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Abstract: Unmanned Aerial Vehicles (UAVs) are a popular platform for air quality measurements.
For vertical measurements, rotary-wing UAVs are particularly well-suited. However, an important
concern with rotary-wing UAVs is how the rotor-downwash affects measurement accuracy. Measure-
ments from a recent field campaign showed notable discrepancies between data from ascent and
descent, which suggested the UAV downwash may be the cause. To investigate and explain these
observed discrepancies, we use high-fidelity computational fluid dynamics (CFD) simulations to
simulate a UAV during vertical flight. We use a tracer to model a gaseous pollutant and evaluate
the impact of the rotor-downwash on the concentration around the UAV. Our results indicate that,
when measuring in a gradient, UAV-based measurements were ∼50% greater than the expected
concentration during descent, but they were accurate during ascent, regardless of the location of the
sensor. These results provide an explanation for errors encountered during vertical measurements
and provide insight for accurate data collection methods in future studies.

Keywords: unmanned aerial vehicles; computational fluid dynamics; air quality monitoring

1. Introduction

Unmanned Aerial Vehicles (UAVs), also called drones, are a useful tool in air quality
monitoring given their ability to obtain data with high spatial and temporal resolution.
Rotary-wing UAVs are a popular platform for vertical measurements given their ability to
fly in any direction and hover. Multiple studies have used rotary-wing UAVs for vertical
measurements to study various species and pollutants in the atmosphere [1–5], to study
traffic emissions [6,7], and to estimate the height of the planetary boundary layer [8,9].
An important concern when using rotary-wing UAVs is how the downwash from the
propellers affects measurement accuracy.

Previous studies have investigated the strength of the airflow around the UAV using
wind tunnel and plume experiments to visualize the airflow with smoke or particles
and measure the air speed around the rotors [3,10–13]. Some studies have also used
computational fluid dynamics (CFD) simulations as a means of estimating where the
airflow and effects of the rotors are the strongest [10,14–16]. In [10], the airflow around a
UAV with six propellers was simulated using CFD and they found that the region of air
influenced by the UAV propellers is roughly cylindrical, with a radius of two meters that
extends two meters above and eight meters below the UAV. CFD was also used by [14] to
study a six-propeller UAV and it was found that the residence time of air in the sampling
region under the center of the UAV was small, indicating that measurements from that
region were representative of the surrounding air. Other studies evaluating the airflow
around a UAV have concluded that placing a sensor above the center of the UAV or outside
the rotors is best to avoid disturbance from the propellers [13,15].

Simulations of UAVs for agricultural applications have shown that the airflow
changes significantly depending on the flight direction and speed [17,18]. This suggests
that flight direction and speed should be taken into account when considering UAV-based

Drones 2022, 6, 253. https://doi.org/10.3390/drones6090253 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6090253
https://doi.org/10.3390/drones6090253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-7877-3183
https://doi.org/10.3390/drones6090253
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6090253?type=check_update&version=1


Drones 2022, 6, 253 2 of 11

air quality measurements. However, all of the aforementioned studies focused on air qual-
ity have only evaluated the airflow around a UAV under hover conditions. Similarly, most
experimental studies that have compared a UAV-based instrument to another reference
monitor do so while hovering [5,19]. One study did compare UAV-based vertical measure-
ments of ozone to measurements from a tethered balloon and found reasonable agreement
between the two platforms [1]. However, the measurements were performed during
a relatively uniform period in the ozone distribution. Thus, previous conclusions and
recommendations may not be sufficient to ensure accuracy of UAV-based measurements in
every case. For example, vertical measurements of black carbon presented by [20] showed
notable discrepancies between data from ascent versus descent even though guidelines
for sensor placement from previous studies were followed.

Similar to [20], we have observed inconsistencies in vertical ozone profiles collected
using a UAV. These experimental observations prompted us to investigate the effect of
the downwash and airflow further. Our goal in this study is to use high-fidelity CFD
simulations to investigate and explain how the downwash can affect vertical measurements
by simulating a UAV during vertical flight [21]. Our hypothesis is that there will be more
turbulent mixing and possibly recirculation during descent than during ascent which could
interfere with measurements. Our simulations differ from previous work in that we use
a large-eddy simulation (LES) methodology which resolves more of the turbulence and
mixing caused by the rotors compared to the Reynolds-averaged Navier–Stokes (RANS)
formulation used by other studies [14–16]. We also perform a transient rather than steady-
state analysis to evaluate the UAV while it is flying and sampling a gaseous pollutant.
To the best of our knowledge, this work is the first to simulate a UAV during vertical flight
conditions. This work will provide insight into past observations as well as prevent future
discrepancies and errors in field measurements.

