miR-1233-3p Inhibits Angiopoietin-1-Induced Endothelial Cell Survival, Migration, and Differentiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture
2.3. Growth Factor Treatment
2.4. miRNA Abundance Studies
2.5. miRNA Extraction and Quantitative Real-Time PCR
2.6. mRNA Extraction and Quantitative Real-Time PCR
2.7. Tie-2 Blocking Assays
2.8. Exosomes Extraction
2.9. Transfection miRNA Mimics and Inhibitors
2.10. Cell Counting
2.11. Caspase-3 Activity
2.12. Cell Migration
2.13. Capillary-like Tube Formation
2.14. Proliferation
2.15. Immunoblotting
2.16. Biotin-Labeled Pull-Down Assays
2.17. Statistical Analysis
3. Results
3.1. Regulation of miR-1233-3p by Ang-1
3.2. Regulation of EC Survival by miR-1233-3p
3.3. Regulation of EC Migration by miR-1233-3p
3.4. Effects of miR-1233-3p on EC Differentiation
3.5. Regulation of EC Proliferation by miR-1233-3p
3.6. PDRG1 Is a Direct Target miR-1233-3p
3.7. Regulation of PDRG1 Expression by Ang-1
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eelen, G.; Treps, L.; Li, X.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis updated. Circ. Res. 2020, 127, 310–329. [Google Scholar] [CrossRef]
- Fagiani, E.; Christofori, G. Angiopoietins in angiogenesis. Cancer Lett. 2013, 328, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Harfouche, R.; Gratton, J.P.; Yancopoulos, G.D.; Noseda, M.; Karsan, A.; Hussain, S.N.A. Angiopoietin-1 activates both anti- and proapoptotic mitogen-activated protein kinases. FASEB J. 2003, 17, 1523. [Google Scholar] [CrossRef] [PubMed]
- Suri, C.; Jones, P.F.; Patan, S.; Bartunkova, S.; Maisonpierre, P.C.; Davis, S.; Sato, T.N.; Yancopoulos, G.D. Requisite role of Angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996, 87, 1171–1180. [Google Scholar] [CrossRef]
- Partanen, J.; Dumont, D.J. Functions of Tie1 and Tie2 receptor tyrosine kinases in vascular development. Curr. Top. Microbiol. Immunol. 1999, 237, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, K.; Jones, N.; Dumont, D.J.; Puri, M.C.; Bernstein, A. Selective role of a distinct tyrosine residue on Tie2 in heart development and early hematopoiesis. Mol. Cell. Biol. 2005, 25, 4693–4702. [Google Scholar] [CrossRef]
- Brindle, N.P.; Saharinen, P.; Alitalo, K. Signaling and functions of angiopoietin-1 in vascular protection. Circ. Res. 2006, 98, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.; Rudge, J.S.; loffe, E.; Zhou, H.; Ross, L.; Croll, S.D.; Glazer, N.; Holash, J.; McDonald, D.M.; Yancopoulos, G.D. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 2000, 6, 460–463. [Google Scholar] [CrossRef]
- Balakumar, P.; Kaur, T.; Singh, M. Potential target sites to modulate vascular endothelial dysfunction: Current perspectives and future directions. Toxicology 2008, 245, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Non-coding RNAs and angiogenesis in cardiovascular diseases: A comprehensive review. Mol. Cell Biochem. 2024, 479, 2921–2953. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Cowan, D.B.; Wang, D.Z. Non-coding RNAs in cardiac regeneration: Mechanism of action and therapeutic potential. Semin. Cell Dev. Biol. 2021, 118, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Denli, A.M.; Tops, B.B.J.; Plasterk, R.H.A.; Ketting, R.F.; Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature 2004, 432, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Gregory, R.I.; Yan, K.P.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Bohnsack, M.T.; Czaplinski, K.; Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Chendrimada, T.P.; Gregory, R.I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Zampetaki, A.; Mayr, M. MicroRNAs in Vascular and Metabolic Disease. Circ. Res. 2012, 110, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Rosano, S.; Cora, D.; Parab, S.; Zaffuto, S.; Isella, C.; Porporato, R.; Hoza, R.M.; Calogero, R.A.; Riganti, C.; Bussolino, F.; et al. A regulatory microRNA network controls endothelial cell phenotypic switch during sprouting angiogenesis. eLife 2020, 9, e48095. [Google Scholar] [CrossRef] [PubMed]
