic spectral parameters. Tables 4 and 5 are the inversion results
obtained by MLR, RF, SVM, and BPNN.

Table 4. Inversion results for the bare soil area.

Modeling
Method Variables

Modeling Accuracy Validation Accuracy

R2 RMSE
(g/kg)

MAE
(g/kg) R2 RMSE

(g/kg)
MAE
(g/kg)

MLR
band 0.5186 1.0027 0.7030 0.4327 1.1572 0.9301

Spectral index 0.5432 1.0950 0.8125 0.4562 1.1086 0.8539
All 0.6207 0.9872 0.7748 0.4478 1.1084 0.8565

RF
band 0.8498 0.5873 0.4207 0.7442 0.7848 0.7362

Spectral index 0.8887 0.5100 0.3505 0.8540 0.4629 0.3301
All 0.8924 0.5014 0.3602 0.8741 0.4298 0.3439

SVM
band 0.6947 0.8445 0.4783 0.6806 0.8496 0.0010

Spectral index 0.6863 0.8562 0.4803 0.6828 0.8466 0.4406
All 0.6897 0.8514 0.4789 0.6856 0.8769 0.4902

BPNN
band 0.6391 0.8483 0.5975 0.6177 1.0577 0.8346

Spectral index 0.5144 1.1921 1.0242 0.5067 1.2015 1.0027
All 0.5584 1.1368 0.9728 0.5543 1.1420 0.9800

Table 5. Inversion results for the vegetation area.

Modeling
Method Variables

Modeling Accuracy Validation Accuracy

R2 RMSE
(g/kg)

MAE
(g/kg) R2 RMSE

(g/kg)
MAE
(g/kg)

MLR
band 0.5554 0.7737 0.6030 0.5603 0.7970 0.5956

Spectral index 0.6140 0.5995 0.4290 0.6164 1.0613 0.7344
All 0.7427 0.5983 0.4520 0.6244 0.6872 0.5583

RF
band 0.8753 0.3723 0.1673 0.7287 0.7917 0.3840

Spectral index 0.8470 0.4728 0.2907 0.8082 0.4415 0.3142
All 0.8990 0.3807 0.1949 0.7628 0.5120 0.3066

SVM
band 0.5898 0.7490 0.3049 0.5595 0.8343 0.3551

Spectral index 0.5897 0.7491 0.3049 0.5730 0.7882 0.3273
All 0.5898 0.7491 0.3049 0.5836 0.7565 0.3068

BPNN
band 0.7117 0.6532 0.4818 0.6630 0.5542 0.3495

Spectral index 0.6205 0.7495 0.5744 0.5937 0.6084 0.4560
All 0.6338 0.7362 0.5405 0.6011 0.6029 0.4413

In terms of modeling accuracy, the RF models significantly outperformed the other
models, and the models with the full set of variables (sensitive bands and sensitive indices
together as variables) significantly outperformed the models with only sensitive bands or
sensitive indices. The results in Tables 4 and 5 show that the choice of model and variables
has an important influence on the prediction of soil salinity. The modeling coefficient of
determination (R2) of the best RF model in the bare soil area was 0.8741 with a RMSE of
0.4298 g/kg and a MAE of 0.3439 g/kg. The modeling coefficient of determination (R2) of
the best RF model in the vegetated area was 0.8082 with a RMSE of 0.4415 g/kg and a MAE
of 0.3142 g/kg.

4.3. Optimizing Sentinel-2A Reflectance Normalization Data

Figure 6 explores the relationship between the reflectivity of the UAV image and the
Sentinel-2A image. Figure 6a shows that the surface reflectance of the UAV image was
slightly higher than that of the Sentinel-2A image but that the trend of the two was extremely
similar. Figure 6b shows that there was a strong correlation between the reflectivity of the
UAV image and the satellite image band, indicating that it is indeed feasible to optimize
the Sentinel-2A data based on the UAV data.
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We next used a polynomial fit function to explore the relationship between UAV data
and sentinel data. Figure 7 shows our fitting results between similar bands for UAVs and
satellites, where we see that the cubic polynomial had in the best fit for the data. Specifically,
the G and B3 fit were 0.7177, the R and B4 fit were 0.6128, the R-edge and B6 fit were 0.8556,
and the NIR and B7 fit were 0.8848.
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4.4. Soil Salinity Inversion Model Based on Sentinel-2A Imagery
4.4.1. Obtaining the Classification Mask

To obtain the soil area classification mask necessary for our model, we selected three
classes of samples based on sentinel images, namely, vegetation, bare land, and water
bodies, and classified them based on the supervised classification method (parallelepiped\
minimum distance\mahalanobis distance\minimum likelihood\neural network\support
vector machine method) in the ENVI5.3 software. We used the overall precision (OA) and
kappa coefficient to evaluate the classification results [44,45]. With Figures 8 and 9 we find
that the support vector machine achieved the best classification results.
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The support vector machine classification results are shown in Table 6. Combined
with the visualization results from Figure 9, we found that all three categories achieved
good extraction results, allowing us to provide a basis for further improving the accuracy
of satellite inversion of soil salinity.