Details regarding the experiments that prompted this study are provided in the meth-
ods section as well as an overview of the governing equations and models used in the CFD
simulations. Then, the results of our simulations are presented, highlighting the differ-
ences in airflow and scalar mixing between ascent and descent. Finally, the discrepancies
observed in our prior experiments are explained in light of the simulation results and
recommendations are given to avoid similar discrepancies in future measurements and
provide insight for sensor placement.

2. Materials and Methods

The data that prompted this investigation were part of a field campaign to study the
evolution and transport of summertime ozone in northern Utah, USA. Discrepancies were
observed between data from ascent and descent from flights during the morning hours
when there is a gradient in the vertical ozone profile. The data were collected using a rotary-
wing drone with an ozonesonde attached beneath it. The model 2ZV7-ECC ozonesonde was
prepared for flights over a period of several days according to the operations manual [22].
During this period, the electrolytes were refreshed and the instrument was run while
alternating between clean air (no ozone) and air at an ozone concentration of 50% of full
scale for ten to twenty minutes. Over time, these activities lower the background current of
the cell. During the last cycle, the background current is measured along with the pump
performance and the cell’s response to a step change in input gases. These values are then
used to process the raw data gathered during flights.

The UAV used in this study was a DJI Matrice 600 Pro (M600) which has been com-
monly used in other studies for similar measurements of vertical ozone distributions [2,8,23].
This UAV has six propellers that are each about 53 cm in diameter and can carry a payload
of up to 6.5 kg. Custom straps were used to secure the payload below the UAV (Figure 1).
Ozone mixing ratio was measured using an ozonesonde and transmitted to a ground
station via radiosonde. Data were recorded at one-second intervals. During each flight,
the UAV ascended and descended at a constant speed of approximately 1 m/s.
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Figure 1. DJI M600 in flight with an ozonesonde and radiosonde attached below.

Computational Fluid Dynamics Simulations

Our simulations attempt to mimic the experimental setup and procedure as closely as
possible. An in-house CFD code, Wasatch, was used to perform simulations of the UAV
during vertical flight. Wasatch is a finite volume, large-eddy simulation (LES) software that
solves the incompressible and low-Mach Navier–Stokes equations on a structured, uniform
grid ([21]). Wasatch is a highly efficient and flexible parallel CFD code that has been used
to study very complex turbulent flows including multiphase flows with precipitation [24],
turbulence decay [25], and respiratory aerosol transport in orchestras [26], making it very
suitable for this study. We consider the LES-filtered, incompressible, constant-density
Navier–Stokes equations

∇ · ū = 0, (1)

ρ
∂ū
∂t

= −ρ∇ · (ūū)−∇ p̄−∇ · τ̄ij −∇ · τR, (2)

where ū is the filtered velocity, ρ is the density, p̄ is the filtered pressure, τ̄ is the filtered
stress tensor, and τR is the subgrid stress tensor. Subgrid stresses were modeled using the
dynamic Smagorinsky model ([27,28]).

To model the UAV propellers, a momentum source term that represents the thrust
per unit volume for each rotor is added to Equation (2) in the location of the rotors
(see Figure 2). This approach is similar to actuator disk models commonly used for
helicopters and wind turbines [29,30]. Thrust is caused by the pitch of the rotor blades.
As each neighboring rotor counter-rotates, the net rotational motion to the air column
goes to zero and was not accounted for in our simulations. However, we do account
for the angle of the UAV arms by distributing the total force in the axial direction
(downward) and radial direction (away from the UAV). The thrust force necessary for
the UAV to hover in the air was calculated based on the combined weight of the UAV
and its payload. Assuming the combined weight of the UAV and payload is balanced
only by the thrust from the rotors, then

Fg = mDg = NFT (3)

where Fg is the gravitational force (Newtons) on the drone, mD is the mass (kg) of the
drone, g = 9.81 m/s2 is the acceleration due to gravity, N is the number of rotors, and FT is
the thrust force produced by one rotor. Subsequently, the thrust per unit volume for each
rotor is
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FT
VR

=
mDg
NVR

(4)

where VR = πR2δ is the volume swept by a rotor with R and δ designating the rotor radius
and thickness, respectively. The main frame of the UAV and the payload were modeled
using simplified geometries but the UAV landing gear was not included (Figure 2).