- Moszynska, A.; Jaśkiewicz, M.; Serocki, M.; Cabaj, A.; Crossman, D.K.; Bartoszewska, S.; Gebert, M.; Dabrowski, M.; Collawn, J.F.; Bartoszewski, R. The hypoxia-induced changes in miRNA-mRNA in RNA-induced silencing complexc and HIF-2 induced miRNA in human endothelial cells. FASEB J. 2022, 36, e22412. [Google Scholar] [CrossRef]
- van Rooij, E.; Sutherland, L.B.; Thatcher, J.E.; DiMaio, J.M.; Naseem, R.H.; Marshall, W.S.; Hill, J.A.; Olson, E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Nat. Acad. Sci. USA 2008, 105, 13027–13032. [Google Scholar] [CrossRef]
- Mutharasan, R.K.; Nagpal, V.; Ichikawa, Y.; Ardehali, H. microRNA-210 is upregulated in hypoxic cardiomyocytes through Akt- and p53-dependent pathways and exerts cytoprotective effects. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1519–H1530. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, V.; Golyardi, F.; Mayaki, D.; Echavarria, R.; Harel, S.; Xia, J.; Hussain, S.N.A. Negative regulation of angiogenesis by novel micro RNAs. Pharmacol. Res. 2019, 139, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, R.; Sacan, A. A novel method for the normalization of microRNA RT-PCR data. BMC Med. Genom. 2013, 6, S14. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, G.; Martinelli, M.; Courty, J.; Cascone, I. The 4th ImageJ User and Developer Conference Proceedings. 2012, 198–201. ISBN: 2-919941-18-6. Available online: http://image.bio.methods.free.fr/ImageJ/IMG/pdf/angiogenesisanalyzer.pdf (accessed on 17 November 2024).
- Wang, Y.L.; Juranek, S.; Li, H.; Sheng, G.; Tuschl, T.; Patel, D.J. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 2008, 456, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Cloonan, N.; Wani, S.; Xu, Q.; Gu, J.; Lea, K.; Heater, S.; Barbacioru, C.; Steptoe, A.L.; Martin, H.C.; Nourbakhsh, E.; et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Gen. Biol. 2011, 12c, R126. [Google Scholar] [CrossRef]
- Orom, U.A.; Lund, A.H. Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 2007, 43, 162–165. [Google Scholar] [CrossRef]
- Guduric-Fuchs, J.; O’Connor, A.; Camp, B.; O’Neill, C.L.; Medina, R.J.; Simpson, D.A. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genom. 2012, 13, 357. [Google Scholar] [CrossRef]
- Shaban, S.A.; Rezaie, J.; Nejati, V. Exosomes derived from senescent endothelial cells contain distinct pro-angiogenic miRNAs and proteins. Cardiovasc. Toxicol. 2022, 22, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Garcia, V.; Zaballos, A.; Provencio, M.; Lombardia, L.; Almonacid, L.; Garcia, J.M.; Dominguez, G.; Pena, C.; Diaz, R.; et al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur. Respir. J. 2011, 37, 617–623. [Google Scholar] [CrossRef]
- Dill, H.; Linder, B.; Fehr, A.; Fischer, U. Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2. Genes Dev. 2012, 26, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Suarez, Y.; Fernández-Hernando, C.; Yu, J.; Gerber, S.A.; Harrison, K.D.; Pober, J.S.; Iruela-Arispe, M.L.; Merkenschlager, M.; Sesa, W.C. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc. Nat. Acad. Sci. USA 2008, 105, 14082–14087. [Google Scholar] [CrossRef] [PubMed]
