Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to authors, or important in this field. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
Artesunate Impairs Growth in Cisplatin-Resistant Bladder Cancer Cells by Cell Cycle Arrest, Apoptosis and Autophagy Induction
Cells 2020, 9(12), 2643; https://doi.org/10.3390/cells9122643 - 09 Dec 2020
Cited by 19
Abstract
Cisplatin, which induces DNA damage, is standard chemotherapy for advanced bladder cancer (BCa). However, efficacy is limited due to resistance development. Since artesunate (ART), a derivative of artemisinin originating from Traditional Chinese Medicine, has been shown to exhibit anti-tumor activity, and to inhibit [...] Read more.
Cisplatin, which induces DNA damage, is standard chemotherapy for advanced bladder cancer (BCa). However, efficacy is limited due to resistance development. Since artesunate (ART), a derivative of artemisinin originating from Traditional Chinese Medicine, has been shown to exhibit anti-tumor activity, and to inhibit DNA damage repair, the impact of artesunate on cisplatin-resistant BCa was evaluated. Cisplatin-sensitive (parental) and cisplatin-resistant BCa cells, RT4, RT112, T24, and TCCSup, were treated with ART (1–100 µM). Cell growth, proliferation, and cell cycle phases were investigated, as were apoptosis, necrosis, ferroptosis, autophagy, metabolic activity, and protein expression. Exposure to ART induced a time- and dose-dependent significant inhibition of tumor cell growth and proliferation of parental and cisplatin-resistant BCa cells. This inhibition was accompanied by a G0/G1 phase arrest and modulation of cell cycle regulating proteins. ART induced apoptos is by enhancing DNA damage, especially in the resistant cells. ART did not induce ferroptosis, but led to a disturbance of mitochondrial respiration and ATP generation. This impairment correlated with autophagy accompanied by a decrease in LC3B-I and an increase in LC3B-II. Since ART significantly inhibits proliferative and metabolic aspects of cisplatin-sensitive and cisplatin-resistant BCa cells, it may hold potential in treating advanced and therapy-resistant BCa. Full article
(This article belongs to the Special Issue Studying Drug Resistance Using Cancer Cell Lines)
Show Figures

Graphical abstract

Article
Cholangiocyte-Derived Exosomal lncRNA H19 Promotes Macrophage Activation and Hepatic Inflammation under Cholestatic Conditions
Cells 2020, 9(1), 190; https://doi.org/10.3390/cells9010190 - 11 Jan 2020
Cited by 39
Abstract
Activation of hepatic macrophages represents the critical driving force to promote cholestatic liver injury. Exosomes, as important small extracellular vesicles released by almost all types of cells, contribute to intercellular communication. We previously reported that cholangiocyte-derived exosomal long noncoding RNA (lncRNA) H19 plays [...] Read more.
Activation of hepatic macrophages represents the critical driving force to promote cholestatic liver injury. Exosomes, as important small extracellular vesicles released by almost all types of cells, contribute to intercellular communication. We previously reported that cholangiocyte-derived exosomal long noncoding RNA (lncRNA) H19 plays a vital role in disrupting bile acid homeostasis in hepatocytes and promoting the activation of hepatic stellate cells (HSCs). Exosomal H19 derived from cholangiocytes was rapidly taken up by Kupffer cells. However, the mechanistic links between exosomal lncRNA H19 and macrophage-driven inflammation in cholestasis remain unclear. Here, we reported that the hepatic H19 level was closely correlated with macrophage activation and hepatic fibrosis in both Mdr2-/- and bile duct ligation (BDL) cholestatic mouse models, as well as in human primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) patients. Exosomal H19 significantly induced the expression and secretion of chemokine (C–C motif) ligand 2 (CCL-2) and interleukin 6 (IL-6) in Kupffer cells. H19-enriched exosomes enhanced the activation M1 polarization of Kupffer cells and promoted the recruitment and differentiation of bone marrow-derived macrophages, which were inhibited by a CCL-2 pharmacological inhibitor. In conclusion, Cholangiocyte-derived exosomal H19 played a critical role in macrophage activation, differentiation, and chemotaxis through CCL-2/CCR-2 signaling pathways, which represent a therapeutic target for cholestatic liver diseases. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Graphical abstract

Article
Sex Differences in High Fat Diet-Induced Metabolic Alterations Correlate with Changes in the Modulation of GRK2 Levels
Cells 2019, 8(11), 1464; https://doi.org/10.3390/cells8111464 - 19 Nov 2019
Cited by 10
Abstract
A differential sex-related sensitivity has been reported in obesity and insulin resistance-related cardio-metabolic diseases, with a lower incidence of these pathologies being observed in young females when compared to age-matched males. However, such relative protection is lost with age. The mechanisms underlying such [...] Read more.
A differential sex-related sensitivity has been reported in obesity and insulin resistance-related cardio-metabolic diseases, with a lower incidence of these pathologies being observed in young females when compared to age-matched males. However, such relative protection is lost with age. The mechanisms underlying such sex and age-related changes in the susceptibility to diabetes and obesity are not fully understood. Herein, we report that the relative protection that is displayed by young female mice, as compared to male littermates, against some of the metabolic alterations that are induced by feeding a high fat diet (HFD), correlates with a lower upregulation of the protein levels of G protein-coupled receptor kinase (GRK2), which is a key regulator of both insulin and G protein-coupled receptor signaling, in the liver and adipose tissue. Interestingly, when the HFD is initiated in middle-aged (32 weeks) female mice, these animals are no longer protected and display a more overt obese and insulin-resistant phenotype, along with a more evident increase in the GRK2 protein levels in metabolically relevant tissues in such conditions. Our data suggest that GRK2 dosage might be involved in the sex and age-biased sensitivity to insulin resistance-related pathologies. Full article
Show Figures

Figure 1

Article
Improved Motor Nerve Regeneration by SIRT1/Hif1a-Mediated Autophagy
Cells 2019, 8(11), 1354; https://doi.org/10.3390/cells8111354 - 30 Oct 2019
Cited by 15
Abstract
Complete restoring of functional connectivity between neurons or target tissue after traumatic lesions is still an unmet medical need. Using models of nerve axotomy and compression, we investigated the effect of autophagy induction by genetic and pharmacological manipulation on motor nerve regeneration. ATG5 [...] Read more.
Complete restoring of functional connectivity between neurons or target tissue after traumatic lesions is still an unmet medical need. Using models of nerve axotomy and compression, we investigated the effect of autophagy induction by genetic and pharmacological manipulation on motor nerve regeneration. ATG5 or NAD+-dependent deacetylase sirtuin-1 (SIRT1) overexpression on spinal motoneurons stimulates mTOR-independent autophagy and facilitates a growth-competent state improving motor axonal regeneration with better electromyographic records after nerve transection and suture. In agreement with this, using organotypic spinal cord cultures and the human cell line SH-SY5Y, we observed that the activation of SIRT1 and autophagy by NeuroHeal increased neurite outgrowth and length extension and that this was mediated by downstream HIF1a. To conclude, SIRT1/Hifα-dependent autophagy confers a more pro-regenerative phenotype to motoneurons after peripheral nerve injury. Altogether, we provide evidence showing that autophagy induction by SIRT1/Hifα activation or NeuroHeal treatment is a novel therapeutic option for improving motor nerve regeneration and functional recovery after injury. Full article
(This article belongs to the Section Autophagy)
Show Figures

Figure 1

Article
Dental Epithelial Stem Cells as a Source for Mammary Gland Regeneration and Milk Producing Cells In Vivo
Cells 2019, 8(10), 1302; https://doi.org/10.3390/cells8101302 - 22 Oct 2019
Cited by 6
Abstract
The continuous growth of rodent incisors is ensured by clusters of mesenchymal and epithelial stem cells that are located at the posterior part of these teeth. Genetic lineage tracing studies have shown that dental epithelial stem cells (DESCs) are able to generate all [...] Read more.
The continuous growth of rodent incisors is ensured by clusters of mesenchymal and epithelial stem cells that are located at the posterior part of these teeth. Genetic lineage tracing studies have shown that dental epithelial stem cells (DESCs) are able to generate all epithelial cell populations within incisors during homeostasis. However, it remains unclear whether these cells have the ability to adopt alternative fates in response to extrinsic factors. Here, we have studied the plasticity of DESCs in the context of mammary gland regeneration. Transplantation of DESCs together with mammary epithelial cells into the mammary stroma resulted in the formation of chimeric ductal epithelial structures in which DESCs adopted all the possible mammary fates including milk-producing alveolar cells. In addition, when transplanted without mammary epithelial cells, DESCs developed branching rudiments and cysts. These in vivo findings demonstrate that when outside their niche, DESCs redirect their fates according to their new microenvironment and thus can contribute to the regeneration of non-dental tissues. Full article
(This article belongs to the Special Issue Stem Cell Therapy in Oral and Maxillofacial Region)
Show Figures

Figure 1

Article
Exosome Treatment Enhances Anti-Inflammatory M2 Macrophages and Reduces Inflammation-Induced Pyroptosis in Doxorubicin-Induced Cardiomyopathy
Cells 2019, 8(10), 1224; https://doi.org/10.3390/cells8101224 - 09 Oct 2019
Cited by 63
Abstract
Doxorubicin (Dox) is an effective antineoplastic agent used to treat cancers, but its use is limited as Dox induces adverse cardiotoxic effects. Dox-induced cardiotoxicity (DIC) can lead to heart failure and death. There is no study that investigates whether embryonic stem cell-derived exosomes [...] Read more.
Doxorubicin (Dox) is an effective antineoplastic agent used to treat cancers, but its use is limited as Dox induces adverse cardiotoxic effects. Dox-induced cardiotoxicity (DIC) can lead to heart failure and death. There is no study that investigates whether embryonic stem cell-derived exosomes (ES-Exos) in DIC can attenuate inflammation-induced pyroptosis, pro-inflammatory M1 macrophages, inflammatory cell signaling, and adverse cardiac remodeling. For this purpose, we transplanted ES-Exos and compared with ES-cells (ESCs) to examine pyroptosis, inflammation, cell signaling, adverse cardiac remodeling, and their influence on DIC induced cardiac dysfunction. Therefore, we used C57BL/6J mice ages 10 ± 2 weeks and divided them into four groups (n = 6–8/group): Control, Dox, Dox + ESCs, and Dox + ES-Exos. Our data shows that the Dox treatment significantly increased expression of inflammasome markers (TLR4 and NLRP3), pyroptotic markers (caspase-1, IL1-β, and IL-18), cell signaling proteins (MyD88, p-P38, and p-JNK), pro-inflammatory M1 macrophages, and TNF-α cytokine. This increased pyroptosis, inflammation, and cell signaling proteins were inhibited with ES-Exos or ESCs. Moreover, ES-Exos or ESCs increased M2 macrophages and anti-inflammatory cytokine, IL-10. Additionally, ES-Exos or ESCs treatment inhibited significantly cytoplasmic vacuolization, myofibril loss, hypertrophy, and improved heart function. In conclusion, for the first time we demonstrated that Dox-induced pyroptosis and cardiac remodeling are ameliorated by ES-Exos or ESCs. Full article
(This article belongs to the Special Issue Cells in Cardiovascular Disease)
Show Figures

