Imaging Flow Cytometric Identification of Chromosomal Defects in Paediatric Acute Lymphoblastic Leukaemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Immuno-fFISH Protocol
2.3. Imaging Flow Cytometry
2.4. Data Analysis
3. Results
Study ID | Age/Gender | % CD34/CD10/CD19 Positive Cells | CEP4 FISH Spot Count (Mean) | Immuno-flowFISH Data Interpretation |
---|---|---|---|---|
ALL-HH-001 | 2.5/F | 97 | 3.55 | Trisomy 4 |
ALL-HH-002 | 3/F | 90 | 2.25 | Trisomy 4 |
ALL-HH-003 | 9.2/F | 89 | 2.41 | Trisomy 4 |
ALL-HH-004 | 5/F | 80 | 2.11 | Trisomy 4 |
ALL-HH-007 | 5.6/F | 58 | 3.37 | Trisomy 4 |
ALL-HH-008 | 3.5/F | 90 | 2.65 | Trisomy 4 |
ALL-HH-009 | 10.2/M | 96 | 2.80 | Trisomy 4 |
ALL-HH-010 | 11.2/F | 87 | 2.40 | Trisomy 4 |
ALL-HH-011 | 2/M | 83 | 2.74 | Trisomy 4 |
ALL-HH-012 | 3.3/M | 84 | 2.37 | Trisomy 4 |
ALL-HH-013 | 3.1/F | 75 | 2.46 | Trisomy 4 |
ALL-HH-014 | 7.2/F | 96 | 2.57 | Trisomy 4 |
ALL-HH-015 | 5.2/F | 83 | 2.18 | Trisomy 4 # * |
ALL-HH-016 | 4.2/M | 91 | 2.33 | Trisomy 4 |
ALL-HH-017 | 2.7/M | 85 | 2.50 | Trisomy 4 |
ALL-HH-021 | 1.4/M | 75 | 2.38 | Trisomy 4 |
ALL-HH-022 | 3.4/F | 87 | 3.08 | Trisomy 4 |
ALL-HH-023 | 2.3/F | 88 | 2.48 | Trisomy 4 |
ALL-HH-024 | 3.2/M | 92 | 2.10 | Trisomy 4 |
ALL-HH-026 | 4.1/F | 94 | 3.62 | Trisomy 4 |
ALL-HH-027 | 1.7/F | 99 | 2.16 | Trisomy 4 |
ALL-HH-029 | 6.1/M | 95 | 2.36 | Trisomy 4 |
ALL-HH-034 | 8.7/M | 97 | 2.10 | Trisomy 4 |
Mean | 87 | 2.66 |
ALL-HH-015 Immunophenotyped Populations | Size (%) | CON4 FISH Spot Count (Mean) | CON21 FISH Spot Count (Mean) | FISH Patterns |
---|---|---|---|---|
CD34/CD10/CD19-positive | 42.0 | 2.3 | 3.0 | 6 |
CD34-positive; CD10/CD19-negative | 9.9 | 2.1 | 1.9 | 4 |
CD19/CD10-positive; CD34-negative | 6.7 | 2.3 | 2.8 | 5 |
CD19-positive; CD34/CD10-negative | 4.2 | 1.9 | 1.9 | 3 |
CD3-positive (control) | 14.3 | 1.7 | 1.8 | 1 |
3.1. Chromosomes 4 and 21
3.2. ETV6::RUNX1 Fusions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammadian-Hafshejani, A.; Farber, I.M.; Kheiri, S. Global incidence and mortality of childhood leukemia and its relationship with the Human Development Index. PLoS ONE 2024, 19, e0304354. [Google Scholar] [CrossRef] [PubMed]
- Teachey, D.T.; Pui, C.-H. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol. 2019, 20, e142–e154. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Borowitz, M.J.; Cessna, M.; Etzell, J.; Foucar, K.; Hasserjian, R.P.; Rizzo, J.D.; Theil, K.; Wang, S.A.; Smith, A.T.; et al. Initial Diagnostic Workup of Acute Leukemia: Guideline from the College of American Pathologists and the American Society of Hematology. Arch. Pathol. Lab. Med. 2017, 141, 1342–1393. [Google Scholar] [CrossRef] [PubMed]
- Malard, F.; Mohty, M. Acute lymphoblastic leukaemia. Lancet 2020, 395, 1146–1162. [Google Scholar] [CrossRef]
- Paulsson, K.; Johansson, B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2009, 48, 637–660. [Google Scholar] [CrossRef]
- Paulsson, K.; Panagopoulos, I.; Knuutila, S.; Jee, K.J.; Garwicz, S.; Fioretos, T.; Mitelman, F.; Johansson, B. Formation of trisomies and their parental origin in hyperdiploid childhood acute lymphoblastic leukemia. Blood 2003, 102, 3010–3015. [Google Scholar] [CrossRef]
