Topical Collection "Cancer Biomarkers"

A topical collection in Cancers (ISSN 2072-6694). This collection belongs to the section "Cancer Biomarkers".

Editor

Dr. Carlos S. Moreno
E-Mail Website
Collection Editor
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
Interests: prostate cancer; breast cancer; bioinformatics; genomics; transcription; biomarkers
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

Biomarkers are playing an ever-increasingly important role in the diagnosis, treatment, and management of cancer patients. Advances in detection technologies, including next generation sequencing, circulating tumor cells, and multicolor flow cytometry, among others, have enabled scientists and clinicians to gain greater insights into the molecular mechanisms that underlie the pathologies of a variety of malignancies. Furthermore, targeted precision therapies often require the identification of subsets of patients who will benefit from these therapies, and cancer biomarkers are essential to obtaining FDA approval for many drugs under development and investigation. Additionally, biomarkers are currently in clinical practice to identify patients with favorable prognoses who can safely avoid overtreatment. Nevertheless, challenges remain in development of new non-invasive biomarkers with greater sensitivity, specificity, and clinical utility. This Topical Collection will review the current state of cancer biomarker development and the prospects for improving cancer care with new technologies and biomarkers to improve cancer patient diagnoses, management, and outcomes.

Dr. Carlos S. Moreno
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cancers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Biomarkers
  • Precision Medicine
  • Diagnosis
  • Prognosis
  • Liquid Biopsy
  • Companion Diagnostics

Published Papers (85 papers)

2022

Jump to: 2021, 2020, 2019

Systematic Review
BRAF V600E Mutation in Ameloblastoma: A Systematic Review and Meta-Analysis
Cancers 2022, 14(22), 5593; https://doi.org/10.3390/cancers14225593 - 14 Nov 2022
Viewed by 486
Abstract
The discovery that ameloblastoma has a high mutation incidence of BRAF V600E may enable a better investigation of pathophysiology. However, there is inconsistent evidence regarding this mutation occurrence and its association with clinical information. This systematic review and meta-analysis aim to pool the [...] Read more.
The discovery that ameloblastoma has a high mutation incidence of BRAF V600E may enable a better investigation of pathophysiology. However, there is inconsistent evidence regarding this mutation occurrence and its association with clinical information. This systematic review and meta-analysis aim to pool the overall mutation prevalence of BRAF V600E in reported ameloblastoma cases and to determine its association with patient demographic and clinicopathological features. Following the PRISMA guidelines, a comprehensive article search was conducted through four databases (Scopus, Google Scholar, PubMed, and Web of Science). Seventeen articles between 2014 and 2022 met the inclusion criteria with 833 ameloblastoma cases. For each included study, the significance of BRAF V600E on the outcome parameters was determined using odd ratios and 95% confidence intervals. Meta-analysis prevalence of BRAF V600E in ameloblastoma was 70.49%, and a significant meta-analysis association was reported for those younger than 54 years old and in the mandible. On the contrary, other factors, such as sex, histological variants, and recurrence, were insignificant. As a result of the significant outcome of BRAF V600E mutation in ameloblastoma pathogenesis, targeted therapy formulation can be developed with this handful of evidence. Full article
Show Figures

Figure 1

Article
Impact of Change in Body Composition during Follow-Up on the Survival of GEP-NET
Cancers 2022, 14(21), 5189; https://doi.org/10.3390/cancers14215189 - 22 Oct 2022
Viewed by 536
Abstract
Background: Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous rare diseases causing malnutrition and cachexia in which the study of body composition may have an impact in prognosis. Aim: Evaluation of muscle and fat tissues by computed tomography (CT) at the level of the third [...] Read more.
Background: Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous rare diseases causing malnutrition and cachexia in which the study of body composition may have an impact in prognosis. Aim: Evaluation of muscle and fat tissues by computed tomography (CT) at the level of the third lumbar (L3 level) at diagnosis and at the end of follow-up in GET-NET patients and their relationships with clinical and biochemical variables as predictors of survival. Methodology: Ninety-eight GEP-NET patients were included. Clinical and biochemical parameters were evaluated. Total body, subcutaneous, visceral and total fat areas and very low-density, low-density, normal density, high-density, very high-density and total muscle areas were obtained from CT images. Results: Body composition measures and overall mortality correlated with age, ECOG (Eastern Cooperative Oncology Group performance status) metastases, lactate dehydrogenase (LDH), albumin and urea levels. Although there was no relationship between body composition variables at diagnosis and overall and specific mortality, an increase in low-density muscle and a decrease in normal-density muscle during follow-up were independently correlated to overall (p <0.05) and tumor-cause mortality (p < 0.05). Conclusion: Although body composition measures obtained by CT at diagnosis did not impact survival of GEP-NET patients, a loss of good quality muscle during follow-up was associated with an increased overall and tumor-related mortality. Nutritional status should therefore be supervised by nutrition specialists and an increase in good quality muscle could improve prognosis. Full article
Show Figures