Graphical abstract

Article
Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes
Cells 2019, 8(9), 1095; https://doi.org/10.3390/cells8091095 - 17 Sep 2019
Cited by 46
Abstract
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) (iPSC-CMs) are a promising cell source for myocardial regeneration, disease modeling and drug assessment. However, iPSC-CMs exhibit immature fetal CM-like characteristics that are different from adult CMs in several aspects, including cellular structure and metabolism. [...] Read more.
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) (iPSC-CMs) are a promising cell source for myocardial regeneration, disease modeling and drug assessment. However, iPSC-CMs exhibit immature fetal CM-like characteristics that are different from adult CMs in several aspects, including cellular structure and metabolism. As an example, glycolysis is a major energy source for immature CMs. As CMs mature, the mitochondrial oxidative capacity increases, with fatty acid β-oxidation becoming a key energy source to meet the heart’s high energy demand. The immaturity of iPSC-CMs thereby limits their applications. The aim of this study was to investigate whether the energy substrate fatty acid-treated iPSC-CMs exhibit adult CM-like metabolic properties. After 20 days of differentiation from human iPSCs, iPSC-CMs were sequentially cultured with CM purification medium (lactate+/glucose-) for 7 days and maturation medium (fatty acids+/glucose-) for 3–7 days by mimicking the adult CM’s preference of utilizing fatty acids as a major metabolic substrate. The purity and maturity of iPSC-CMs were characterized via the analysis of: (1) Expression of CM-specific markers (e.g., troponin T, and sodium and potassium channels) using RT-qPCR, Western blot or immunofluorescence staining and electron microscopy imaging; and (2) cell energy metabolic profiles using the XF96 Extracellular Flux Analyzer. iPSCs-CMs (98% purity) cultured in maturation medium exhibited enhanced elongation, increased mitochondrial numbers with more aligned Z-lines, and increased expression of matured CM-related genes, suggesting that fatty acid-contained medium promotes iPSC-CMs to undergo maturation. In addition, the oxygen consumption rate (OCR) linked to basal respiration, ATP production, and maximal respiration and spare respiratory capacity (representing mitochondrial function) was increased in matured iPSC-CMs. Mature iPSC-CMs also displayed a larger change in basal and maximum respirations due to the utilization of exogenous fatty acids (palmitate) compared with non-matured control iPSC-CMs. Etomoxir (a carnitine palmitoyltransferase 1 inhibitor) but not 2-deoxyglucose (an inhibitor of glycolysis) abolished the palmitate pretreatment-mediated OCR increases in mature iPSC-CMs. Collectively, our data demonstrate for the first time that fatty acid treatment promotes metabolic maturation of iPSC-CMs (as evidenced by enhanced mitochondrial oxidative function and strong capacity of utilizing fatty acids as energy source). These matured iPSC-CMs might be a promising human CM source for broad biomedical application. Full article
(This article belongs to the Special Issue Stem Cell-based Therapy and Disease Modeling)
Show Figures

Graphical abstract

Article
Melatonin Effects on Non-Alcoholic Fatty Liver Disease Are Related to MicroRNA-34a-5p/Sirt1 Axis and Autophagy
Cells 2019, 8(9), 1053; https://doi.org/10.3390/cells8091053 - 08 Sep 2019
Cited by 32
Abstract
Melatonin, an indole produced by pineal and extrapineal tissues, but also taken with a vegetarian diet, has strong anti-oxidant, anti-inflammatory and anti-obesogenic potentials. Non-alcoholic fatty liver disease (NAFLD) is the hepatic side of the metabolic syndrome. NAFLD is a still reversible phase but [...] Read more.
Melatonin, an indole produced by pineal and extrapineal tissues, but also taken with a vegetarian diet, has strong anti-oxidant, anti-inflammatory and anti-obesogenic potentials. Non-alcoholic fatty liver disease (NAFLD) is the hepatic side of the metabolic syndrome. NAFLD is a still reversible phase but may evolve into steatohepatitis (NASH), cirrhosis and carcinoma. Currently, an effective therapy for blocking NAFLD staging is lacking. Silent information regulator 1 (SIRT1), a NAD+ dependent histone deacetylase, modulates the energetic metabolism in the liver. Micro-RNA-34a-5p, a direct inhibitor of SIRT1, is an emerging indicator of NAFLD grading. Thus, here we analyzed the effects of oral melatonin against NAFLD and underlying molecular mechanisms, focusing on steatosis, ER stress, mitochondrial shape and autophagy. Male C57BL/6J (WT) and SIRT1 heterozygous (HET) mice were placed either on a high-fat diet (58.4% energy from lard) (HFD) or on a standard maintenance diet (8.4% energy from lipids) for 16 weeks, drinking melatonin (10 mg/kg) or not. Indirect calorimetry, glucose tolerance, steatosis, inflammation, ER stress, mitochondrial changes, autophagy and microRNA-34a-5p expression were estimated. Melatonin improved hepatic metabolism and steatosis, influenced ER stress and mitochondrial shape, and promoted autophagy in WT HFD mice. Conversely, melatonin was ineffective in HET HFD mice, maintaining NASH changes. Indeed, autophagy was inconsistent in HET HFD or starved mice, as indicated by LC3II/LC3I ratio, p62/SQSTM1 and autophagosomes estimation. The beneficial role of melatonin in dietary induced NAFLD/NASH in mice was related to reduced expression of microRNA-34a-5p and sterol regulatory element-binding protein (SREBP1) but only in the presence of full SIRT1 availability. Full article
(This article belongs to the Special Issue Melatonin in Human Health and Diseases)
Show Figures

Figure 1

Article
Microglial Phenotyping in Neurodegenerative Disease Brains: Identification of Reactive Microglia with an Antibody to Variant of CD105/Endoglin
Cells 2019, 8(7), 766; https://doi.org/10.3390/cells8070766 - 23 Jul 2019
Cited by 10
Abstract
Inflammation is considered a key pathological process in neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD), but there are still mechanisms not understood. In the brain, most microglia are performing essential homeostatic functions, but can also respond to pathogenic stimuli by [...] Read more.
Inflammation is considered a key pathological process in neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD), but there are still mechanisms not understood. In the brain, most microglia are performing essential homeostatic functions, but can also respond to pathogenic stimuli by producing harmful pro-inflammatory cytokines or free radicals. Distinguishing between damaging and homeostatic microglia in human diseased brain tissues is a challenge. This report describes findings using a monoclonal antibody to CD105/Endoglin (R&D Systems MAB1097) that identifies subtypes of activated microglia. CD105/Endoglin is a co-receptor for transforming growth factor beta (TGFβ) receptor that antagonizes TGFβ signaling. CD105/Endoglin is a marker for vascular endothelial cells, but was originally identified as a marker for activated macrophages. This antibody did not identify endothelial cells in brain sections, only microglia-like cells. In this study, we examined with this antibody tissue section from middle temporal gyrus derived from human brains from normal control subjects with low-plaque pathology, high-plaque pathology, and AD cases, and also substantia nigra samples from control and PD cases, in conjunction with antibodies to markers of pathology and microglia. In low-plaque pathology cases, CD105-positive microglia were mostly absent, but noticeably increased with increasing pathology. CD105-positive cells strongly colocalized with amyloid-beta plaques, but not phosphorylated tau positive tangles. In substantia nigra, strong microglial CD105 staining was observed in microglia associated with degenerating dopaminergic neurons and neuromelanin. In PD cases with few surviving dopaminergic neurons, this staining had decreased. By Western blot, this antibody identified polypeptide bands of 70 kDa in brain samples, and samples from microglia, macrophages, and brain endothelial cells. In comparison with other tested CD105 antibodies, this antibody did not recognize the glycosylated forms of CD105 on Western blots. Overall, the data indicate that this antibody and this marker could have utility for subtyping of microglia in pathologically-involved tissue. Full article
(This article belongs to the Special Issue Microglia in Neurodegenerative Diseases)
Show Figures

Graphical abstract

Article
Neurological Enhancement Effects of Melatonin against Brain Injury-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling
Cells 2019, 8(7), 760; https://doi.org/10.3390/cells8070760 - 21 Jul 2019
Cited by 66
Abstract
Oxidative stress and energy imbalance strongly correlate in neurodegenerative diseases. Repeated concussion is becoming a serious public health issue with uncontrollable adverse effects in the human population, which involve cognitive dysfunction and even permanent disability. Here, we demonstrate that traumatic brain injury (TBI) [...] Read more.
Oxidative stress and energy imbalance strongly correlate in neurodegenerative diseases. Repeated concussion is becoming a serious public health issue with uncontrollable adverse effects in the human population, which involve cognitive dysfunction and even permanent disability. Here, we demonstrate that traumatic brain injury (TBI) evokes oxidative stress, disrupts brain energy homeostasis, and boosts neuroinflammation, which further contributes to neuronal degeneration and cognitive dysfunction in the mouse brain. We also demonstrate that melatonin (an anti-oxidant agent) treatment exerts neuroprotective effects, while overcoming oxidative stress and energy depletion and reducing neuroinflammation and neurodegeneration. Male C57BL/6N mice were used as a model for repetitive mild traumatic brain injury (rmTBI) and were treated with melatonin. Protein expressions were examined via Western blot analysis, immunofluorescence, and ELISA; meanwhile, behavior analysis was performed through a Morris water maze test, and Y-maze and beam-walking tests. We found elevated oxidative stress, depressed phospho-5′AMP-activated protein kinase (p-AMPK) and phospho- CAMP-response element-binding (p-CREB) levels, and elevated p-NF-κB in rmTBI mouse brains, while melatonin treatment significantly regulated p-AMPK, p-CREB, and p-NF-κB in the rmTBI mouse brain. Furthermore, rmTBI mouse brains showed a deregulated mitochondrial system, abnormal amyloidogenic pathway activation, and cognitive functions which were significantly regulated by melatonin treatment in the mice. These findings provide evidence, for the first time, that rmTBI induces brain energy imbalance and reduces neuronal cell survival, and that melatonin treatment overcomes energy depletion and protects against brain damage via the regulation of p-AMPK/p-CREB signaling pathways in the mouse brain. Full article
(This article belongs to the Special Issue Melatonin in Human Health and Diseases)
Show Figures