Rotors

UAV Mainframe

Payload (ozonesonde)

Thrust Force (FT) Radius (R)

Gravitational 
Force (Fg)

Thickness (� )δ

Figure 2. Model of the DJI M600 used in simulations. The areas representing the rotors are shown in
dark green and the grey region represents the solid geometry for the UAV mainframe and payload.

Transport of a gaseous pollutant (i.e., ozone) was modeled using an advection–
diffusion transport equation

∂φ̄i
∂t

+∇ · (ūφ̄i) = (Di + Dt)∇2φ̄i, (5)

where φ̄i is the pollutant concentration, Di and Dt =
µ

ρSct
are the molecular and turbulent

diffusivities of φ̄i, respectively, and µ is the fluid viscosity. The turbulent Schmidt number
is taken to be Sct = 0.7 [31,32]. We simulated a vertical flight through an air column with a
linear gradient in pollutant concentration. To model the concentration measured by the
ozonesonde, we used the concentration value from the simulation under the center of the
UAV and at two other potential locations for the instrument intake: above the UAV and
outside of the rotors. Ozone is a reactive pollutant and is generally formed in the morning
hours through a series of photochemical reactions. We did not account for reactivity or
formation in our simulations because the duration of the experimental flights (5 min) was
much shorter than the timescale for ozone formation (∼10 ppb per h) [33]. However, when
performing longer flights, reactivity and formation should be considered in the model.

The domain in our simulation was 6× 6 × 5 m3 (length × width × height) and the
grid resolution was 2.5 cm in the x- and y- directions and 1.25 cm in the z-direction with
a total of 23 million grid cells. The scalar variable was initialized to 0 for ascent or 1 for
descent and a time-dependent Dirichlet boundary condition was applied on the scalar
variable at the top (ascent) or bottom (descent) boundary to create a linear gradient of
±0.03̄ m−1. For ascent, an inflow velocity of 1 m/s was set at the top boundary and an
outflow condition was used at the bottom of the domain. For descent, the inflow was at the
bottom of the domain and the outflow at the top. The side walls of the domain were set
to mimic a calm atmosphere with a gentle inflow of 0.5 m/s. Calculations were run to a
simulation time of 30 s.
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3. Results

As stated previously, the purpose of this work was to use CFD to simulate vertical
flight for a rotary-wing UAV and provide insight into the inconsistencies observed in our ex-
perimental data. Sample profiles from our experiments are shown in Figure 3. The profiles
all show higher mixing ratios during descent compared to ascent. The differences between
the ascent and descent profiles decrease as the profiles becomes more uniform later in
the morning.

08:50 20-Sept 202008:30 20-Sept 202007:35 20-Sept 2020

(a) (b) (c)

Figure 3. Three vertical ozone profiles measured at (a) 7:35 AM, (b) 8:30 AM, and (c) 8:50 AM while
the ozone distribution was evolving. The line marked with black circles represents data collected
during ascent and the unmarked line represents data collected during descent.

To investigate the discrepancies observed in our experimental data, we evaluated the
airflow and pollutant concentration around the drone for two cases: ascent and descent.
The airflow between the two cases differs greatly as shown in Figure 4. During ascent,
there is strong airflow underneath the UAV rotors with air speeds of approximately 15 m/s
(Figure 4a). The air flow around the payload is weaker with speeds up to 5 m/s, and the
airflow outside the UAV rotors is relatively undisturbed. During descent, the airflow is also
fastest under the drone rotors, however, the airflow around the drone is more transient and
chaotic than during ascent. These disturbances are a result of the drone passing through its
own wake as it descends.

(a) (b)

16

12

8

4

0

Ascent Descent

m/s

Figure 4. Three-dimensional view of the instantaneous air velocity in the computational domain with
slices through each of the rotors for UAV (a) ascent and (b) descent. Color represents air speed on a
linear scale from 0 to 16 m/s.