Figure 1

Review
Molecular Biomarker Expression in Window of Opportunity Studies for Oestrogen Receptor Positive Breast Cancer—A Systematic Review of the Literature
Cancers 2022, 14(20), 5027; https://doi.org/10.3390/cancers14205027 - 14 Oct 2022
Viewed by 494
Abstract
Window of opportunity (WoO) trials create the opportunity to demonstrate pharmacodynamic parameters of a drug in vivo and have increasing use in breast cancer research. Most breast cancer tumours are oestrogen receptor-positive (ER+), leading to the development of multiple treatment options tailored towards [...] Read more.
Window of opportunity (WoO) trials create the opportunity to demonstrate pharmacodynamic parameters of a drug in vivo and have increasing use in breast cancer research. Most breast cancer tumours are oestrogen receptor-positive (ER+), leading to the development of multiple treatment options tailored towards this particular tumour subtype. The aim of this literature review is to review WoO trials pertaining to the pharmacodynamic activity of drugs available for use in ER+ breast cancer in order to help guide treatment for patients receiving neoadjuvant and primary endocrine therapy. Five databases (EMBASE, Cochrane, MEDLINE, PubMed, Web of Science) were searched for eligible studies. Studies performed in treatment-naïve patients with histologically confirmed ER+ breast cancer were included if they acquired pre- and post-treatment biopsies, compared measurement of a proteomic biomarker between these two biopsies and delivered treatment for a maximum mean duration of 31 days. Fifteen studies were eligible for inclusion and covered six different drug classes: three endocrine therapies (ETs) including aromatase inhibitors (AIs), selective oestrogen receptor modulators (SERMs), selective oestrogen receptor degraders (SERDs) and three non-ETs including mTOR inhibitors, AKT inhibitors and synthetic oestrogens. Ki67 was the most frequently measured marker, appearing in all studies. Progesterone receptor (PR) and ER were the next most frequently measured markers, appearing five and four studies, respectively. All three of these markers were significantly downregulated in both AIs and SERDs; Ki67 alone was downregulated in SERMs. Less commonly assessed markers including pS6, pGSH3B, FSH and IGF1 were downregulated while CD34, pAKT and SHBG were significantly upregulated. There were no significant changes in the other biomarkers measured such as phosphate and tensin homolog (PTEN), Bax and Bcl-2.WoO studies have been widely utilised within the ER+ breast cancer subtype, demonstrating their worth in pharmacodynamic research. However, research remains focused upon routinely measured biomarkers such ER PR and Ki67, with an array of less common markers sporadically used. Full article
Show Figures

Figure 1

Article
The Expression of the Immunoproteasome Subunit PSMB9 Is Related to Distinct Molecular Subtypes of Uterine Leiomyosarcoma
Cancers 2022, 14(20), 5007; https://doi.org/10.3390/cancers14205007 - 13 Oct 2022
Viewed by 488
Abstract
Background: Uterine leiomyosarcoma (uLMS) are rare and malignant tumors that arise in the myometrium cells and whose diagnosis is based on histopathological features. Identifying diagnostic biomarkers for uLMS is a challenge due to molecular heterogeneity and the scarcity of samples. In vivo and [...] Read more.
Background: Uterine leiomyosarcoma (uLMS) are rare and malignant tumors that arise in the myometrium cells and whose diagnosis is based on histopathological features. Identifying diagnostic biomarkers for uLMS is a challenge due to molecular heterogeneity and the scarcity of samples. In vivo and in vitro models for uLMS are urgently needed. Knockout female mice for the catalytic subunit of the immunoproteasome PSMB9 (MIM:177045) develop spontaneous uLMS. This study aimed to analyze the role of PSMB9 in uLMS tumorigenesis and patient outcome. Methods: Molecular data from 3 non-related uLMS cohorts were integrated and analyzed by proteotranscriptomic using gene expression and protein abundance levels in 68 normal adjacent myometrium (MM), 66 uterine leiomyoma (LM), and 67 uLMS. Results: the immunoproteasome pathway is upregulated and the gene PMSB9 shows heterogeneous expression values in uLMS. Quartile group analysis showed no significant difference between groups high and low PSMB9 expression groups at 3-years overall survival (OS). Using CYBERSORTx analysis we observed 9 out of 17 samples in the high group clustering together due to high M2 macrophages and CD4 memory resting, and high CD8+/PSMB9 ratio was associated with better OS. The main pathway regulated in the high group is IFNγ and in the low is the ECM pathway dependent on the proto-oncogene SRC. Conclusion: these findings suggest 2 subtypes of uLMS (immune-related and ECM-related) with different candidate mechanisms of malignancy. Full article
Show Figures