Figure 1

Article
Prognostic Significance of TWIST1, CD24, CD44, and ALDH1 Transcript Quantification in EpCAM-Positive Circulating Tumor Cells from Early Stage Breast Cancer Patients
Cells 2019, 8(7), 652; https://doi.org/10.3390/cells8070652 - 29 Jun 2019
Cited by 26
Abstract
(1) Background: The aim of the study was to evaluate the prognostic significance of EMT-associated (TWIST1) and stem-cell (SC) transcript (CD24, CD44, ALDH1) quantification in EpCAM+ circulating tumor cells (CTCs) of early breast cancer patients. (2) Methods: 100 [...] Read more.
(1) Background: The aim of the study was to evaluate the prognostic significance of EMT-associated (TWIST1) and stem-cell (SC) transcript (CD24, CD44, ALDH1) quantification in EpCAM+ circulating tumor cells (CTCs) of early breast cancer patients. (2) Methods: 100 early stage breast cancer patients and 19 healthy donors were enrolled in the study. CD24, CD44, and ALDH1 transcripts of EpCAM+ cells were quantified using a novel highly sensitive and specific quadraplex RT-qPCR, while TWIST1 transcripts were quantified by single RT-qPCR. All patients were followed up for more than 5 years. (3) Results: A significant positive correlation between overexpression of TWIST1 and CD24−/low/CD44high profile was found. Kaplan–Meier analysis revealed that the ER/PR-negative (HR-) patients and those patients with more than 3 positive lymph nodes that overexpressed TWIST1 in EpCAM+ cells had a significant lower DFI (log rank test; p < 0.001, p < 0.001) and OS (log rank test; p = 0.006, p < 0.001). Univariate and multivariate analysis also revealed the prognostic value of TWIST1 overexpression and CD24−/low/CD44high and CD24−/low/ALDH1high profile for both DFI and OS. (4) Conclusions: Detection of TWIST1 overexpression and stem-cell (CD24, CD44, ALDH1) transcripts in EpCAM+ CTCs provides prognostic information in early stage breast cancer patients. Full article
Show Figures

Figure 1

Article
Fecal Microbiota Transplantation Controls Murine Chronic Intestinal Inflammation by Modulating Immune Cell Functions and Gut Microbiota Composition
Cells 2019, 8(6), 517; https://doi.org/10.3390/cells8060517 - 28 May 2019
Cited by 32
Abstract
Different gastrointestinal disorders, including inflammatory bowel diseases (IBD), have been linked to alterations of the gut microbiota composition, namely dysbiosis. Fecal microbiota transplantation (FMT) is considered an encouraging therapeutic approach for ulcerative colitis patients, mostly as a consequence of normobiosis restoration. We recently [...] Read more.
Different gastrointestinal disorders, including inflammatory bowel diseases (IBD), have been linked to alterations of the gut microbiota composition, namely dysbiosis. Fecal microbiota transplantation (FMT) is considered an encouraging therapeutic approach for ulcerative colitis patients, mostly as a consequence of normobiosis restoration. We recently showed that therapeutic effects of FMT during acute experimental colitis are linked to functional modulation of the mucosal immune system and of the gut microbiota composition. Here we analysed the effects of therapeutic FMT administration during chronic experimental colitis, a condition more similar to that of IBD patients, on immune-mediated mucosal inflammatory pathways. Mucus and feces from normobiotic donors were orally administered to mice with established chronic Dextran Sodium Sulphate (DSS)-induced colitis. Immunophenotypes and functions of infiltrating colonic immune cells were evaluated by cytofluorimetric analysis. Compositional differences in the intestinal microbiome were analyzed by 16S rRNA sequencing. Therapeutic FMT in mice undergoing chronic intestinal inflammation was capable to decrease colonic inflammation by modulating the expression of pro-inflammatory genes, antimicrobial peptides, and mucins. Innate and adaptive mucosal immune cells manifested a reduced pro-inflammatory profile in FMT-treated mice. Finally, restoration of a normobiotic core ecology contributed to the resolution of inflammation. Thus, FMT is capable of controlling chronic intestinal experimental colitis by inducing a concerted activation of anti-inflammatory immune pathways, mechanistically supporting the positive results of FMT treatment reported in ulcerative colitis patients. Full article
Show Figures

Graphical abstract

Article
Single Cell RNA Sequencing Identifies Subsets of Hepatic Stellate Cells and Myofibroblasts in Liver Fibrosis
Cells 2019, 8(5), 503; https://doi.org/10.3390/cells8050503 - 24 May 2019
Cited by 79
Abstract
Activation of hepatic stellate cells (HSCs) and their trans-differentiation towards collagen-secreting myofibroblasts (MFB) promote liver fibrosis progression. During chronic liver disease, resting HSCs become activated by inflammatory and injury signals. However, HSCs/MFB not only produce collagen, but also secrete cytokines, participate in metabolism, [...] Read more.
Activation of hepatic stellate cells (HSCs) and their trans-differentiation towards collagen-secreting myofibroblasts (MFB) promote liver fibrosis progression. During chronic liver disease, resting HSCs become activated by inflammatory and injury signals. However, HSCs/MFB not only produce collagen, but also secrete cytokines, participate in metabolism, and have biomechanical properties. We herein aimed to characterize the heterogeneity of these liver mesenchymal cells by single cell RNA sequencing. In vivo resting HSCs or activated MFB were isolated from C57BL6/J mice challenged by carbon tetrachloride (CCl4) intraperitoneally for 3 weeks to induce liver fibrosis and compared to in vitro cultivated MFB. While resting HSCs formed a homogenous population characterized by high platelet derived growth factor receptor β (PDGFRβ) expression, in vivo and in vitro activated MFB split into heterogeneous populations, characterized by α-smooth muscle actin (α-SMA), collagens, or immunological markers. S100 calcium binding protein A6 (S100A6) was a universal marker of activated MFB on both the gene and protein expression level. Compared to the heterogeneity of in vivo MFB, MFB in vitro sequentially and only transiently expressed marker genes, such as chemokines, during culture activation. Taken together, our data demonstrate the heterogeneity of HSCs and MFB, indicating the existence of functionally relevant subsets in hepatic fibrosis. Full article
Show Figures

Graphical abstract

Article
Anti-Inflammatory Effects by Pharmacological Inhibition or Knockdown of Fatty Acid Amide Hydrolase in BV2 Microglial Cells
Cells 2019, 8(5), 491; https://doi.org/10.3390/cells8050491 - 22 May 2019
Cited by 15
Abstract
Fatty acid amide hydrolase (FAAH) has been recognized as a therapeutic target for several neurological diseases because its inhibition can exert neuroprotective and anti-inflammatory effects by boosting the endogenous levels of N-acylethanolamines. However, previous studies have shown inconsistent results by pharmacological inhibition [...] Read more.
Fatty acid amide hydrolase (FAAH) has been recognized as a therapeutic target for several neurological diseases because its inhibition can exert neuroprotective and anti-inflammatory effects by boosting the endogenous levels of N-acylethanolamines. However, previous studies have shown inconsistent results by pharmacological inhibition and genetic deletion of FAAH in response to inflammation. In this study we used two inhibitors, PF3845 and URB597, together with siRNA knockdown to characterize further the effects of FAAH inhibition in BV2 microglial cells. Treatment with PF3845 suppressed lipopolysaccharide (LPS)-induced prostaglandin E2 (PGE2) production, and down-regulated cyclooxygenase-2 and microsomal PGE synthase. PF3845 reduced the expression of pro-inflammatory cytokines but had no effect on the expression of anti-inflammatory cytokines. The anti-inflammatory effects of URB597 were not as potent as those of PF3845. Knockdown of FAAH also suppressed PGE2 production and pro-inflammatory gene expression. Interestingly, FAAH knockdown enhanced expression of anti-inflammatory molecules in both the absence and presence of LPS treatment. The anti-inflammatory effects of FAAH inhibition and knockdown were not affected by the cannabinoid receptor antagonists or the peroxisome proliferator-activated receptor (PPAR) antagonists. Although inhibition and knockdown of FAAH have potent anti-inflammatory effects and possibly lead to the dynamic change of microglial gene regulation, the underlying mechanisms remain to be elucidated. Full article
Show Figures

Graphical abstract

Article
An In Vitro System for Evaluating Molecular Targeted Drugs Using Lung Patient-Derived Tumor Organoids
Cells 2019, 8(5), 481; https://doi.org/10.3390/cells8050481 - 20 May 2019
Cited by 18
Abstract
Patient-derived tumor organoids (PDOs) represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture models. We have established PDOs from various human tumors to accurately and efficiently recapitulate the tissue architecture and function. Molecular targeted therapies with remarkable [...] Read more.
Patient-derived tumor organoids (PDOs) represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture models. We have established PDOs from various human tumors to accurately and efficiently recapitulate the tissue architecture and function. Molecular targeted therapies with remarkable efficacy are currently in use against various tumors. Thus, there is a need for in vitro functional-potency assays that can be used to test the efficacy of molecular targeted drugs and model complex interactions between immune cells and tumor cells to evaluate the potential for cancer immunotherapy. This study represents an in vitro evaluation of different classes of molecular targeted drugs, including small-molecule inhibitors, monoclonal antibodies, and an antibody-drug conjugate, using lung PDOs. We evaluated epidermal growth factor receptor and human epidermal growth factor receptor 2 (HER2) inhibitors using a suitable high-throughput assay system. Next, the antibody-dependent cellular cytotoxicity (ADCC) activity of an anti-HER2 monoclonal antibody was evaluated to visualize the interactions of immune cells with PDOs during ADCC responses. Moreover, an evaluation system was developed for the immune checkpoint inhibitors, nivolumab and pembrolizumab, using PDOs. Our results demonstrate that the in vitro assay systems using PDOs were suitable for evaluating molecular targeted drugs under conditions that better reflect pathological conditions. Full article
Show Figures