- Woodward, E.L.; Yang, M.; Moura-Castro, L.H.; van den Bos, H.; Gunnarsson, R.; Olsson-Arvidsson, L.; Spierings, D.C.J.; Castor, A.; Duployez, N.; Zaliova, M.; et al. Clonal origin and development of high hyperdiploidy in childhood acute lymphoblastic leukaemia. Nat. Commun. 2023, 14, 1658. [Google Scholar] [CrossRef]
- Harbott, J.; Viehmann, S.; Borkhardt, A.; Henze, G.; Lampert, F. Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood 1997, 90, 4933–4937. [Google Scholar] [CrossRef]
- Seeger, K.; Buchwald, D.; Taube, T.; Peter, A.; von Stackelberg, A.; Schmitt, G.; Köchling, J.; Henze, G. TEL-AML1 positivity in relapsed B cell precursor acute lymphoblastic leukemia in childhood. Berlin-Frankfurt-Münster Study Group. Leukemia 1999, 13, 1469–1470. [Google Scholar] [CrossRef]
- Forestier, E.; Heyman, M.; Andersen, M.K.; Autio, K.; Blennow, E.; Borgström, G.; Golovleva, I.; Heim, S.; Heinonen, K.; Hovland, R.; et al. Outcome of ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: Frequent late relapses but good overall survival. Br. J. Haematol. 2008, 140, 665–672. [Google Scholar] [CrossRef]
- Tsuzuki, S.; Seto, M.; Greaves, M.; Enver, T. Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc. Natl. Acad. Sci. USA 2004, 101, 8443–8448. [Google Scholar] [CrossRef] [PubMed]
- Alpar, D.; Wren, D.; Ermini, L.; Mansur, M.B.; van Delft, F.W.; Bateman, C.M.; Titley, I.; Kearney, L.; Szczepanski, T.; Gonzalez, D.; et al. Clonal origins of ETV6-RUNX1+ acute lymphoblastic leukemia: Studies in monozygotic twins. Leukemia 2015, 29, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Wiemels, J.L.; Cazzaniga, G.; Daniotti, M.; Eden, O.B.; Addison, G.M.; Masera, G.; Saha, V.; Biondi, A.; Greaves, M.F. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999, 354, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.M.; Bennett, C.A.; Price, C.M.; Bruin, M.C.; Van Wering, E.R.; Greaves, M. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc. Natl. Acad. Sci. USA 1998, 95, 4584–4588. [Google Scholar] [CrossRef]
- Lee, S.H.R.; Yang, W.; Gocho, Y.; John, A.; Rowland, L.; Smart, B.; Williams, H.; Maxwell, D.; Hunt, J.; Yang, W.; et al. Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response. Nat. Med. 2023, 29, 170–179. [Google Scholar] [CrossRef]
- van Delft, F.W.; Horsley, S.; Colman, S.; Anderson, K.; Bateman, C.; Kempski, H.; Zuna, J.; Eckert, C.; Saha, V.; Kearney, L.; et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood 2011, 117, 6247–6254. [Google Scholar] [CrossRef]
- Ford, A.M.; Fasching, K.; Panzer-Grümayer, E.R.; Koenig, M.; Haas, O.A.; Greaves, M.F. Origins of “late” relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes. Blood 2001, 98, 558–564. [Google Scholar] [CrossRef]
- Ampatzidou, M.; Papadhimitriou, S.I.; Paterakis, G.; Pavlidis, D.; Tsitsikas, Κ.; Kostopoulos, I.V.; Papadakis, V.; Vassilopoulos, G.; Polychronopoulou, S. ETV6/RUNX1-positive childhood acute lymphoblastic leukemia (ALL): The spectrum of clonal heterogeneity and its impact on prognosis. Cancer Genet. 2018, 224–225, 1–11. [Google Scholar] [CrossRef]