Figure 1

Article
Systematic Analysis of Genetic and Pathway Determinants of Eribulin Sensitivity across 100 Human Cancer Cell Lines from the Cancer Cell Line Encyclopedia (CCLE)
Cancers 2022, 14(18), 4532; https://doi.org/10.3390/cancers14184532 - 19 Sep 2022
Viewed by 666
Abstract
Eribulin, a natural product-based microtubule targeting agent with cytotoxic and noncytotoxic mechanisms, is FDA approved for certain patients with advanced breast cancer and liposarcoma. To investigate the feasibility of developing drug-specific predictive biomarkers, we quantified antiproliferative activities of eribulin versus paclitaxel and vinorelbine [...] Read more.
Eribulin, a natural product-based microtubule targeting agent with cytotoxic and noncytotoxic mechanisms, is FDA approved for certain patients with advanced breast cancer and liposarcoma. To investigate the feasibility of developing drug-specific predictive biomarkers, we quantified antiproliferative activities of eribulin versus paclitaxel and vinorelbine against 100 human cancer cell lines from the Cancer Cell Line Encyclopedia, and correlated results with publicly available databases to identify genes and pathways associated with eribulin response, either uniquely or shared with paclitaxel or vinorelbine. Mean expression ratios of 11,985 genes between the most and least sensitive cell line quartiles were sorted by p-values and drug overlaps, yielding 52, 29 and 80 genes uniquely associated with eribulin, paclitaxel and vinorelbine, respectively. Further restriction to minimum 2-fold ratios followed by reintroducing data from the middle two quartiles identified 9 and 13 drug-specific unique fingerprint genes for eribulin and vinorelbine, respectively; surprisingly, no gene met all criteria for paclitaxel. Interactome and Reactome pathway analyses showed that unique fingerprint genes of both drugs were primarily associated with cellular signaling, not microtubule-related pathways, although considerable differences existed in individual pathways identified. Finally, four-gene (C5ORF38, DAAM1, IRX2, CD70) and five-gene (EPHA2, NGEF, SEPTIN10, TRIP10, VSIG10) multivariate regression models for eribulin and vinorelbine showed high statistical correlation with drug-specific responses across the 100 cell lines and accurately calculated predicted mean IC50s for the most and least sensitive cell line quartiles as surrogates for responders and nonresponders, respectively. Collectively, these results provide a foundation for developing drug-specific predictive biomarkers for eribulin and vinorelbine. Full article
Show Figures

Graphical abstract

Review
Racial Disparity in Quadruple Negative Breast Cancer: Aggressive Biology and Potential Therapeutic Targeting and Prevention
Cancers 2022, 14(18), 4484; https://doi.org/10.3390/cancers14184484 - 16 Sep 2022
Viewed by 723
Abstract
Black/African-American (AA) women, relative to their White/European-American (EA) counterparts, experience disproportionately high breast cancer mortality. Central to this survival disparity, Black/AA women have an unequal burden of aggressive breast cancer subtypes, such as triple-negative breast cancer (ER/PR-, HER2-wild type; TNBC). While TNBC has [...] Read more.
Black/African-American (AA) women, relative to their White/European-American (EA) counterparts, experience disproportionately high breast cancer mortality. Central to this survival disparity, Black/AA women have an unequal burden of aggressive breast cancer subtypes, such as triple-negative breast cancer (ER/PR-, HER2-wild type; TNBC). While TNBC has been well characterized, recent studies have identified a highly aggressive androgen receptor (AR)-negative subtype of TNBC, quadruple-negative breast cancer (ER/PR-, HER2-wildtype, AR-; QNBC). Similar to TNBC, QNBC disproportionately impacts Black/AA women and likely plays an important role in the breast cancer survival disparities experienced by Black/AA women. Here, we discuss the racial disparities of QNBC and molecular signaling pathways that may contribute to the aggressive biology of QNBC in Black/AA women. Our immediate goal is to spotlight potential prevention and therapeutic targets for Black/AA QNBC; ultimately our goal is to provide greater insight into reducing the breast cancer survival burden experienced by Black/AA women. Full article
Show Figures