Figure 1

Article
A Cleared View on Retinal Organoids
Cells 2019, 8(5), 391; https://doi.org/10.3390/cells8050391 - 28 Apr 2019
Cited by 26
Abstract
Human induced pluripotent stem cell (hiPSC)-derived organoids mimicking tissues and organs in vitro have advanced medical research, as they opened up new possibilities for in-depth basic research on human organ development as well as providing a human in vitro model for personalized therapeutic [...] Read more.
Human induced pluripotent stem cell (hiPSC)-derived organoids mimicking tissues and organs in vitro have advanced medical research, as they opened up new possibilities for in-depth basic research on human organ development as well as providing a human in vitro model for personalized therapeutic approaches. hiPSC-derived retinal organoids have proven to be of great value for modeling the human retina featuring a very similar cellular composition, layering, and functionality. The technically challenging imaging of three-dimensional structures such as retinal organoids has, however, raised the need for robust whole-organoid imaging techniques. To improve imaging of retinal organoids we optimized a passive clearing technique (PACT), which enables high-resolution visualization of fragile intra-tissue structures. Using cleared retinal organoids, we could greatly enhance the antibody labeling efficiency and depth of imaging at high resolution, thereby improving the three-dimensional microscopy output. In that course, we were able to identify the spatial morphological shape and organization of, e.g., photoreceptor cells and bipolar cell layers. Moreover, we used the synaptic protein CtBP2/Ribeye to visualize the interconnection points of photoreceptor and bipolar cells forming the retinal-specific ribbon synapses. Full article
(This article belongs to the Special Issue Stem Cells in Personalized Medicine)
Show Figures

Graphical abstract

Article
Rainbow Trout Red Blood Cells Exposed to Viral Hemorrhagic Septicemia Virus Up-Regulate Antigen-Processing Mechanisms and MHC I&II, CD86, and CD83 Antigen-presenting Cell Markers
Cells 2019, 8(5), 386; https://doi.org/10.3390/cells8050386 - 27 Apr 2019
Cited by 17
Abstract
Nucleated teleost red blood cells (RBCs) are known to express molecules from the major histocompatibility complex and peptide-generating processes such as autophagy and proteasomes, but the role of RBCs in antigen presentation of viruses have not been studied yet. In this study, RBCs [...] Read more.
Nucleated teleost red blood cells (RBCs) are known to express molecules from the major histocompatibility complex and peptide-generating processes such as autophagy and proteasomes, but the role of RBCs in antigen presentation of viruses have not been studied yet. In this study, RBCs exposed ex vivo to viral hemorrhagic septicemia virus (VHSV) were evaluated by means of transcriptomic and proteomic approaches. Genes and proteins related to antigen presentation molecules, proteasome degradation, and autophagy were up-regulated. VHSV induced accumulation of ubiquitinated proteins in ex vivo VHSV-exposed RBCs and showed at the same time a decrease of proteasome activity. Furthermore, induction of autophagy was detected by evaluating LC3 protein levels. Sequestosome-1/p62 underwent degradation early after VHSV exposure, and it may be a link between ubiquitination and autophagy activation. Inhibition of autophagosome degradation with niclosamide resulted in intracellular detection of N protein of VHSV (NVHSV) and p62 accumulation. In addition, antigen presentation cell markers, such as major histocompatibility complex (MHC) class I & II, CD83, and CD86, increased at the transcriptional and translational level in rainbow trout RBCs exposed to VHSV. In summary, we show that nucleated rainbow trout RBCs can degrade VHSV while displaying an antigen-presenting cell (APC)-like profile. Full article
Show Figures

Graphical abstract

Article
MAGI1 Mediates eNOS Activation and NO Production in Endothelial Cells in Response to Fluid Shear Stress
Cells 2019, 8(5), 388; https://doi.org/10.3390/cells8050388 - 27 Apr 2019
Cited by 17
Abstract
Fluid shear stress stimulates endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production through multiple kinases, including protein kinase A (PKA), AMP-activated protein kinase (AMPK), AKT and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Membrane-associated guanylate kinase (MAGUK) with inverted domain [...] Read more.
Fluid shear stress stimulates endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production through multiple kinases, including protein kinase A (PKA), AMP-activated protein kinase (AMPK), AKT and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Membrane-associated guanylate kinase (MAGUK) with inverted domain structure-1 (MAGI1) is an adaptor protein that stabilizes epithelial and endothelial cell-cell contacts. The aim of this study was to assess the unknown role of endothelial cell MAGI1 in response to fluid shear stress. We show constitutive expression and co-localization of MAGI1 with vascular endothelial cadherin (VE-cadherin) in endothelial cells at cellular junctions under static and laminar flow conditions. Fluid shear stress increases MAGI1 expression. MAGI1 silencing perturbed flow-dependent responses, specifically, Krüppel-like factor 4 (KLF4) expression, endothelial cell alignment, eNOS phosphorylation and NO production. MAGI1 overexpression had opposite effects and induced phosphorylation of PKA, AMPK, and CAMKII. Pharmacological inhibition of PKA and AMPK prevented MAGI1-mediated eNOS phosphorylation. Consistently, MAGI1 silencing and PKA inhibition suppressed the flow-induced NO production. Endothelial cell-specific transgenic expression of MAGI1 induced PKA and eNOS phosphorylation in vivo and increased NO production ex vivo in isolated endothelial cells. In conclusion, we have identified endothelial cell MAGI1 as a previously unrecognized mediator of fluid shear stress-induced and PKA/AMPK dependent eNOS activation and NO production. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis of Cardiovascular Disease)
Show Figures

Graphical abstract

Article
Combined Inhibition of TGF-β Signaling and the PD-L1 Immune Checkpoint Is Differentially Effective in Tumor Models
Cells 2019, 8(4), 320; https://doi.org/10.3390/cells8040320 - 05 Apr 2019
Cited by 52
Abstract
Antibodies blocking the programmed death-ligand 1 (PD-L1) have shown impressive and durable responses in clinical studies. However, this type of immunotherapy is only effective in a subset of patients and not sufficient for rejection of all tumor types. In this study, we explored [...] Read more.
Antibodies blocking the programmed death-ligand 1 (PD-L1) have shown impressive and durable responses in clinical studies. However, this type of immunotherapy is only effective in a subset of patients and not sufficient for rejection of all tumor types. In this study, we explored in two mouse tumor models whether the antitumor effect could be enhanced by the combined blockade of PD-L1 and transforming growth factor-β (TGF-β), a potent immunosuppressive cytokine. The effect of anti-PD-L1 mouse monoclonal (mAb) and a TGF-β type I receptor small molecule kinase inhibitor (LY364947) was evaluated in the highly immunogenic mouse MC38 colon adenocarcinoma and the poorly immunogenic mouse KPC1 pancreatic tumor model. In the MC38 tumor model, LY364947 monotherapy did not show any antitumor effect, whereas treatment with anti-PD-L1 mAb significantly delayed tumor outgrowth. However, combination therapy showed the strongest therapeutic efficacy, resulting in improved long-term survival compared with anti-PD-L1 mAb monotherapy. This improved survival was associated with an increased influx of CD8+ T cells in the tumor microenvironment. In the KPC1 tumor model, LY364947 did not enhance the antitumor effect of anti-PD-L1 mAb. Despite this, delayed KPC1 tumor outgrowth was observed in the LY364947-treated group and this treatment led to a significant reduction of CD4+ T cells in the tumor microenvironment. Together, our data indicate that an additive anti-tumor response of dual targeting PD-L1 and TGF-β is dependent on the tumor model used, highlighting the importance of selecting appropriate cancer types, using in-depth analysis of the tumor microenvironment, which can benefit from combinatorial immunotherapy regimens. Full article
(This article belongs to the Special Issue TGF-beta/BMP Signaling Pathway)
Show Figures

Graphical abstract

Article
Hepatitis C Virus Non-Structural Protein 5A (NS5A) Disrupts Mitochondrial Dynamics and Induces Mitophagy
Cells 2019, 8(4), 290; https://doi.org/10.3390/cells8040290 - 29 Mar 2019
Cited by 31
Abstract
Mitophagy is a selective form of autophagy, targeting damaged mitochondria for lysosomal degradation. Although HCV infection has been shown to induce mitophagy, the precise underlying mechanism and the effector protein responsible remain unclear. Herein, we demonstrated that the HCV non-structural protein 5A (NS5A) [...] Read more.
Mitophagy is a selective form of autophagy, targeting damaged mitochondria for lysosomal degradation. Although HCV infection has been shown to induce mitophagy, the precise underlying mechanism and the effector protein responsible remain unclear. Herein, we demonstrated that the HCV non-structural protein 5A (NS5A) plays a key role in regulating cellular mitophagy. Specifically, the expression of HCV NS5A in the hepatoma cells triggered hallmarks of mitophagy including mitochondrial fragmentation, loss of mitochondrial membrane potential, and Parkin translocation to the mitochondria. Furthermore, mitophagy induction through the expression of NS5A led to an increase in autophagic flux as demonstrated by an accumulation of LC3II in the presence of bafilomycin and a time-dependent decrease in p62 protein level. Intriguingly, the expression of NS5A concomitantly enhanced reactive oxygen species (ROS) production, and treatment with an antioxidant attenuated the NS5A-induced mitophagy event. These phenomena are similarly recapitulated in the NS5A-expressing HCV subgenomic replicon cells. Finally, we demonstrated that expression of HCV core, which has been documented to inhibit mitophagy, blocked the mitophagy induction both in cells harboring HCV replicating subgenomes or expressing NS5A alone. Our results, therefore, identified a new role for NS5A as an important regulator of HCV-induced mitophagy and have implications to broadening our understanding of the HCV-mitophagy interplay. Full article
(This article belongs to the Special Issue Hepatitis C Virus and Host Interactions)
Show Figures

Figure 1

Article
Novel Flavivirus Antiviral That Targets the Host Nuclear Transport Importin α/β1 Heterodimer
Cells 2019, 8(3), 281; https://doi.org/10.3390/cells8030281 - 24 Mar 2019
Cited by 22
Abstract
Dengue virus (DENV) threatens almost 70% of the world’s population, with no effective vaccine or therapeutic currently available. A key contributor to infection is nuclear localisation in the infected cell of DENV nonstructural protein 5 (NS5) through the action of the host importin [...] Read more.
Dengue virus (DENV) threatens almost 70% of the world’s population, with no effective vaccine or therapeutic currently available. A key contributor to infection is nuclear localisation in the infected cell of DENV nonstructural protein 5 (NS5) through the action of the host importin (IMP) α/β1 proteins. Here, we used a range of microscopic, virological and biochemical/biophysical approaches to show for the first time that the small molecule GW5074 has anti-DENV action through its novel ability to inhibit NS5–IMPα/β1 interaction in vitro as well as NS5 nuclear localisation in infected cells. Strikingly, GW5074 not only inhibits IMPα binding to IMPβ1, but can dissociate preformed IMPα/β1 heterodimer, through targeting the IMPα armadillo (ARM) repeat domain to impact IMPα thermal stability and α-helicity, as shown using analytical ultracentrifugation, thermostability analysis and circular dichroism measurements. Importantly, GW5074 has strong antiviral activity at low µM concentrations against not only DENV-2, but also zika virus and West Nile virus. This work highlights DENV NS5 nuclear targeting as a viable target for anti-flaviviral therapeutics. Full article
(This article belongs to the Special Issue Nuclear Transport in Ageing and Diseases)
Show Figures