Table 6. Category accuracy of support vector machine classification methods.

Method Water Bare Soil Vegetation Overall Accuracy Kappa

SVM 0.8721 0.8932 0.8992 0.8942 0.8874
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4.4.2. Inversion and Validation in the Study Area

Table 7 shows the results obtained by using the best RF model established based on the
UAV to perform the modeling inversion again on the satellite data. Modeling using only
spectral bands in the bare soil area was superior to spectral indices and full variables. The
modeling fit was 0.5758, the RMSE was 1.0105 g/kg, and the MAE was 0.6553 g/kg. Since
the acquired variables were directly reflected by the ground surface, when some spectral
indices were used for modeling, although they increased the diversity of data, it may have
caused some data redundancy, resulting in a slightly lower fit than the model built using
only bands. In the vegetation zone, the model with the full variables was better than the
model with only spectral bands or spectral indices. Here the modeling fit was 0.6110, the
RMSE was 0.6695 g/kg, and the MAE was 0.4607 g/kg. In this area, since the acquired
spectral band values came from vegetation and not directly from the surface, some spectral
indices may have been more helpful for modeling compared with spectral bands.

Table 7. Inversion results for satellite data.

Study Area Variables
Modeling Accuracy Validation Accuracy

R2 RMSE
(g/kg)

MAE
(g/kg) R2 RMSE

(g/kg)
MAE
(g/kg)

Bare soil area
band 0.6228 0.9388 0.6114 0.5758 1.0105 0.6553

Spectral index 0.5947 0.9731 0.6324 0.5651 1.0787 0.6916
All 0.6289 0.9312 0.5848 0.5631 1.3077 0.5456

Vegetation
cover area

band 0.5875 0.7512 0.4424 0.5442 0.4427 0.3521
Spectral index 0.6184 0.7225 0.4270 0.5554 1.0757 0.5830

All 0.6204 0.7206 0.4707 0.6110 0.6695 0.4607

Table 8 shows the results obtained by re-modeling using the optimized satellite data.
We can see that the accuracy of the modeling and inversion of the satellite data after
polynomial fitting improved but was still slightly lower than the accuracy of the modeling
using UAV data. The best fit for the bare soil area was 0.7702, with a RMSE of 0.63 g/kg
and a MAE of 0.4751 g/kg. The best fit for the vegetated area was 0.6761, with a RMSE of
0.399 g/kg and a MAE of 0.2328 g/kg.

Table 8. Inversion results for optimizing satellite data based on drone data.

Study Area Variables
Modeling Accuracy Validation Accuracy

R2 RMSE
(g/kg)

MAE
(g/kg) R2 RMSE

(g/kg)
MAE
(g/kg)

Bare soil area
band 0.7758 0.7238 0.5307 0.6314 0.9419 0.6632

Spectral index 0.7838 0.7106 0.5599 0.7702 0.6300 0.4751
All 0.7158 0.8148 0.5820 0.7345 0.7994 0.6275

Vegetation
cover area

band 0.6850 0.6564 0.4368 0.6308 0.5801 0.3444
Spectral index 0.7225 0.6160 0.3022 0.6761 0.3990 0.2328

All 0.6154 0.7253 0.3964 0.6366 0.4423 0.2525

In general, in Figure 10a, the salinization of the area showed a gradual increase from
south to north. Area C from Figure 10d belongs to the newly reclaimed area, and the soil
salinity here is much higher than that of the surrounding soils. Furthermore, in contrast to
the newly reclaimed bare ground, Area B is dry ponding. During the rainy season, heavy
rain often washes away the salt on the surface, and the salt often accumulates in low-lying
areas along with the rain. In area A, after years of reclamation and soil improvement, crops
can already be planted in this area, so its salinity is not as serious as that of area C. From
Table 9 we can see that the proportion of mild salinization soil and moderate salinization
soil was largest at, 42.78% and 47.53%, respectively. The percentage of saline soil was the
lowest at 1.12%.
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Table 9. Percentage of salinized soil inversion results for optimizing satellite data based on drone data.

Soil Salinity
Level Non-Saline Mild

Salinization
Moderate

Salinization
Severe

Salinization Saline Soil

Proportion of
inversion result 3.21% 42.78% 47.53% 5.36% 1.12%

5. Discussion

Although our study was conducted during winter, some vegetation was still growing
in January due to the northern subtropical monsoon climate of the bay. In order to accurately
invert the soil salt content in bare soil and vegetated areas, we adopted a classification
first and then inversion approach. Compared with the traditional soil salinity model, the
soil salinity model based on zonal inversion can provide more accurate inversion results.
Through Table 8, we can see that the model built in the bare soil area was better than the
model built in the vegetated area. This may be due to the fact that the vegetation cover
is not uniform due to the season, resulting in a small amount of bare soil areas that affect
the model building. However, this justifies the need of zonal sampling for classification
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inversion. Since different vegetation types have different stresses on soil salinity [46–48],
in order to further eliminate the interference caused by different vegetation types on the
inversion, we can further classify them and reduce or eliminate this effect by fine class
division [49]. The study date in this paper was in winter, when vegetation types were
sparse and homogeneous, and we did not reclassify vegetation types in the vegetation
zone. For this reason, in our future research we will increase our efforts to study soil
salinity inversion in areas with different types of vegetation to establish a more robust
modeling approach.