Figure 1

Article
Meta-Analysis Reveals Both the Promises and the Challenges of Clinical Metabolomics
Cancers 2022, 14(16), 3992; https://doi.org/10.3390/cancers14163992 - 18 Aug 2022
Viewed by 716
Abstract
Clinical metabolomics is a rapidly expanding field focused on identifying molecular biomarkers to aid in the efficient diagnosis and treatment of human diseases. Variations in study design, metabolomics methodologies, and investigator protocols raise serious concerns about the accuracy and reproducibility of these potential [...] Read more.
Clinical metabolomics is a rapidly expanding field focused on identifying molecular biomarkers to aid in the efficient diagnosis and treatment of human diseases. Variations in study design, metabolomics methodologies, and investigator protocols raise serious concerns about the accuracy and reproducibility of these potential biomarkers. The explosive growth of the field has led to the recent availability of numerous replicate clinical studies, which permits an evaluation of the consistency of biomarkers identified across multiple metabolomics projects. Pancreatic ductal adenocarcinoma (PDAC) is the third-leading cause of cancer-related death and has the lowest five-year survival rate primarily due to the lack of an early diagnosis and the limited treatment options. Accordingly, PDAC has been a popular target of clinical metabolomics studies. We compiled 24 PDAC metabolomics studies from the scientific literature for a detailed meta-analysis. A consistent identification across these multiple studies allowed for the validation of potential clinical biomarkers of PDAC while also highlighting variations in study protocols that may explain poor reproducibility. Our meta-analysis identified 10 metabolites that may serve as PDAC biomarkers and warrant further investigation. However, 87% of the 655 metabolites identified as potential biomarkers were identified in single studies. Differences in cohort size and demographics, p-value choice, fold-change significance, sample type, handling and storage, data collection, and analysis were all factors that likely contributed to this apparently large false positive rate. Our meta-analysis demonstrated the need for consistent experimental design and normalized practices to accurately leverage clinical metabolomics data for reliable and reproducible biomarker discovery. Full article
Show Figures

Figure 1

Article
Elevated Serotonin and NT-proBNP Levels Predict and Detect Carcinoid Heart Disease in a Large Validation Study
Cancers 2022, 14(10), 2361; https://doi.org/10.3390/cancers14102361 - 10 May 2022
Cited by 1 | Viewed by 878
Abstract
Carcinoid heart disease (CHD) is a rare fibrotic cardiac complication of neuroendocrine tumors. Besides known biomarkers N-Terminal pro-B-type natriuretic peptide (NT-proBNP) and serotonin, activin A, connective tissue growth factor (CTGF), and soluble suppression of tumorigenicity 2 (sST2) have been suggested as potential biomarkers [...] Read more.
Carcinoid heart disease (CHD) is a rare fibrotic cardiac complication of neuroendocrine tumors. Besides known biomarkers N-Terminal pro-B-type natriuretic peptide (NT-proBNP) and serotonin, activin A, connective tissue growth factor (CTGF), and soluble suppression of tumorigenicity 2 (sST2) have been suggested as potential biomarkers for CHD. Here, we validated the predictive/diagnostic value of these biomarkers in a case-control study of 114 patients between 1990 and 2021. Two time-points were analyzed: T0: liver metastasis without CHD for all patients. T1: confirmed CHD in cases (CHD+, n = 57); confirmed absence of CHD five or more years after liver metastasis in controls (CHD–, n = 57). Thirty-one (54%) and 25 (44%) females were included in CHD+ and CHD– patients, respectively. Median age was 57.9 years for CHD+ and 59.7 for CHD- patients (p = 0.290). At T0: activin A was similar across both groups (p = 0.724); NT-proBNP was higher in CHD+ patients (17 vs. 6 pmol/L, p = 0.016), area under the curve (AUC) 0.84, and the most optimal cut-off at 6.5 pmol/L. At T1: activin A was higher in CHD+ patients (0.65 vs. 0.38 ng/mL, p = 0.045), AUC 0.62, without an optimal cut-off value. NT-pro-BNP was higher in CHD+ patients (63 vs. 11 pmol/L, p < 0.001), AUC 0.89, with an optimal cut-off of 27 pmol/L. Serotonin (p = 0.345), sST2 (p = 0.867) and CTGF (p = 0.232) levels were similar across groups. This large validation study identified NT-proBNP as the superior biomarker for CHD. Patients with elevated serotonin levels and NT-proBNP levels between 6.5 and 27 pmol/L, and specifically >27 pmol/L, should be monitored closely for the development of CHD. Full article
Show Figures