Figure 1

Article
Promethin Is a Conserved Seipin Partner Protein
Cells 2019, 8(3), 268; https://doi.org/10.3390/cells8030268 - 21 Mar 2019
Cited by 32
Abstract
Seipin (BSCL2/SPG17) is a key factor in lipid droplet (LD) biology, and its dysfunction results in severe pathologies, including the fat storage disease Berardinelli-Seip congenital lipodystrophy type 2, as well as several neurological seipinopathies. Despite its importance for human health, the molecular role [...] Read more.
Seipin (BSCL2/SPG17) is a key factor in lipid droplet (LD) biology, and its dysfunction results in severe pathologies, including the fat storage disease Berardinelli-Seip congenital lipodystrophy type 2, as well as several neurological seipinopathies. Despite its importance for human health, the molecular role of seipin is still enigmatic. Seipin is evolutionarily conserved from yeast to humans. In yeast, seipin was recently found to cooperate with the lipid droplet organization (LDO) proteins, Ldo16 and Ldo45, two structurally-related proteins involved in LD function and identity that display remote homology to the human protein promethin/TMEM159. In this study, we show that promethin is indeed an LD-associated protein that forms a complex with seipin, and its localization to the LD surface can be modulated by seipin expression levels. We thus identify promethin as a novel seipin partner protein. Full article
Show Figures

Graphical abstract

Article
Sigma-1 Receptor Activation Induces Autophagy and Increases Proteostasis Capacity In Vitro and In Vivo
Cells 2019, 8(3), 211; https://doi.org/10.3390/cells8030211 - 02 Mar 2019
Cited by 31
Abstract
Dysfunction of autophagy and disturbed protein homeostasis are linked to the pathogenesis of human neurodegenerative diseases and the modulation of autophagy as the protein clearance process has become one key pharmacological target. Due to the role of sigma-1 receptors (Sig-1R) in learning and [...] Read more.
Dysfunction of autophagy and disturbed protein homeostasis are linked to the pathogenesis of human neurodegenerative diseases and the modulation of autophagy as the protein clearance process has become one key pharmacological target. Due to the role of sigma-1 receptors (Sig-1R) in learning and memory, and the described pleiotropic neuroprotective effects in various experimental paradigms, Sig-1R activation is recognized as one potential approach for prevention and therapy of neurodegeneration and, interestingly, in amyotrophic lateral sclerosis associated with mutated Sig-1R, autophagy is disturbed. Here we analyzed the effects of tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73), a muscarinic receptor ligand and Sig-1R agonist, on autophagy and proteostasis. We describe, at the molecular level, for the first time, that pharmacological Sig-1R activation a) enhances the autophagic flux in human cells and in Caenorhabditis elegans and b) increases proteostasis capacity, ultimately ameliorating paralysis caused by protein aggregation in C. elegans. ANAVEX2-73 is already in clinical investigation for the treatment of Alzheimer’s disease, and the novel activities of this compound on autophagy and proteostasis described here may have consequences for the use and further development of the Sig-1R as a drug target in the future. Moreover, our study defines the Sig-1R as an upstream modulator of canonical autophagy, which may have further implications for various conditions with dysfunctional autophagy, besides neurodegeneration. Full article
(This article belongs to the Special Issue Proteostasis and Autophagy)
Show Figures

Graphical abstract

Article
Anti-Inflammatory Effect of Sulforaphane on LPS-Activated Microglia Potentially through JNK/AP-1/NF-κB Inhibition and Nrf2/HO-1 Activation
Cells 2019, 8(2), 194; https://doi.org/10.3390/cells8020194 - 22 Feb 2019
Cited by 97
Abstract
Sulforaphane (SFN), a potent nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is present in the species of the Brassicaceae, especially in broccoli sprouts. In this study, the effects of SFN against microglial activation and inflammation, and the potential mechanisms involved, were analyzed. [...] Read more.
Sulforaphane (SFN), a potent nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is present in the species of the Brassicaceae, especially in broccoli sprouts. In this study, the effects of SFN against microglial activation and inflammation, and the potential mechanisms involved, were analyzed. As mitogen-activated protein kinase (MAPK) signaling plays a key role in microglial activation and inflammation, we focused on the role of SFN in regulating the MAPK signaling regulation of the inflammatory and anti-inflammatory cascades in lipopolysaccharide (LPS)-activated microglia. The anti-inflammatory and immunomodulatory effects of SFN were explored by evaluating the expression and secretion of inflammatory proteins, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and activator protein-1 (AP-1) under pre- and post-treatment conditions. Under the SFN pre- and post-treatment conditions, the MAPK phosphorylation levels were significantly reduced in both acutely and chronically activated microglial cells. SFN also reduced the c-Jun N-terminal kinase (JNK) phosphorylation levels, which subsequently reduced NF-κB and AP-1 signaling. As a result, the expression of the inflammatory mediators (iNOS, COX-2, NO, and PGE2) and proinflammatory cytokines (TNF-α, IL-6, and IL-1β) was decreased. At the same time, SFN increased the expression of Nrf2 and heme oxygenase-1 (HO-1) as well as the production of the anti-inflammatory cytokines IL-10 and IL-4. In conclusion, this study demonstrated that SFN exerts an anti-neuroinflammatory effect on microglia through JNK/AP-1/NF-κB pathway inhibition and Nrf2/HO-1 pathway activation. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

Article
Apolipoprotein E4 Alters Astrocyte Fatty Acid Metabolism and Lipid Droplet Formation
Cells 2019, 8(2), 182; https://doi.org/10.3390/cells8020182 - 20 Feb 2019
Cited by 53
Abstract
Lipid droplets (LDs) serve as energy rich reservoirs and have been associated with apolipoprotein E (APOE) and neurodegeneration. The E4 allele of APOE (E4) is the strongest genetic risk factor for the development of late onset Alzheimer’s disease (AD). Since both [...] Read more.
Lipid droplets (LDs) serve as energy rich reservoirs and have been associated with apolipoprotein E (APOE) and neurodegeneration. The E4 allele of APOE (E4) is the strongest genetic risk factor for the development of late onset Alzheimer’s disease (AD). Since both E4 carriers and individuals with AD exhibit a state of cerebral lipid dyshomeostasis, we hypothesized that APOE may play a role in regulating LD metabolism. We found that astrocytes expressing E4 accumulate significantly more and smaller LDs compared to E3 astrocytes. Accordingly, expression of perilipin-2, an essential LD protein component, was higher in E4 astrocytes. We then probed fatty acid (FA) metabolism and found E4 astrocytes to exhibit decreased uptake of palmitate, and decreased oxidation of exogenously supplied oleate and palmitate. We then measured oxygen consumption rate, and found E4 astrocytes to consume more oxygen for endogenous FA oxidation and accumulate more LD-derived metabolites due to incomplete oxidation. Lastly, we found that E4 astrocytes are more sensitive to carnitine palmitoyltransferase-1 inhibition than E3 astrocytes. These findings offer the potential for further studies investigating the link between astrocyte lipid storage, utilization, and neurodegenerative disease as a function of APOE genotype. Full article
Show Figures

Graphical abstract

Article
Carnosine Prevents Aβ-Induced Oxidative Stress and Inflammation in Microglial Cells: A Key Role of TGF-β1
Cells 2019, 8(1), 64; https://doi.org/10.3390/cells8010064 - 17 Jan 2019
Cited by 49
Abstract
Carnosine (β-alanyl-L-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Carnosine is involved in cellular defense mechanisms against oxidative stress, including the inhibition of amyloid-beta (Aβ) aggregation and the scavenging of reactive species. Microglia play [...] Read more.
Carnosine (β-alanyl-L-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Carnosine is involved in cellular defense mechanisms against oxidative stress, including the inhibition of amyloid-beta (Aβ) aggregation and the scavenging of reactive species. Microglia play a central role in the pathogenesis of Alzheimer’s disease, promoting neuroinflammation through the secretion of inflammatory mediators and free radicals. However, the effects of carnosine on microglial cells and neuroinflammation are not well understood. In the present work, carnosine was tested for its ability to protect BV-2 microglial cells against oligomeric Aβ1-42-induced oxidative stress and inflammation. Carnosine prevented cell death in BV-2 cells challenged with Aβ oligomers through multiple mechanisms. Specifically, carnosine lowered the oxidative stress by decreasing NO and O2−• intracellular levels as well as the expression of iNOS and Nox enzymes. Carnosine also decreased the secretion of pro-inflammatory cytokines such as IL-1β, simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1. Carnosine also prevented Aβ-induced neurodegeneration in mixed neuronal cultures challenged with Aβ oligomers, and these neuroprotective effects were completely abolished by SB431542, a selective inhibitor of the type-1 TGF-β receptor. Our data suggest a multimodal mechanism of action of carnosine underlying its protective effects on microglial cells against Aβ toxicity with a key role of TGF-β1 in mediating these protective effects. Full article
(This article belongs to the Special Issue TGF-beta/BMP Signaling Pathway)
Show Figures

Graphical abstract

Article
Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest
Cells 2019, 8(1), 19; https://doi.org/10.3390/cells8010019 - 03 Jan 2019
Cited by 53
Abstract
Oxidative DNA damage, particularly 8-oxoguanine, represents the most frequent DNA damage in human cells, especially at the telomeric level. The presence of oxidative lesions in the DNA can hinder the replication fork and is able to activate the DNA damage response. In this [...] Read more.
Oxidative DNA damage, particularly 8-oxoguanine, represents the most frequent DNA damage in human cells, especially at the telomeric level. The presence of oxidative lesions in the DNA can hinder the replication fork and is able to activate the DNA damage response. In this study, we wanted to understand the mechanisms by which oxidative damage causes telomere dysfunction and senescence in human primary fibroblasts. After acute oxidative stress at telomeres, our data demonstrated a reduction in TRF1 and TRF2, which are involved in proper telomere replication and T-loop formation, respectively. Furthermore, we observed a higher level of γH2AX with respect to 53BP1 at telomeres, suggesting a telomeric replication fork stall rather than double-strand breaks. To confirm this finding, we studied the replication of telomeres by Chromosome Orientation-FISH (CO-FISH). The data obtained show an increase in unreplicated telomeres after hydrogen peroxide treatment, corroborating the idea that the presence of 8-oxoG can induce replication fork arrest at telomeres. Lastly, we analyzed the H3K9me3 histone mark after oxidative stress at telomeres, and our results showed an increase of this marker, most likely inducing the heterochromatinization of telomeres. These results suggest that 8-oxoG is fundamental in oxidative stress-induced telomeric damage, principally causing replication fork arrest. Full article
Show Figures