In addition to the increased air disturbance, Figure 5b shows how some of the air from
the wake of the drone can recirculate through the rotors during descent. This suggests that
during descent, the payload may be sampling from the same volume of air multiple times
rather than fresh, new air from above the drone or outside of the wake. During ascent, this
recirculation is non-existent because the drone is flying upwards away from its own wake.
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The velocity vectors in Figure 5a show that new air is constantly flowing from above the
drone into the region around the payload. The residence time in the region around the pay-
load is in the order of 1–5 s which is in agreement with values reported in the literature [14]
and is the same as the sampling timescale of the ozonesonde (∼1 s) from which the experi-
mental data were collected. This indicates that the data from the ozonesonde during ascent
should accurately represent spatial variations in ozone concentration.

(a) (b)

0 161284

Velocity Magnitude (m/s)

Figure 5. Slices through the center of the domain and the UAV at t = 20 s simulation time. The top row
shows the instantaneous velocity magnitude during ascent (a) and descent (b) with values ranging
from 0 (blue) to 16 (red) m/s.

To evaluate the effects of the drone rotors on gaseous pollutant measurements, we
tracked a tracer (passive scalar) in our simulations. The patterns observed in the normalized
scalar concentration are similar to those seen in the airflow. During ascent, the instantaneous
normalized scalar concentration under the rotors is slightly higher than the concentration
outside of the rotors (approximately 0.633 and 0.617, respectively) due to the fact that the
rotors draw fresh air from above the drone (Figure 6a). The normalized concentration
around the payload is comparable to the other regions (∼0.627). A linear gradient in
the concentration is observed in the region outside of the rotors. During descent, there
is notable mixing and some gradients in the concentration but the linear profile that is
expected has been disturbed by the rotors (Figure 6b).

1

2

3

(a) (b)

0.58 0.62 0.66

Normalized Concentration

0.40 0.53 0.65

Normalized Concentration

Figure 6. Two-dimensional slices through the center of the domain showing the normalized scalar
concentration on a scale from 0 (white) to 1 (black) for (a) ascent and (b) descent. Arrows in (a) show
the three intake tube locations that were evaluated, namely, (1) below the UAV, (2) above the UAV,
and (3) outside the UAV rotors.
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By comparing the scalar concentration around the drone to the expected concentration
based on the imposed boundary conditions, we calculated the relative error caused by the
rotors as

Relative Error =
(φExp − φ

φExp

)
× 100% (6)

where φExp is the expected concentration and φ is the actual concentration. The error was
averaged over the last 10 s of the simulation and a slice was taken through the middle of
the domain (Figure 7). Discrete regions are shown with the concentrations at the borders
between regions labeled. For both ascent and descent, the maximum relative error is under
the drone in the wake. However, the maximum relative error during ascent is only 12%
whereas during descent the maximum relative error reaches values greater than 100%.
Around the UAV, the relative error is small during ascent, ranging from 3–6% (Figure 7a),
but during descent, the relative error around the UAV ranges from 40–60% (Figure 7b). This
suggests that measurements during descent will be highly compromised by the disturbance
caused by the rotors while measurements from ascent will be largely unaffected.

3%

6%

9%

12%

20%

40%

60%

80%

(a) (b)
Figure 7. Time-averaged relative error between the scalar concentration field and the expected
concentration field for (a) ascent and (b) descent. The value of the relative error is labeled at the
borders between each of the colored regions.

In order to investigate the influence of sensor or intake location, three potential intake
tube locations were chosen in the simulation: (1) next to the payload, (2) above the drone,
(3) outside the rotors. These locations are marked in Figure 6a. These locations were
chosen based on the normal location of the intake tube and recommendations from other
studies [13,15,16]. Figure 8 shows the normalized concentration plotted against altitude for
each or the locations chosen along with the expected profile based on the imposed boundary
conditions. The curves during ascent are all clustered together around the expected profile
with negligible differences between each location, indicating both good accuracy and
precision (see Figure 8a). However, while the curves for descent are also clustered together
with small differences between locations, all three locations are shifted to the right of the
expected profile, indicating good precision but poor accuracy (see Figure 8b). This indicates
that the concentrations measured during descent will be higher than expected regardless of
sensor placement. The shift in the descent curves is similar to the trend observed in our
experimental data.
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Figure 8. Nominal scalar value during ascent (a) and descent (b) at three potential locations of the
ozonesonde intake tube: (1) below the UAV, (2) above the UAV, and (3) extended outside the UAV
rotors. The black lines represent the expected profiles (E) for each scenario.