Figure 1

Article
Implication of COPB2 Expression on Cutaneous Squamous Cell Carcinoma Pathogenesis
Cancers 2022, 14(8), 2038; https://doi.org/10.3390/cancers14082038 - 18 Apr 2022
Cited by 2 | Viewed by 934
Abstract
The underlying molecular mechanisms of cutaneous squamous cell carcinoma (cSCC) pathogenesis are largely unknown. In the present study, we aimed to evaluate the effect of coatomer protein complex subunit beta 2 (COPB2) expression on cSCC pathogenesis. Clinicopathological significance of COPB2 in cSCC was [...] Read more.
The underlying molecular mechanisms of cutaneous squamous cell carcinoma (cSCC) pathogenesis are largely unknown. In the present study, we aimed to evaluate the effect of coatomer protein complex subunit beta 2 (COPB2) expression on cSCC pathogenesis. Clinicopathological significance of COPB2 in cSCC was investigated by analyzing the Gene Expression Omnibus (GEO) database and through a retrospective cohort study of 95 cSCC patients. The effect of COPB2 expression on the biological behavior of cSCC cells was investigated both in vitro and in vivo. We found that COPB2 expression was significantly higher in cSCC samples than in normal skin samples. In our cohort, a considerable association was found between COPB2 expression and indicators of tumor immune microenvironment (TIME), such as histocompatibility complex class (MHC) I, and MHC II, CD4+/ CD8+ tumor-infiltrating lymphocytes. Additionally, COPB2 expression had an independent impact on worsened recurrence-free survival in our cohort. Furthermore, decreased proliferation, invasion, tumorigenic activities, and increased apoptosis were observed after COPB2 knockdown in cSCC cells. COPB2 may act as a potential oncogene and candidate modulator of the TIME in cSCC. Therefore, it can serve as a novel predictive prognostic biomarker and candidate immunotherapeutic target in cSCC patients. Full article
Show Figures

Figure 1

Review
The Role of SMAD4 Inactivation in Epithelial–Mesenchymal Plasticity of Pancreatic Ductal Adenocarcinoma: The Missing Link?
Cancers 2022, 14(4), 973; https://doi.org/10.3390/cancers14040973 - 15 Feb 2022
Cited by 2 | Viewed by 1212
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a five-year survival rate of 10% and its incidence increases over the years. It is, therefore, essential to improve our understanding of the molecular mechanisms that promote metastasis and chemoresistance in PDAC, which are the main causes of [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) presents a five-year survival rate of 10% and its incidence increases over the years. It is, therefore, essential to improve our understanding of the molecular mechanisms that promote metastasis and chemoresistance in PDAC, which are the main causes of death in these patients. SMAD4 is inactivated in 50% of PDACs and its loss has been associated with worse overall survival and metastasis, although some controversy still exists. SMAD4 is the central signal transducer of the transforming growth factor-beta (TGF-beta) pathway, which is notably known to play a role in epithelial–mesenchymal transition (EMT). EMT is a biological process where epithelial cells lose their characteristics to acquire a spindle-cell phenotype and increased motility. EMT has been increasingly studied due to its potential implication in metastasis and therapy resistance. Recently, it has been suggested that cells undergo EMT transition through intermediary states, which is referred to as epithelial–mesenchymal plasticity (EMP). The intermediary states are characterized by enhanced aggressiveness and more efficient metastasis. Therefore, this review aims to summarize and analyze the current knowledge on SMAD4 loss in patients with PDAC and to investigate its potential role in EMP in order to better understand its function in PDAC carcinogenesis. Full article
Show Figures