- Wuerdinger, T.; Tannous, B.A.; Saydam, O.; Skog, J.; Grau, S.; Soutschek, J.; Weissleder, E.; Breakefield, X.O.; Krichevsky, A. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell. 2008, 14, 382–393. [Google Scholar] [CrossRef]
- Smits, M.; Mir, S.E.; A Nilsson, R.J.; van der Stoop, P.M.; Niers, J.M.; Marquez, V.E.; Cloos, J.; Breakefield, X.O.; Krichevsky, A.M.; Noske, D.P.; et al. Down-Regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS ONE 2011, 6, e16282. [Google Scholar] [CrossRef] [PubMed]
- Echavarria, R.; Mayaki, D.; Neel, J.C.; Harel, S.; Sachez, V.; Hussain, S.N.A. Angiopoietin-1 inhibits toll-like receptor 4 signalling in cultured endothelial cells: Role of miR-146b-5p. Cardiovasc. Res. 2015, 106, 465–477. [Google Scholar] [CrossRef]
- Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011, 13, 423–433. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Lv, X.; Liu, W.; Zhu, S.; Wang, Y.; Xu, H. Unraveling the intricate roles of exosomes in cardiovascular diseases: A comprehensive review of physiological significance and pathological implications. Int. J. Mol. Sci. 2023, 24, 15677. [Google Scholar] [CrossRef]
- Mause, S.F.; Weber, C. Microparticles protagonists of a novel communication network for intercellular information exchange. Cir. Res. 2010, 107, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.Y.; Peng, H.; Tian, A.; Wei, Y.; Li, H.; Tian, J.; Zhao, X. Expression of miRNA-1233 in placenta from patients with hypertensive disorder complicating pregnancy and its role in disease pathogenesis. Internat. J. Clin. Exp. Med. 2015, 8, 9121–9127. [Google Scholar]
- Munaut, C.; Tebache, L.; Blacher, S.; Noel, A.; Nisolle, M.; Chantraine, F. Dysregulated circulating miRNAs in preeclampsia. Biomed. Rep. 2016, 5, 686–692. [Google Scholar] [CrossRef]
- Wulfken, L.M.; Moritz, R.; Ohlmann, C.; Holdenrieder, S.; Jung, V.; Becker, F.; Herrmann, E.; Walgenbach-Brünagel, G.; von Ruecker, A.; Muller, S.C.; et al. MicroRNAs in renal cell carcinoma: Diagnostic implications of serum miR-1233 levels. PLoS ONE 2011, 6, e25787. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, N.J.; Varner, J.A. The homeobox transcription factor Hox D3 promotes integrin alpha(5)beta(1) expression and function during angiogenesis. J. Biol. Chem. 2004, 279, 4862–4868. [Google Scholar] [CrossRef]
- Mace, K.A.; Hansen, S.L.; Myers, C.; Young, D.M.; Boudreau, N. HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J. Cell Sci. 2005, 118, 2567–2577. [Google Scholar] [CrossRef]
- Myers, C.; Charboneau, A.; Boudreau, N. Homeobox B3 promotes capillary morphogenesis and angiogenesis. J. Cell Biol. 2000, 148, 343–351. [Google Scholar] [CrossRef]
- Myers, C.; Charboneau, A.; Cheung, I.; Hanks, D.; Boudreau, N. Sustained expression of homeobox D10 inhibits angiogenesis. Am. J. Path. 2002, 161, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Raman, V.; Martensen, S.A.; Reisman, D.; Evron, E.; Odenwald, W.F.; Jaffee, E.; Marks, J.; Sukumar, S. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000, 405, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Chung, N.; Bo, K.J.; Chae, S.W.; Jeon, Y.W.; Lee, K.H.; Rha, H.K. HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells. Mol. Biol. Rep. 2009, 36, 227–235. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, S.; Jiang, N.; Shang, Z.; Quan, C.; Niu, Y. HoxB3 promotes prostate cancer cell progression by transactivating CDCA3. Cancer Lett. 2013, 330, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.J.; Yan, R.L.; Zhang, X.; Zhu, Z.; Wang, C.W.; Liang, C.; Zhang, X. Deregulation of MicroRNA-375 inhibits cancer proliferation migration and chemosensitivity in pancreatic cancer through the association of HOXB3. Am. J. Trans. Res. 2016, 8, 1551–1559. [Google Scholar]