Graphical abstract

Article
A Rise in ATP, ROS, and Mitochondrial Content upon Glucose Withdrawal Correlates with a Dysregulated Mitochondria Turnover Mediated by the Activation of the Protein Deacetylase SIRT1
Cells 2019, 8(1), 11; https://doi.org/10.3390/cells8010011 - 27 Dec 2018
Cited by 21
Abstract
Glucose withdrawal has been used as a model for the study of homeostatic defense mechanisms, especially for how cells cope with a shortage of nutrient supply by enhancing catabolism. However, detailed cellular responses to glucose withdrawal have been poorly studied, and are controversial. [...] Read more.
Glucose withdrawal has been used as a model for the study of homeostatic defense mechanisms, especially for how cells cope with a shortage of nutrient supply by enhancing catabolism. However, detailed cellular responses to glucose withdrawal have been poorly studied, and are controversial. In this study, we determined how glucose withdrawal affects mitochondrial activity, and the quantity and the role of SIRT1 in these changes. The results of our study indicate a substantial increase in ATP production from mitochondria, through an elevation of mitochondrial biogenesis, mediated by SIRT1 activation that is driven by increased NAD+/NADH ratio. Moreover, mitochondria persisted in the cells as elongated forms, and apparently evaded mitophagic removal. This led to a steady increase in mitochondria content and the reactive oxygen species (ROS) generated from them, indicating failure in ATP and ROS homeostasis, due to a misbalance in SIRT1-mediated mitochondria turnover in conditions of glucose withdrawal. Our results suggest that SIRT1 activation alone cannot properly manage energy homeostasis under certain metabolic crisis conditions. Full article
(This article belongs to the Special Issue Mitochondrial Biology in Health and Disease)
Show Figures

Graphical abstract

Review

Review
High Mobility Group Box-1 and Blood–Brain Barrier Disruption
Cells 2020, 9(12), 2650; https://doi.org/10.3390/cells9122650 - 10 Dec 2020
Cited by 21
Abstract
Increasing evidence suggests that inflammatory responses are involved in the progression of brain injuries induced by a diverse range of insults, including ischemia, hemorrhage, trauma, epilepsy, and degenerative diseases. During the processes of inflammation, disruption of the blood–brain barrier (BBB) may play a [...] Read more.
Increasing evidence suggests that inflammatory responses are involved in the progression of brain injuries induced by a diverse range of insults, including ischemia, hemorrhage, trauma, epilepsy, and degenerative diseases. During the processes of inflammation, disruption of the blood–brain barrier (BBB) may play a critical role in the enhancement of inflammatory responses and may initiate brain damage because the BBB constitutes an interface between the brain parenchyma and the bloodstream containing blood cells and plasma. The BBB has a distinct structure compared with those in peripheral tissues: it is composed of vascular endothelial cells with tight junctions, numerous pericytes surrounding endothelial cells, astrocytic endfeet, and a basement membrane structure. Under physiological conditions, the BBB should function as an important element in the neurovascular unit (NVU). High mobility group box-1 (HMGB1), a nonhistone nuclear protein, is ubiquitously expressed in almost all kinds of cells. HMGB1 plays important roles in the maintenance of chromatin structure, the regulation of transcription activity, and DNA repair in nuclei. On the other hand, HMGB1 is considered to be a representative damage-associated molecular pattern (DAMP) because it is translocated and released extracellularly from different types of brain cells, including neurons and glia, contributing to the pathophysiology of many diseases in the central nervous system (CNS). The regulation of HMGB1 release or the neutralization of extracellular HMGB1 produces beneficial effects on brain injuries induced by ischemia, hemorrhage, trauma, epilepsy, and Alzheimer’s amyloidpathy in animal models and is associated with improvement of the neurological symptoms. In the present review, we focus on the dynamics of HMGB1 translocation in different disease conditions in the CNS and discuss the functional roles of extracellular HMGB1 in BBB disruption and brain inflammation. There might be common as well as distinct inflammatory processes for each CNS disease. This review will provide novel insights toward an improved understanding of a common pathophysiological process of CNS diseases, namely, BBB disruption mediated by HMGB1. It is proposed that HMGB1 might be an excellent target for the treatment of CNS diseases with BBB disruption. Full article
(This article belongs to the Special Issue Cell Biology: State-of-the-Art and Perspectives in Japan)
Show Figures

Figure 1

Review
Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets
Cells 2020, 9(10), 2308; https://doi.org/10.3390/cells9102308 - 16 Oct 2020
Cited by 40
Abstract
Aberrant metabolism is a major hallmark of cancer. Abnormal cancer metabolism, such as aerobic glycolysis and increased anabolic pathways, has important roles in tumorigenesis, metastasis, drug resistance, and cancer stem cells. Well-known oncogenic signaling pathways, such as phosphoinositide 3-kinase (PI3K)/AKT, Myc, and Hippo [...] Read more.
Aberrant metabolism is a major hallmark of cancer. Abnormal cancer metabolism, such as aerobic glycolysis and increased anabolic pathways, has important roles in tumorigenesis, metastasis, drug resistance, and cancer stem cells. Well-known oncogenic signaling pathways, such as phosphoinositide 3-kinase (PI3K)/AKT, Myc, and Hippo pathway, mediate metabolic gene expression and increase metabolic enzyme activities. Vice versa, deregulated metabolic pathways contribute to defects in cellular signal transduction pathways, which in turn provide energy, building blocks, and redox potentials for unrestrained cancer cell proliferation. Studies and clinical trials are being performed that focus on the inhibition of metabolic enzymes by small molecules or dietary interventions (e.g., fasting, calorie restriction, and intermittent fasting). Similar to genetic heterogeneity, the metabolic phenotypes of cancers are highly heterogeneous. This heterogeneity results from diverse cues in the tumor microenvironment and genetic mutations. Hence, overcoming metabolic plasticity is an important goal of modern cancer therapeutics. This review highlights recent findings on the metabolic phenotypes of cancer and elucidates the interactions between signal transduction pathways and metabolic pathways. We also provide novel rationales for designing the next-generation cancer metabolism drugs. Full article
(This article belongs to the Special Issue New Aspects of Targeting Cancer Metabolism in Therapeutic Approach)
Show Figures

Figure 1

Review
Therapeutic miRNA-Enriched Extracellular Vesicles: Current Approaches and Future Prospects
Cells 2020, 9(10), 2271; https://doi.org/10.3390/cells9102271 - 11 Oct 2020
Cited by 20
Abstract
Extracellular vesicles (EVs) are 50–300 nm vesicles secreted by eukaryotic cells. They can carry cargo (including miRNA) from the donor cell to the recipient cell. miRNAs in EVs can change the translational profile of the recipient cell and modulate cellular morphology. This endogenous [...] Read more.
Extracellular vesicles (EVs) are 50–300 nm vesicles secreted by eukaryotic cells. They can carry cargo (including miRNA) from the donor cell to the recipient cell. miRNAs in EVs can change the translational profile of the recipient cell and modulate cellular morphology. This endogenous mechanism has attracted the attention of the drug-delivery community in the last few years. EVs can be enriched with exogenous therapeutic miRNAs and used for treatment of diseases by targeting pathological recipient cells. However, there are some obstacles that need to be addressed before introducing therapeutic miRNA-enriched EVs in clinics. Here, we focused on the progress in the field of therapeutic miRNA enriched EVs, highlighted important areas where research is needed, and discussed the potential to use them as therapeutic miRNA carriers in the future. Full article
Show Figures

Figure 1

Review
Astrocyte and Oligodendrocyte Cross-Talk in the Central Nervous System
Cells 2020, 9(3), 600; https://doi.org/10.3390/cells9030600 - 03 Mar 2020
Cited by 59
Abstract
Over the last decade knowledge of the role of astrocytes in central nervous system (CNS) neuroinflammatory diseases has changed dramatically. Rather than playing a merely passive role in response to damage it is clear that astrocytes actively maintain CNS homeostasis by influencing pH, [...] Read more.
Over the last decade knowledge of the role of astrocytes in central nervous system (CNS) neuroinflammatory diseases has changed dramatically. Rather than playing a merely passive role in response to damage it is clear that astrocytes actively maintain CNS homeostasis by influencing pH, ion and water balance, the plasticity of neurotransmitters and synapses, cerebral blood flow, and are important immune cells. During disease astrocytes become reactive and hypertrophic, a response that was long considered to be pathogenic. However, recent studies reveal that astrocytes also have a strong tissue regenerative role. Whilst most astrocyte research focuses on modulating neuronal function and synaptic transmission little is known about the cross-talk between astrocytes and oligodendrocytes, the myelinating cells of the CNS. This communication occurs via direct cell-cell contact as well as via secreted cytokines, chemokines, exosomes, and signalling molecules. Additionally, this cross-talk is important for glial development, triggering disease onset and progression, as well as stimulating regeneration and repair. Its critical role in homeostasis is most evident when this communication fails. Here, we review emerging evidence of astrocyte-oligodendrocyte communication in health and disease. Understanding the pathways involved in this cross-talk will reveal important insights into the pathogenesis and treatment of CNS diseases. Full article
(This article belongs to the Collection Oligodendrocyte Physiology and Pathology Function)
Show Figures

Graphical abstract

Review
Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer
Cells 2020, 9(3), 561; https://doi.org/10.3390/cells9030561 - 27 Feb 2020
Cited by 123
Abstract
The emergence of immunotherapy has been an astounding breakthrough in cancer treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported to be varied, with some having pronounced success and [...] Read more.
The emergence of immunotherapy has been an astounding breakthrough in cancer treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported to be varied, with some having pronounced success and others with minimal to no clinical benefit. An important aspect associated with this discrepancy in patient response is the immune-suppressive effects elicited by the tumour microenvironment (TME). Immune suppression plays a pivotal role in regulating cancer progression, metastasis, and reducing immunotherapy success. Most notably, myeloid-derived suppressor cells (MDSC), a heterogeneous population of immature myeloid cells, have potent mechanisms to inhibit T-cell and NK-cell activity to promote tumour growth, development of the pre-metastatic niche, and contribute to resistance to immunotherapy. Accumulating research indicates that MDSC can be a therapeutic target to alleviate their pro-tumourigenic functions and immunosuppressive activities to bolster the efficacy of checkpoint inhibitors. In this review, we provide an overview of the general immunotherapeutic approaches and discuss the characterisation, expansion, and activities of MDSCs with the current treatments used to target them either as a single therapeutic target or synergistically in combination with immunotherapy. Full article
Show Figures