Figure 1

Article
Novel Risk Classification Based on Pyroptosis-Related Genes Defines Immune Microenvironment and Pharmaceutical Landscape for Hepatocellular Carcinoma
Cancers 2022, 14(2), 447; https://doi.org/10.3390/cancers14020447 - 17 Jan 2022
Cited by 1 | Viewed by 1610
Abstract
Growing evidence has indicated that pyroptosis functions in the development of cancer. Nonetheless, specific roles of pyroptosis-related genes in tumor progression, immune response, prognosis, and immunotherapy have not been thoroughly elucidated. After a comprehensive evaluation of pyroptosis genes, unsupervised clustering was performed to [...] Read more.
Growing evidence has indicated that pyroptosis functions in the development of cancer. Nonetheless, specific roles of pyroptosis-related genes in tumor progression, immune response, prognosis, and immunotherapy have not been thoroughly elucidated. After a comprehensive evaluation of pyroptosis genes, unsupervised clustering was performed to generate three distinct clusters from hepatocellular carcinoma (HCC) samples. Three distinct pyroptosis-related molecular subtypes comprising three gene clusters that had differential prognostic effects on patient survival were then identified. Immune characteristics analyses revealed diversified immune cell infiltration among the subtypes. Two clusters served as immune-hot phenotypes associated with significantly poorer survival compared to a remaining third immune-cold cluster. Among these, the immune-hot clusters were characterized by abundant adaptive immune cell infiltration, active CD4+ and CD8+ T cells, high total leukocyte counts and tumor growth status, and lower Th17 cell and M2 macrophage densities. Then, risk scores indicated that low-risk patients were more sensitive to anti-tumor therapy. Subsequently, we found a significant correlation between pyroptosis and prognosis in HCC and that pyroptosis genes drive the heterogeneity of the tumor microenvironment. The risk scoring system, based on pyroptosis-related differentially expressed genes, was established to evaluate the individual outcomes and contribute to new insights into the molecular characterization of pyroptosis-related subtypes. Full article
Show Figures

Graphical abstract

2021

Jump to: 2022, 2020, 2019

Article
GCC2 as a New Early Diagnostic Biomarker for Non-Small Cell Lung Cancer
Cancers 2021, 13(21), 5482; https://doi.org/10.3390/cancers13215482 - 31 Oct 2021
Cited by 3 | Viewed by 1956
Abstract
No specific markers have been identified to detect non-small cell lung cancer (NSCLC) cell-derived exosomes circulating in the blood. Here, we report a new biomarker that distinguishes between cancer and non-cancer cell-derived exosomes. Exosomes isolated from patient plasmas at various pathological stages of [...] Read more.
No specific markers have been identified to detect non-small cell lung cancer (NSCLC) cell-derived exosomes circulating in the blood. Here, we report a new biomarker that distinguishes between cancer and non-cancer cell-derived exosomes. Exosomes isolated from patient plasmas at various pathological stages of NSCLC, NSCLC cell lines, and human pulmonary alveolar epithelial cells isolated using size exclusion chromatography were characterized. The GRIP and coiled-coil domain-containing 2 (GCC2) protein, involved in endosome-to-Golgi transport, was identified by proteomics analysis of NSCLC cell line-derived exosomes. GCC2 protein levels in the exosomes derived from early-stage NSCLC patients were higher than those from healthy controls. Receiver operating characteristic curve analysis revealed the diagnostic sensitivity and specificity of exosomal GCC2 to be 90% and 75%, respectively. A high area under the curve, 0.844, confirmed that GCC2 levels could effectively distinguish between the exosomes. These results demonstrate GCC2 as a promising early diagnostic biomarker for NSCLC. Full article
Show Figures

Figure 1

Article
Human DLG1 and SCRIB Are Distinctly Regulated Independently of HPV-16 during the Progression of Oropharyngeal Squamous Cell Carcinomas: A Preliminary Analysis
Cancers 2021, 13(17), 4461; https://doi.org/10.3390/cancers13174461 - 04 Sep 2021
Cited by 1 | Viewed by 1604
Abstract
The major causative agents of head and neck squamous cell carcinomas (HNSCCs) are either environmental factors, such as tobacco and alcohol consumption, or infection with oncogenic human papillomaviruses (HPVs). An important aspect of HPV-induced oncogenesis is the targeting by the E6 oncoprotein of [...] Read more.
The major causative agents of head and neck squamous cell carcinomas (HNSCCs) are either environmental factors, such as tobacco and alcohol consumption, or infection with oncogenic human papillomaviruses (HPVs). An important aspect of HPV-induced oncogenesis is the targeting by the E6 oncoprotein of PDZ domain-containing substrates for proteasomal destruction. Tumor suppressors DLG1 and SCRIB are two of the principal PDZ domain-containing E6 targets. Both have been shown to play critical roles in the regulation of cell growth and polarity and in maintaining the structural integrity of the epithelia. We investigated how modifications in the cellular localization and protein expression of DLG1 and SCRIB in HPV16-positive and HPV-negative histologic oropharyngeal squamous cell carcinomas (OPSCC) might reflect disease progression. HPV presence was determined by p16 staining and HPV genotyping. Whilst DLG1 expression levels did not differ markedly between HPV-negative and HPV16-positive OPSCCs, it appeared to be relocated from cell–cell contacts to the cytoplasm in most samples, regardless of HPV16 positivity. This indicates that alterations in DLG1 distribution could contribute to malignant progression in OPSCCs. Interestingly, SCRIB was also relocated from cell–cell contacts to the cytoplasm in the tumor samples in comparison with normal tissue, regardless of HPV16 status, but in addition there was an obvious reduction in SCRIB expression in higher grade tumors. Strikingly, loss of SCRIB was even more pronounced in HPV16-positive OPSCCs. These alterations in SCRIB levels may contribute to transformation and loss of tissue architecture in the process of carcinogenesis and could potentially serve as markers in the development of OPSCCs. Full article
Show Figures