- Luo, X.Q.; Huang, Y.; Sheikh, M.S. Cloning and characterization of a novel gene PDRG that is differentially regulated by p53 and ultraviolet radiation. Oncogene 2003, 22, 7247–7257. [Google Scholar] [CrossRef]
- Boulon, S.; Pradet-Balade, B.; Verheggen, C.; Molle, D.; Boireau, S.; Georgieva, M.; Azzang, K.; Robert, M.C.; Ahmad, Y.; Neel, H.; et al. HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol. Cell 2010, 39, 912–924. [Google Scholar] [CrossRef]
- Mita, P.; Savas, J.N.; Ha, S.; Djouder, N.; Yates III, J.R.; Logan, S.K. Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS ONE 2013, 8, e63879. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Luo, X.Q.; Shi, J.X.; Sun, H.; Sun, Q.; Sheikh, M.S.; Huang, Y. PDRG1, a novel tumor marker for multiple malignancies that is selectively regulated by genotoxic stress. Cancer Biol. Therap. 2011, 11, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.M.; Xu, Y.X.; Liu, J.; Cui, H.Y.; Cao, H.W.; Ren, J. PDRG1 promotes the proliferation and migration of GBM cells by MEK/ERK/CD44 pathway. Cancer Sci. 2022, 113, 500–516. [Google Scholar] [CrossRef]
- Xu, Y.X.; Liu, J.; Jiang, T.; Shi, L.S.; Shang, L.; Song, J.; Li, L.P. PDRG1 predicts poor prognosis and facilitates the proliferation and metastasis of colorectal cancer. Exp. Cell. Res. 2021, 409, 112924. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence (5′→3′) | Accession Number | Expected Size (bp) |
---|---|---|---|
β-ACTIN | F: AGAAAATCTGGCACCACACC R: GGGGTGTTGAAGGTCTCAAA | NM_001101 | 126 |
GAPDH | F: AAGAAGGTGGTGAAGCAGGCG R: ACCAGGAAATGAGCTTGACAA | NM_02396.1 | 166 |
GOLGA8A GOLGA8B | F: TAGGCTCCCGTGCTTTTCT R: AAAGCTCCCCCAAAAGGTTA | NM_181077.3 NM_001023567.4 | 285 285 |
PDRG1 | F: TGGGTGGTTGCTGAATGAAG R: GGTAAGAGGCGCATCCACTC | NM_030815.2 | 222 |
CENPB | F:GACGTTCCGGGAGAAGTCAC R:AGCCCTCGAGCTTGTCGTAG | NM_001810.5 | 215 |
HOXB3 | F: GGTGGAGCTGGAGAAGGAGT R: GGCCTTCTGGTCCTTCTTGT | NM_002146.4 | 148 |
ZFP91 | F: CTCGCTATTTGCAGCACCACR: GCCCGAGCACAATATTCACA | NM_053023.4 | 165 |
miR-1233-3p | F:TGAGCCCTGTCCTCCCGCAG | MIMAT0005588 | |
miR1233-5p | F:AGTGGGAGGCCAGGGCACGGCA | MIMAT0022943 | |
pre-miR-1233 | F: AGTGGGAGGCCAGGGCACGGCA R: GCGGGAGGACAGGGCTCA | NR_036050 | |
U6 | F: ACTAAAATTGGAACGATACAGAGA | NR_004394.1 | |
5S | F: ATACCGGGTGCTGTAGGCTT | D14867 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez, V.; Harel, S.; Sa’ub, A.K.; Mayaki, D.; Hussain, S.N.A. miR-1233-3p Inhibits Angiopoietin-1-Induced Endothelial Cell Survival, Migration, and Differentiation. Cells 2025, 14, 75. https://doi.org/10.3390/cells14020075
Sanchez V, Harel S, Sa’ub AK, Mayaki D, Hussain SNA. miR-1233-3p Inhibits Angiopoietin-1-Induced Endothelial Cell Survival, Migration, and Differentiation. Cells. 2025; 14(2):75. https://doi.org/10.3390/cells14020075
Chicago/Turabian StyleSanchez, Veronica, Sharon Harel, Anas Khalid Sa’ub, Dominique Mayaki, and Sabah N. A. Hussain. 2025. "miR-1233-3p Inhibits Angiopoietin-1-Induced Endothelial Cell Survival, Migration, and Differentiation" Cells 14, no. 2: 75. https://doi.org/10.3390/cells14020075
APA StyleSanchez, V., Harel, S., Sa’ub, A. K., Mayaki, D., & Hussain, S. N. A. (2025). miR-1233-3p Inhibits Angiopoietin-1-Induced Endothelial Cell Survival, Migration, and Differentiation. Cells, 14(2), 75. https://doi.org/10.3390/cells14020075