4. Discussion

Our results show that measurements of gaseous pollutants using a UAV may be inac-
curate during descent due to the mixing and recirculation caused by the rotors. The trends
in our simulations between ascent and descent are similar to those observed in our experi-
ments, which suggests that mixing from the rotors was responsible for the discrepancies in
our experimental data. To reduce error in vertical measurements, our results suggest that
data should be collected during ascent only. This differs from some previous studies that
have used data collected during descent after eliminating outliers [16,23]. Using data from
descent may not have been problematic in those studies given that many of the profiles
they measured were relatively uniform. As our results showed, measurements during
descent are most affected when measuring along a gradient in concentration.

Our results also indicate that below the UAV is a suitable location for the instrument or
intake tube. For vertical measurements, we saw no differences in our simulation data at the
location above the UAV or outside of the rotors when compared to below the drone. Our
results suggest that for the UAV used in this study, the rotors are far enough from the UAV
center such that the airflow under the UAV center is mild compared to the airflow directly
under the rotors. Based on these results, we recommend placing a sensor or sensor intake
below the UAV center as this is the normal location for a payload and is least likely to cause
instability during flight. However, it may be advantageous or necessary in certain cases to
extend the intake to one of the other locations suggested by previous studies depending on
the size of the UAV, the size and shape of the payload, or the instrument sensitivity [13,15].

Some of the limitations of our study include the low-cost model used for the UAV
rotors and possible boundary effects due to the size of our domain. The model used to
represent the rotors creates a constant thrust force to balance the weight of the UAV and
payload which creates a velocity in the vertical direction. The model does not account
for rotation in the flow or vortices shed by the wings or at the wing tips. These effects
are especially relevant when designing a UAV and measuring the pressure distribution
or thrust force generated by the rotor. In our study, we are mainly concerned with the
bulk airflow around the UAV and its impact on air quality measurements. Since vortices
shed from the rotors will have a secondary effect on the bulk airflow, it is reasonable to
neglect these effects in our simulations. In addition, our simulations show that the airflow
around the payload is weak compared to the flow directly under the rotors, and we were
able to confirm this experimentally using an anemometer. We also used a tell-tale ribbon
attached to a thin pole to indicate the direction of airflow under the UAV and observed
good agreement with our simulations with strong downward flow under the rotors and
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flow upwards under the UAV around the payload. The airflow around the payload might
be stronger when using a smaller drone with rotors that are closer together. In that case, it
may be necessary to use a more accurate model.

Setting boundary conditions that accurately model atmospheric conditions can be
challenging and expensive. One approach is impose turbulent inflow data from a precursor
simulation at the boundaries. Another possibility is to use a large domain such that the
boundaries are far from the region of interest. To obtain results in a reasonable amount of
time, we applied simpler Dirichlet boundary conditions with flow moving either down-
wards or upwards to mimic ascent and descent, respectively. The boundaries in our domain
were over two meters away from the UAV; however, they may still have an effect on the
airflow within the domain. For example, during descent, the vertical flow at the boundary
may cause the stronger recirculation in the wake than would normally occur. Given the
good agreement between the trends observed in our simulations and the experimental
observations (see Figure 3), these effects are likely minor and do not compromise the results
of our study.

5. Conclusions

In summary, this work provides an explanation of errors observed during vertical
measurements using a rotary-wing UAV and guidelines to avoid similar errors in vertical
measurements. We use CFD simulations to model a UAV during a vertical flight while
measuring a gaseous pollutant. We found that the rotors cause vertical mixing which
can smooth gradients in the atmosphere and introduce bias into measurements made
during descent. We also found that errors occurred during descent regardless of whether
the instrument intake tube is placed below the UAV, above the UAV, or extended to the
side. The effects of the rotors are not observed during ascent, nor if the concentration is
uniform vertically.

Based on our findings, we recommend that data should only be collected during ascent
for vertical measurements. Disregarding measurements during descent and descending
quickly can help save time and battery life and allow for more efficient measurements. We
also recommend placing the payload and intake tube below the center of the UAV to avoid
any issues with UAV stability; however, placement of the payload may vary based on size,
shape and other payload-specific requirements.

This study demonstrates how CFD can be a powerful tool to inform air quality and
other mobile measurements using UAVs. Unlike previous studies, our simulations capture
the instantaneous effects of turbulent mixing caused by the rotors, as well as model gaseous
pollutant transport during ascent and descent. Future work could include modelling
different flight and measurement scenarios such as forward flight or hover while measuring
in a plume or from a localized source.
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