- Stams, W.A.G.; Beverloo, H.B.; den Boer, M.L.; de Menezes, R.X.; Stigter, R.L.; van Drunen, E.; Ramakers-van-Woerden, N.L.; Loonen, A.H.; van Wering, E.R.; Janka-Schaub, G.E.; et al. Incidence of additional genetic changes in the TEL and AML1 genes in DCOG and COALL-treated t(12;21)-positive pediatric ALL, and their relation with drug sensitivity and clinical outcome. Leukemia 2006, 20, 410–416. [Google Scholar] [CrossRef]
- Erber, W.N.; Hui, H.; Stanley, J.; Mincherton, T.; Clarke, K.; Augustson, B.; Ng, T.F.; Cheah, C.Y.; McQuillan, A.D.; Fuller, K. Detection of del (17p) in hematological malignancies by imaging flow cytometry. Blood 2020, 136, 9–10. [Google Scholar] [CrossRef]
- Hui, H.Y.L.; Clarke, K.M.; Fuller, K.A.; Stanley, J.; Chuah, H.H.; Ng, T.F.; Cheah, C.; McQuillan, A.; Erber, W.N. “Immuno-flowFISH” for the assessment of cytogenetic abnormalities in chronic lymphocytic leukemia. Cytom. Part A 2019, 95, 521–533. [Google Scholar] [CrossRef]
- Hui, H.Y.L.; Stanley, J.; Clarke, K.; Erber, W.N.; Fuller, K.A. Multi-probe FISH analysis of immunophenotyped chronic lymphocytic leukemia by imaging flow cytometry. Curr. Protoc. 2021, 1, e260. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.J.; Mincherton, T.I.; Hui, H.Y.L.; Sidiqi, M.H.; Fuller, K.A.; Erber, W.N. Imaging flow cytometry shows monosomy 17 in circulating plasma cells in myeloma. Pathology 2022, 54, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Hui, H.; Fuller, K.A.; Jaya, L.E.; Konishi, Y.; Ng, T.F.; Frodsham, R.; Speight, G.; Yamada, K.; Clarke, S.E.; Erber, W.N. IGH cytogenetic abnormalities can be detected in multiple myeloma by imaging flow cytometry. J. Clin. Pathol. 2023, 76, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, T.; Kinoshita, M.; Yamada, K.; Ito, H.; Yamaguchi, T.; Chinen, Y.; Mizutani, S.; Fujino, T.; Kobayashi, T.; Shimura, Y. Imaging flow cytometry-based multiplex FISH for three IGH translocations in multiple myeloma. J. Hum. Genet. 2023, 68, 507–514. [Google Scholar] [CrossRef]
- Ko, D.H.; Jeon, Y.; Kang, H.J.; Park, K.D.; Shin, H.Y.; Kim, H.K.; Cho, H.I.; Ahn, H.S.; Lee, D.S. Native ETV6 deletions accompanied by ETV6-RUNX1 rearrangements are associated with a favourable prognosis in childhood acute lymphoblastic leukaemia: A candidate for prognostic marker. Br. J. Haematol. 2011, 155, 530–533. [Google Scholar] [CrossRef]
- Anderson, K.; Lutz, C.; van Delft, F.W.; Bateman, C.M.; Guo, Y.; Colman, S.M.; Kempski, H.; Moorman, A.V.; Titley, I.; Swansbury, J.; et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011, 469, 356–361. [Google Scholar] [CrossRef]
- Aydin, C.; Cetin, Z.; Manguoglu, A.E.; Tayfun, F.; Clark, O.A.; Kupesiz, A.; Akkaya, B.; Karauzum, S.B. Evaluation of ETV6/RUNX1 fusion and additional abnormalities involving ETV6 and/or RUNX1 genes using FISH technique in patients with childhood acute lymphoblastic leukemia. Indian J. Hematol. Blood Transfus. 2016, 32, 154–161. [Google Scholar] [CrossRef]
- Forestier, E.; Andersen, M.K.; Autio, K.; Blennow, E.; Borgström, G.; Golovleva, I.; Heim, S.; Heinonen, K.; Hovland, R.; Johannsson, J.H.; et al. Cytogenetic patterns in ETV6/RUNX1-positive pediatric B-cell precursor acute lymphoblastic leukemia: A Nordic series of 245 cases and review of the literature. Genes Chromosomes Cancer 2007, 46, 440–450. [Google Scholar] [CrossRef]