Figure 1

Review
Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding
Cells 2020, 9(1), 242; https://doi.org/10.3390/cells9010242 - 18 Jan 2020
Cited by 57
Abstract
Heart failure (HF) is the most rapidly growing cardiovascular health burden worldwide. HF can be classified into three groups based on the percentage of the ejection fraction (EF): heart failure with reduced EF (HFrEF), heart failure with mid-range—also called mildly reduced EF— (HFmrEF), [...] Read more.
Heart failure (HF) is the most rapidly growing cardiovascular health burden worldwide. HF can be classified into three groups based on the percentage of the ejection fraction (EF): heart failure with reduced EF (HFrEF), heart failure with mid-range—also called mildly reduced EF— (HFmrEF), and heart failure with preserved ejection fraction (HFpEF). HFmrEF can progress into either HFrEF or HFpEF, but its phenotype is dominated by coronary artery disease, as in HFrEF. HFrEF and HFpEF present with differences in both the development and progression of the disease secondary to changes at the cellular and molecular level. While recent medical advances have resulted in efficient and specific treatments for HFrEF, these treatments lack efficacy for HFpEF management. These differential response rates, coupled to increasing rates of HF, highlight the significant need to understand the unique pathogenesis of HFrEF and HFpEF. In this review, we summarize the differences in pathological development of HFrEF and HFpEF, focussing on disease-specific aspects of inflammation and endothelial function, cardiomyocyte hypertrophy and death, alterations in the giant spring titin, and fibrosis. We highlight the areas of difference between the two diseases with the aim of guiding research efforts for novel therapeutics in HFrEF and HFpEF. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis of Cardiovascular Disease)
Show Figures

Figure 1

Review
RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs
Cells 2020, 9(1), 137; https://doi.org/10.3390/cells9010137 - 07 Jan 2020
Cited by 125
Abstract
The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as [...] Read more.
The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field. Full article
(This article belongs to the Special Issue microRNA as Therapeutic Target)
Show Figures

Figure 1

Review
The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation
Cells 2019, 8(11), 1465; https://doi.org/10.3390/cells8111465 - 19 Nov 2019
Cited by 101
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression. As miRNAs are frequently deregulated in many human diseases, including cancer and immunological disorders, it is important to understand their biological functions. Typically, miRNA-encoding genes are transcribed by RNA Polymerase II and generate primary transcripts [...] Read more.
MicroRNAs (miRNAs) are critical regulators of gene expression. As miRNAs are frequently deregulated in many human diseases, including cancer and immunological disorders, it is important to understand their biological functions. Typically, miRNA-encoding genes are transcribed by RNA Polymerase II and generate primary transcripts that are processed by RNase III-endonucleases DROSHA and DICER into small RNAs of approximately 21 nucleotides. All miRNAs are loaded into Argonaute proteins in the RNA-induced silencing complex (RISC) and act as post-transcriptional regulators by binding to the 3′- untranslated region (UTR) of mRNAs. This seed-dependent miRNA binding inhibits the translation and/or promotes the degradation of mRNA targets. Surprisingly, recent data presents evidence for a target-mediated decay mechanism that controls the level of specific miRNAs. In addition, several non-canonical miRNA-containing genes have been recently described and unexpected functions of miRNAs have been identified. For instance, several miRNAs are located in the nucleus, where they are involved in the transcriptional activation or silencing of target genes. These epigenetic modifiers are recruited by RISC and guided by miRNAs to specific loci in the genome. Here, we will review non-canonical aspects of miRNA biology, including novel regulators of miRNA expression and functions of miRNAs in the nucleus. Full article
(This article belongs to the Collection Regulatory Functions of microRNAs)
Show Figures

Figure 1

Review
MicroRNAs Contribute to Breast Cancer Invasiveness
Cells 2019, 8(11), 1361; https://doi.org/10.3390/cells8111361 - 31 Oct 2019
Cited by 54
Abstract
Cancer statistics in 2018 highlight an 8.6 million incidence in female cancers, and 4.2 million cancer deaths globally. Moreover, breast cancer is the most frequent malignancy in females and twenty percent of these develop metastasis. This provides only a small chance for successful [...] Read more.
Cancer statistics in 2018 highlight an 8.6 million incidence in female cancers, and 4.2 million cancer deaths globally. Moreover, breast cancer is the most frequent malignancy in females and twenty percent of these develop metastasis. This provides only a small chance for successful therapy, and identification of new molecular markers for the diagnosis and prognostic prediction of metastatic disease and development of innovative therapeutic molecules are therefore urgently required. Differentially expressed microRNAs (miRNAs) in cancers cause multiple changes in the expression of the tumorigenesis-promoting genes which have mostly been investigated in breast cancers. Herein, we summarize recent data on breast cancer-specific miRNA expression profiles and their participation in regulating invasive processes, in association with changes in cytoskeletal structure, cell-cell adhesion junctions, cancer cell-extracellular matrix interactions, tumor microenvironments, epithelial-to-mesenchymal transitions and cancer cell stem abilities. We then focused on the epigenetic regulation of individual miRNAs and their modified interactions with other regulatory genes, and reviewed the function of miRNA isoforms and exosome-mediated miRNA transfer in cancer invasiveness. Although research into miRNA’s function in cancer is still ongoing, results herein contribute to improved metastatic cancer management. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Cancers: Breast Cancer)
Show Figures

Figure 1

Review
Control of Protein Homeostasis in the Early Secretory Pathway: Current Status and Challenges
Cells 2019, 8(11), 1347; https://doi.org/10.3390/cells8111347 - 29 Oct 2019
Cited by 16
Abstract
Discrimination between properly folded proteins and those that do not reach this state is necessary for cells to achieve functionality. Eukaryotic cells have evolved several mechanisms to ensure secretory protein quality control, which allows efficiency and fidelity in protein production. Among the actors [...] Read more.
Discrimination between properly folded proteins and those that do not reach this state is necessary for cells to achieve functionality. Eukaryotic cells have evolved several mechanisms to ensure secretory protein quality control, which allows efficiency and fidelity in protein production. Among the actors involved in such process, both endoplasmic reticulum (ER) and the Golgi complex play prominent roles in protein synthesis, biogenesis and secretion. ER and Golgi functions ensure that only properly folded proteins are allowed to flow through the secretory pathway while improperly folded proteins have to be eliminated to not impinge on cellular functions. Thus, complex quality control and degradation machineries are crucial to prevent the toxic accumulation of improperly folded proteins. However, in some instances, improperly folded proteins can escape the quality control systems thereby contributing to several human diseases. Herein, we summarize how the early secretory pathways copes with the accumulation of improperly folded proteins, and how insufficient handling can cause the development of several human diseases. Finally, we detail the genetic and pharmacologic approaches that could be used as potential therapeutic tools to treat these diseases. Full article
(This article belongs to the Special Issue Membrane Traffic in Health and Disease)
Show Figures

Figure 1

Review
“Hierarchy” and “Holacracy”; A Paradigm of the Hematopoietic System
Cells 2019, 8(10), 1138; https://doi.org/10.3390/cells8101138 - 24 Sep 2019
Cited by 6
Abstract
The mammalian hematopoietic system has long been viewed as a hierarchical paradigm in which a small number of hematopoietic stem cells (HSCs) are located at the apex. HSCs were traditionally thought to be homogeneous and quiescent in a homeostatic state. However, recent observations, [...] Read more.
The mammalian hematopoietic system has long been viewed as a hierarchical paradigm in which a small number of hematopoietic stem cells (HSCs) are located at the apex. HSCs were traditionally thought to be homogeneous and quiescent in a homeostatic state. However, recent observations, through extramedullary hematopoiesis and clonal assays, have cast doubt on the validity of the conventional interpretation. A key issue is understanding the characteristics of HSCs from different viewpoints, including dynamic physics and social network theory. The aim of this literature review is to propose a new paradigm of our hematopoietic system, in which individual HSCs are actively involved. Full article
(This article belongs to the Special Issue Hematopoiesis and Stem Cells)
Show Figures

Figure 1

Review
The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges
Cells 2019, 8(10), 1118; https://doi.org/10.3390/cells8101118 - 20 Sep 2019
Cited by 292
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and [...] Read more.
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside. Full article
Show Figures

Figure 1

Review
FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response
Cells 2019, 8(9), 1110; https://doi.org/10.3390/cells8091110 - 19 Sep 2019
Cited by 53
Abstract
Cellular stress response is a universal mechanism that ensures the survival or negative selection of cells in challenging conditions. The transcription factor Forkhead box protein O3 (FOXO3a) is a core regulator of cellular homeostasis, stress response, and longevity since it can modulate a [...] Read more.
Cellular stress response is a universal mechanism that ensures the survival or negative selection of cells in challenging conditions. The transcription factor Forkhead box protein O3 (FOXO3a) is a core regulator of cellular homeostasis, stress response, and longevity since it can modulate a variety of stress responses upon nutrient shortage, oxidative stress, hypoxia, heat shock, and DNA damage. FOXO3a activity is regulated by post-translational modifications that drive its shuttling between different cellular compartments, thereby determining its inactivation (cytoplasm) or activation (nucleus and mitochondria). Depending on the stress stimulus and subcellular context, activated FOXO3a can induce specific sets of nuclear genes, including cell cycle inhibitors, pro-apoptotic genes, reactive oxygen species (ROS) scavengers, autophagy effectors, gluconeogenic enzymes, and others. On the other hand, upon glucose restriction, 5′-AMP-activated protein kinase (AMPK) and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) -dependent FOXO3a mitochondrial translocation allows the transcription of oxidative phosphorylation (OXPHOS) genes, restoring cellular ATP levels, while in cancer cells, mitochondrial FOXO3a mediates survival upon genotoxic stress induced by chemotherapy. Interestingly, these target genes and their related pathways are diverse and sometimes antagonistic, suggesting that FOXO3a is an adaptable player in the dynamic homeostasis of normal and stressed cells. In this review, we describe the multiple roles of FOXO3a in cellular stress response, with a focus on both its nuclear and mitochondrial functions. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Stress Responses)
Show Figures