To explore the effects of different spectra with corresponding spectral indices on soil
salinity, we first used correlation analysis to measure whether these spectral variables
are closely correlated with soil salinity. As shown in Figure 3, the correlation between
R-edge and NIR bands and soil salinity was relatively high, which is consistent with
previous studies [50,51]. However direct monitoring of very slight and minor salinity
using multispectral images is limited because different soil salinities have different spectral
properties [52–54]. For this reason, we further used the relevant spectral indices as model
covariates to invert surface salinity. As in the inversion of soil salinity in vegetated areas,
different degrees of salinization can stress the growth of vegetation, which is more sensitive
to soil salinity stress. Therefore, soil salinity and its trend can be indirectly inferred from
the vegetation index [38]. Sidike et al. also indicated that the spectral covariates Int1 and
Int2, and soil salinity indices SI1, SI2, and SI3 are sensitive to soil salinity and contribute
to the accuracy of soil salinity mapping [55]. In our inversion of salinity in the coastal
plain, the salt index was always better than the vegetation index. This indicates that the
salinity index is more sensitive to the response of soil salinity [10,56–58]. Therefore, when
selecting the best remote sensing index for soil salinity estimation, multi-band remote
sensing data are used as variables to enhance the sensitivity of inversion variables to soil
salinity information by combining different band operations [57,59,60].

Not all spectral variables contribute to soil salinity estimation, and their importance
needs to be evaluated to determine the optimal inversion variables; too many variables
also cause data redundancy, resulting in the consumption of computational resources and
model instability [61]. In this study, we initially selected inversion variables by setting
thresholds based on Pearson correlation analysis. Although complete spectral variables
can represent the soil salinity characteristics as much as possible, too many variables will
inevitably cause data redundancy and reduce the efficiency of the calculation [62]. In our
experimental result (Table 5), based on the inversion model of random forest, we can see
that the robustness of the model was reduced when the model was applied in the testing
phase because spectral variables of the same nature were not excluded, resulting in data
redundancy, despite the optimal fit achieved at the time of model building. Therefore, in
future studies we will choose more environmental variables and adopt corresponding data
redundancy elimination methods in order to build more robust models.

Ground truth data are the basis for quantitative soil analysis, UAV near earth remote
sensing is the link between satellites and the ground, and satellite remote sensing is the
platform for large area inversion. Combining the three is on track to become an important
way to obtain soil salt information at present and in the future [32]. As shown in Table 7,
the model constructed based on Sentinel-2A data obtained worse results on three different
inversion covariates than the results obtained based on UAV inversion. Although the
satellite images cover a large area, their spatial information is coarse, which often limits the
accurate interpretation of soil attributes. For this reason, we first found the most sensitive
parameters corresponding to soil salinity in the region based on high-spatial-resolution
UAV images, and then built models on different ground covers to lay the foundation for
large-scale soil salinity inversion by satellite. To improve the sensitivity of satellite data
to soil covariates, we also further optimized the Sentinel-2A data. As shown in Figure 7,
we constructed polynomials of order 1 to 5 to explore the optimal correction equation
according to the mutual corresponding bands of the UAV and satellite in order to find a
robust optimization equation. The next step is to continue to explore the linkage between
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UAV and satellite data and establish a more robust data optimization method to achieve
even more accurate salt distribution mapping on a large scale.

6. Conclusions

In this paper, we explored high-precision and large-scale inversion methods for soil
salinity based on UAV and satellite data from a coastal area of eastern China. Our analysis
was based on the feasibility of modeling soil salinity with sensitive bands and sensitive
indices of UAV images. After experimental validation among the research methods used in
this paper, we found that RF had the best fit, reaching 87.41% in bare soil area and 80.82%
in vegetated area, which are both high enough to perform soil salinity mapping in practice.
To meet the need for large-scale soil salinity mapping, we also explored the relationship
between UAV images and satellite images and found that there was a strong correlation
between their corresponding bands. From this, we used a polynomial fitting method based
on UAV data to optimize the satellite data and invert the images by partition to improve
the accuracy of large-scale soil salinity mapping. The final results showed that our method
can effectively improve satellite-based large-scale salt inversion.

However, there are still three important aspects of this area of research that have not
been explored more deeply. First, the correlation between the selection or construction of
model inversion parameters and the corresponding soil salinity in the study area need to be
further explored. Second, the construction of inversion models, such as deep learning and
other methods with powerful feature characterization capabilities can be used to enhance
inversion accuracy. Finally, we did not deeply explore the connection between UAV and
satellite data to establish a more robust data optimization method capable of achieving
even more accurate salt distribution mapping on a large scale.
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