- Hui, H.; Fuller, K.A.; Chuah, H.; Liang, J.; Sidiqi, H.; Radeski, D.; Erber, W.N. Imaging flow cytometry to assess chromosomal abnormalities in chronic lymphocytic leukaemia. Methods 2018, 134–135, 32–40. [Google Scholar] [CrossRef]
- Dworzak, M.N.; Gaipa, G.; Schumich, A.; Maglia, O.; Ratei, R.; Veltroni, M.; Husak, Z.; Basso, G.; Karawajew, L.; Gadner, H. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: Evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group. Cytom. Part B Clin. Cytom. 2010, 78, 147–153. [Google Scholar] [CrossRef]
- Rhein, P.P.; Scheid, S.; Ratei, R.; Hagemeier, C.; Seeger, K.; Kirschner-Schwabe, R.; Moericke, A.; Schrappe, M.; Spang, R.; Ludwig, W.D.; et al. Gene expression shift towards normal B cells, decreased proliferative capacity and distinct surface receptors characterize leukemic blasts persisting during induction therapy in childhood acute lymphoblastic leukemia. Leukemia 2007, 21, 897–905. [Google Scholar] [CrossRef] [PubMed]
Study ID | Age/Gender | % CD3 T-Cells | % Precursor B-Cells | Mean ETV6 Spot Count | Mean RUNX1 Spot Count | BDS |
---|---|---|---|---|---|---|
ALL-TT-002 | 3.8/F | 5 | 88 | 2.1 | 1.9 | 0.57 |
ALL-TT-003 | 3.8/F | 7 | 91 | 1.9 | 2.1 | 0.86 |
ALL-TT-005 | 2.6/F | ND | 94 | 12 | 3.3 | 0.51 |
ALL-TT-010 | 3.4/M | 6 | 90 | 2.0 | 2.7 | 0.41 |
ALL-TT-016 | 3.6/F | 22 | 72 | 2.4 | 3.1 | 0.49 |
ALL-TT-017 | 4.7/M | 4 | 93 | 2.4 | 2.0 | 0.44 |
ALL-TT-019 | 2.5/M | 5 | 90 | 2.1 | 2.7 | 0.52 |
ALL-TT-023 | 4.8/F | 4 | 91 | 2.7 | 2.7 | 0.85 |
ALL-TT-032 | 4.2/M | 12 | 63 | 2.1 | 2.2 | 0.40 |
ALL-TT-034 | 6.8/M | 43 | 51 | 2.5 | 2.9 | 0.46 |
ALL-TT-035 | 13.2/F | 13 | 68 | 2.3 | 2.6 | 0.67 |
ALL-TT-037 | 2.3/M | ND | 47 | 1.8 | 2.5 | 0.71 |
ALL-TT-038 | 3.6/M | 22 | 49 | 2.5 | 2.5 | 0.57 |
ALL-TT-039 | 5.5/M | ND | 39 | 2.4 | 3.7 | 0.73 |
ALL-TT-040 | 2.2/F | 9 | 63 | 2.7 | 2.5 | 0.47 |
ALL-TT-042 | 11.9/F | ND | 81 | 2.2 | 2.2 | 0.58 |
Mean | 13 | 73 | 2.2 | 2.6 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, A.P.A.; George, C.E.; Hui, H.Y.L.; Doddi, R.; Kotecha, R.S.; Fuller, K.A.; Erber, W.N. Imaging Flow Cytometric Identification of Chromosomal Defects in Paediatric Acute Lymphoblastic Leukaemia. Cells 2025, 14, 114. https://doi.org/10.3390/cells14020114
Simpson APA, George CE, Hui HYL, Doddi R, Kotecha RS, Fuller KA, Erber WN. Imaging Flow Cytometric Identification of Chromosomal Defects in Paediatric Acute Lymphoblastic Leukaemia. Cells. 2025; 14(2):114. https://doi.org/10.3390/cells14020114
Chicago/Turabian StyleSimpson, Ana P. A., Carly E. George, Henry Y. L. Hui, Ravi Doddi, Rishi S. Kotecha, Kathy A. Fuller, and Wendy N. Erber. 2025. "Imaging Flow Cytometric Identification of Chromosomal Defects in Paediatric Acute Lymphoblastic Leukaemia" Cells 14, no. 2: 114. https://doi.org/10.3390/cells14020114
APA StyleSimpson, A. P. A., George, C. E., Hui, H. Y. L., Doddi, R., Kotecha, R. S., Fuller, K. A., & Erber, W. N. (2025). Imaging Flow Cytometric Identification of Chromosomal Defects in Paediatric Acute Lymphoblastic Leukaemia. Cells, 14(2), 114. https://doi.org/10.3390/cells14020114