Graphical abstract

Review
Trends and Challenges in Tumor Anti-Angiogenic Therapies
Cells 2019, 8(9), 1102; https://doi.org/10.3390/cells8091102 - 18 Sep 2019
Cited by 73
Abstract
Excessive abnormal angiogenesis plays a pivotal role in tumor progression and is a hallmark of solid tumors. This process is driven by an imbalance between pro- and anti-angiogenic factors dominated by the tissue hypoxia-triggered overproduction of vascular endothelial growth factor (VEGF). VEGF-mediated signaling [...] Read more.
Excessive abnormal angiogenesis plays a pivotal role in tumor progression and is a hallmark of solid tumors. This process is driven by an imbalance between pro- and anti-angiogenic factors dominated by the tissue hypoxia-triggered overproduction of vascular endothelial growth factor (VEGF). VEGF-mediated signaling has quickly become one of the most promising anti-angiogenic therapeutic targets in oncology. Nevertheless, the clinical efficacy of this approach is severely limited in certain tumor types or shows only transient efficacy in patients. Acquired or intrinsic therapy resistance associated with anti-VEGF monotherapeutic approaches indicates the necessity of a paradigm change when targeting neoangiogenesis in solid tumors. In this context, the elaboration of the conceptual framework of “vessel normalization” might be a promising approach to increase the efficacy of anti-angiogenic therapies and the survival rates of patients. Indeed, the promotion of vessel maturation instead of regressing tumors by vaso-obliteration could result in reduced tumor hypoxia and improved drug delivery. The implementation of such anti-angiogenic strategies, however, faces several pitfalls due to the potential involvement of multiple pro-angiogenic factors and modulatory effects of the innate and adaptive immune system. Thus, effective treatments bypassing relapses associated with anti-VEGF monotherapies or breaking the intrinsic therapy resistance of solid tumors might use combination therapies or agents with a multimodal mode of action. This review enumerates some of the current approaches and possible future directions of treating solid tumors by targeting neovascularization. Full article
(This article belongs to the Special Issue Angiogenesis in Cancer)
Show Figures

Figure 1

Review
Membrane-Bound Meet Membraneless in Health and Disease
Cells 2019, 8(9), 1000; https://doi.org/10.3390/cells8091000 - 29 Aug 2019
Cited by 8
Abstract
Membraneless organelles (MLOs) are defined as cellular structures that are not sealed by a lipidic membrane and are shown to form by phase separation. They exist in both the nucleus and the cytoplasm that is also heavily populated by numerous membrane-bound organelles. Even [...] Read more.
Membraneless organelles (MLOs) are defined as cellular structures that are not sealed by a lipidic membrane and are shown to form by phase separation. They exist in both the nucleus and the cytoplasm that is also heavily populated by numerous membrane-bound organelles. Even though the name membraneless suggests that MLOs are free of membrane, both membrane and factors regulating membrane trafficking steps are emerging as important components of MLO formation and function. As a result, we name them biocondensates. In this review, we examine the relationships between biocondensates and membrane. First, inhibition of membrane trafficking in the early secretory pathway leads to the formation of biocondensates (P-bodies and Sec bodies). In the same vein, stress granules have a complex relationship with the cyto-nuclear transport machinery. Second, membrane contributes to the regulated formation of phase separation in the cells and we will present examples including clustering at the plasma membrane and at the synapse. Finally, the whole cell appears to transit from an interphase phase-separated state to a mitotic diffuse state in a DYRK3 dependent manner. This firmly establishes a crosstalk between the two types of cell organization that will need to be further explored. Full article
(This article belongs to the Special Issue Membrane Traffic in Health and Disease)
Show Figures

Figure 1

Review
Physiology, Pathology and Regeneration of Salivary Glands
Cells 2019, 8(9), 976; https://doi.org/10.3390/cells8090976 - 26 Aug 2019
Cited by 55
Abstract
Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach [...] Read more.
Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach can compensate the impairment of salivary glands, and treatment are purely symptomatic. Understanding the cellular and molecular control of salivary glands function is, therefore, highly relevant for therapeutic purposes. In this review, we provide a starting platform for future studies in basic biology and clinical research, reporting classical ideas on salivary gland physiology and recently developed technology to guide regeneration, reconstruction and substitution of the functional organs. Full article
(This article belongs to the Special Issue Stem Cell Therapy in Oral and Maxillofacial Region)
Show Figures

Graphical abstract

Review
TGFβ/BMP Signaling Pathway in Cartilage Homeostasis
Cells 2019, 8(9), 969; https://doi.org/10.3390/cells8090969 - 24 Aug 2019
Cited by 71
Abstract
Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor β (TGFβ) family. Members of this family include the [...] Read more.
Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor β (TGFβ) family. Members of this family include the TGFβs, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). Signaling by this protein family uniquely activates SMAD-dependent signaling and transcription but also activates SMAD-independent signaling via MAPKs such as ERK and TAK1. This review will address the pivotal role of the TGFβ family in cartilage biology by listing several TGFβ family members and describing their signaling and importance for cartilage maintenance. In addition, it is discussed how (pathological) processes such as aging, mechanical stress, and inflammation contribute to altered TGFβ family signaling, leading to disturbed cartilage metabolism and disease. Full article
(This article belongs to the Special Issue TGF-beta/BMP Signaling Pathway)
Show Figures

Figure 1

Review
Dynamics of Dynamin-Related Protein 1 in Alzheimer’s Disease and Other Neurodegenerative Diseases
Cells 2019, 8(9), 961; https://doi.org/10.3390/cells8090961 - 23 Aug 2019
Cited by 66
Abstract
The purpose of this article is to highlight the role of dynamin-related protein 1 (Drp1) in abnormal mitochondrial dynamics, mitochondrial fragmentation, autophagy/mitophagy, and neuronal damage in Alzheimer’s disease (AD) and other neurological diseases, including Parkinson’s, Huntington’s, amyotrophic lateral sclerosis, multiple sclerosis, diabetes, and [...] Read more.
The purpose of this article is to highlight the role of dynamin-related protein 1 (Drp1) in abnormal mitochondrial dynamics, mitochondrial fragmentation, autophagy/mitophagy, and neuronal damage in Alzheimer’s disease (AD) and other neurological diseases, including Parkinson’s, Huntington’s, amyotrophic lateral sclerosis, multiple sclerosis, diabetes, and obesity. Dynamin-related protein 1 is one of the evolutionarily highly conserved large family of GTPase proteins. Drp1 is critical for mitochondrial division, size, shape, and distribution throughout the neuron, from cell body to axons, dendrites, and nerve terminals. Several decades of intense research from several groups revealed that Drp1 is enriched at neuronal terminals and involved in synapse formation and synaptic sprouting. Different phosphorylated forms of Drp1 acts as both increased fragmentation and/or increased fusion of mitochondria. Increased levels of Drp1 were found in diseased states and caused excessive fragmentation of mitochondria, leading to mitochondrial dysfunction and neuronal damage. In the last two decades, several Drp1 inhibitors have been developed, including Mdivi-1, Dynasore, P110, and DDQ and their beneficial effects tested using cell cultures and mouse models of neurodegenerative diseases. Recent research using genetic crossing studies revealed that a partial reduction of Drp1 is protective against mutant protein(s)-induced mitochondrial and synaptic toxicities. Based on findings from cell cultures, mouse models and postmortem brains of AD and other neurodegenerative disease, we cautiously conclude that reduced Drp1 is a promising therapeutic target for AD and other neurological diseases. Full article
(This article belongs to the Special Issue Mitochondrial Dynamics: Fusion and Fission)
Show Figures

Figure 1

Review
Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer—How We Can Rise to the Challenge
Cells 2019, 8(9), 957; https://doi.org/10.3390/cells8090957 - 22 Aug 2019
Cited by 164
Abstract
Triple-negative (TNBC) is the most lethal subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. Chemotherapy remains the standard of care for TNBC treatment, but unfortunately, patients frequently develop resistance. Accordingly, in recent years, tremendous effort has [...] Read more.
Triple-negative (TNBC) is the most lethal subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. Chemotherapy remains the standard of care for TNBC treatment, but unfortunately, patients frequently develop resistance. Accordingly, in recent years, tremendous effort has been made into elucidating the mechanisms of TNBC chemoresistance with the goal of identifying new molecular targets. It has become evident that the development of TNBC chemoresistance is multifaceted and based on the elaborate interplay of the tumor microenvironment, drug efflux, cancer stem cells, and bulk tumor cells. Alterations of multiple signaling pathways govern these interactions. Moreover, TNBC’s high heterogeneity, highlighted in the existence of several molecular signatures, presents a significant obstacle to successful treatment. In the present, in-depth review, we explore the contribution of key mechanisms to TNBC chemoresistance as well as emerging strategies to overcome them. We discuss novel anti-tumor agents that target the components of these mechanisms and pay special attention to their current clinical development while emphasizing the challenges still ahead of successful TNBC management. The evidence presented in this review outlines the role of crucial pathways in TNBC survival following chemotherapy treatment and highlights the importance of using combinatorial drug strategies and incorporating biomarkers in clinical studies. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Cancers: Breast Cancer)
Show Figures

Graphical abstract

Review
The Intricate Interplay between Epigenetic Events, Alternative Splicing and Noncoding RNA Deregulation in Colorectal Cancer
Cells 2019, 8(8), 929; https://doi.org/10.3390/cells8080929 - 19 Aug 2019
Cited by 24
Abstract
Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, [...] Read more.
Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, which influence gene expression, alternative splicing and function of non-coding RNA. In this review, we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation. An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional gene regulation evolves during the initiation, progression and metastasis formation in CRC. Full article
Show Figures

Figure 1

Review
Characterization of Cell Glycocalyx with Mass Spectrometry Methods
Cells 2019, 8(8), 882; https://doi.org/10.3390/cells8080882 - 13 Aug 2019
Cited by 17
Abstract
The cell membrane plays an important role in protecting the cell from its extracellular environment. As such, extensive work has been devoted to studying its structure and function. Crucial intercellular processes, such as signal transduction and immune protection, are mediated by cell surface [...] Read more.
The cell membrane plays an important role in protecting the cell from its extracellular environment. As such, extensive work has been devoted to studying its structure and function. Crucial intercellular processes, such as signal transduction and immune protection, are mediated by cell surface glycosylation, which is comprised of large biomolecules, including glycoproteins and glycosphingolipids. Because perturbations in glycosylation could result in dysfunction of cells and are related to diseases, the analysis of surface glycosylation is critical for understanding pathogenic mechanisms and can further lead to biomarker discovery. Different mass spectrometry-based techniques have been developed for glycan analysis, ranging from highly specific, targeted approaches to more comprehensive profiling studies. In this review, we summarized the work conducted for extensive analysis of cell membrane glycosylation, particularly those employing liquid chromatography with mass spectrometry (LC-MS) in combination with various sample preparation techniques. Full article
Show Figures

Figure 1

Review
Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics
Cells 2019, 8(8), 863; https://doi.org/10.3390/cells8080863 - 09 Aug 2019
Cited by 79
Abstract
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and [...] Read more.
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology. Full article
Show Figures

Figure 1

Back to TopTop