Figure 1

Article
SUMOylation Is Associated with Aggressive Behavior in Chondrosarcoma of Bone
Cancers 2021, 13(15), 3823; https://doi.org/10.3390/cancers13153823 - 29 Jul 2021
Cited by 4 | Viewed by 1344
Abstract
Multiple components of the SUMOylation machinery are deregulated in various cancers and could represent potential therapeutic targets. Understanding the role of SUMOylation in tumor progression and aggressiveness would increase our insight in the role of SUMO in cancer and clarify its potential as [...] Read more.
Multiple components of the SUMOylation machinery are deregulated in various cancers and could represent potential therapeutic targets. Understanding the role of SUMOylation in tumor progression and aggressiveness would increase our insight in the role of SUMO in cancer and clarify its potential as a therapeutic target. Here we investigate SUMO in relation to conventional chondrosarcomas, which are malignant cartilage forming tumors of the bone. Aggressiveness of chondrosarcoma increases with increasing histological grade, and a multistep progression model is assumed. High-grade chondrosarcomas have acquired an increased number of genetic alterations. Using immunohistochemistry on tissue microarrays (TMA) containing 137 chondrosarcomas, we showed that higher expression of SUMO1 and SUMO2/3 correlates with increased histological grade. In addition, high SUMO2/3 expression was associated with decreased overall survival chances (p = 0. 0312) in chondrosarcoma patients as determined by log-rank analysis and Cox regression. Various chondrosarcoma cell lines (n = 7), especially those derived from dedifferentiated chondrosarcoma, were sensitive to SUMO inhibition in vitro. Mechanistically, we found that SUMO E1 inhibition interferes with cell division and as a consequence DNA bridges are frequently formed between daughter cells. In conclusion, SUMO expression could potentially serve as a prognostic biomarker. Full article
Show Figures

Figure 1

Article
Combined Simplified Molecular Classification of Gastric Adenocarcinoma, Enhanced by Lymph Node Status: An Integrative Approach
Cancers 2021, 13(15), 3722; https://doi.org/10.3390/cancers13153722 - 24 Jul 2021
Cited by 3 | Viewed by 1767
Abstract
Gastric adenocarcinoma (GAC) is a heterogeneous disease and at least two major studies have recently provided a molecular classification for this tumor: The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ARCG). Both classifications quote four molecular subtypes, but these subtypes [...] Read more.
Gastric adenocarcinoma (GAC) is a heterogeneous disease and at least two major studies have recently provided a molecular classification for this tumor: The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ARCG). Both classifications quote four molecular subtypes, but these subtypes only partially overlap. In addition, the classifications are based on complex and cost-intensive technologies, which are hardly feasible for everyday practice. Therefore, simplified approaches using immunohistochemistry (IHC), in situ hybridization (ISH) as well as commercially available next generation sequencing (NGS) have been considered for routine use. In the present study, we screened 115 GAC by IHC for p53, MutL Homolog 1 (MLH1) and E-cadherin and performed ISH for Epstein–Barr virus (EBV). In addition, sequencing by NGS for TP53 and tumor associated genes was performed. With this approach, we were able to define five subtypes of GAC: (1) Microsatellite Instable (MSI), (2) EBV-associated, (3) Epithelial Mesenchymal Transition (EMT)-like, (4) p53 aberrant tumors surrogating for chromosomal instability and (5) p53 proficient tumors surrogating for genomics stable cancers. Furthermore, by considering lymph node metastasis in the p53 aberrant GAC, a better prognostic stratification was achieved which finally allowed us to separate the GAC highly significant in a group with poor and good-to-intermediate prognosis, respectively. Our data show that molecular classification of GAC can be achieved by using commercially available assays including IHC, ISH and NGS. Furthermore, we present an integrative workflow, which has the potential to overcome the uncertainty resulting from discrepancies from existing classification schemes. Full article
Show Figures

Figure 1

Review
Molecular Pathways and Druggable Targets in Head and Neck Squamous Cell Carcinoma
Cancers 2021, 13(14), 3453; https://doi.org/10.3390/cancers13143453 - 09 Jul 2021
Cited by 4 | Viewed by 1712
Abstract
Head and neck cancers are a heterogeneous group of neoplasms, affecting an ever increasing global population. Despite advances in diagnostic technology and surgical approaches to manage these conditions, survival rates have only marginally improved and this has occurred mainly in developed countries. Some [...] Read more.
Head and neck cancers are a heterogeneous group of neoplasms, affecting an ever increasing global population. Despite advances in diagnostic technology and surgical approaches to manage these conditions, survival rates have only marginally improved and this has occurred mainly in developed countries. Some improvements in survival, however, have been a result of new management and treatment approaches made possible because of our ever-increasing understanding of the molecular pathways triggered in head and neck oncogenesis, and the growing understanding of the abundant heterogeneity of this group of cancers. Some important pathways are common to other solid tumours, but their impact on reducing the burden of head and neck disease has been less than impressive. Other less known and little-explored pathways may hold the key to the development of potential druggable targets. The extensive work carried out over the last decade, mostly utilising next generation sequencing has opened up the development of many novel approaches to head and neck cancer treatment. This paper explores our current understanding of the molecular pathways of this group of tumours and outlines associated druggable targets which are deployed as therapeutic approaches in head and neck oncology with the ultimate aim of improving patient outcomes and controlling the personal and economic burden of head and neck cancer. Full article
Review
Oncogenic Functions and Clinical Significance of Circular RNAs in Colorectal Cancer
Cancers 2021, 13(14), 3395; https://doi.org/10.3390/cancers13143395 - 06 Jul 2021
Cited by 4 | Viewed by 1608
Abstract
Colorectal cancer (CRC) is ranked as the second most commonly diagnosed disease in females and the third in males worldwide. Therefore, the finding of new more reliable biomarkers for early diagnosis, for prediction of metastasis, and resistance to conventional therapies is an important [...] Read more.
Colorectal cancer (CRC) is ranked as the second most commonly diagnosed disease in females and the third in males worldwide. Therefore, the finding of new more reliable biomarkers for early diagnosis, for prediction of metastasis, and resistance to conventional therapies is an important challenge in overcoming the disease. The current review presents circular RNAs (circRNAs) with their unique features as potential prognostic and diagnostic biomarkers in CRC. The review highlights the mechanism of action and the role of circRNAs with oncogenic functions in the CRC as well as the association between their expression and clinicopathological characteristics of CRC patients. The comprehension of the role of oncogenic circRNAs in CRC pathogenesis is growing rapidly and the next step is using them as suitable new drug targets in the personalized treatment of CRC patients. Full article
Show Figures

Figure 1

Article
Longitudinal Circulating Tumor DNA Analysis in Blood and Saliva for Prediction of Response to Osimertinib and Disease Progression in EGFR-Mutant Lung Adenocarcinoma
Cancers 2021, 13(13), 3342; https://doi.org/10.3390/cancers13133342 - 03 Jul 2021
Cited by 5 | Viewed by 3358
Abstract
Background: We assessed whether serial ctDNA monitoring of plasma and saliva predicts response and resistance to osimertinib in EGFR-mutant lung adenocarcinoma. Three ctDNA technologies—blood-based droplet-digital PCR (ddPCR), next-generation sequencing (NGS), and saliva-based EFIRM liquid biopsy (eLB)—were employed to investigate their complementary roles. [...] Read more.
Background: We assessed whether serial ctDNA monitoring of plasma and saliva predicts response and resistance to osimertinib in EGFR-mutant lung adenocarcinoma. Three ctDNA technologies—blood-based droplet-digital PCR (ddPCR), next-generation sequencing (NGS), and saliva-based EFIRM liquid biopsy (eLB)—were employed to investigate their complementary roles. Methods: Plasma and saliva samples were collected from patients enrolled in a prospective clinical trial of osimertinib and local ablative therapy upon progression (NCT02759835). Plasma was analyzed by ddPCR and NGS. Saliva was analyzed by eLB. Results: A total of 25 patients were included. We analyzed 534 samples by ddPCR (n = 25), 256 samples by NGS (n = 24) and 371 samples by eLB (n = 22). Among 20 patients who progressed, ctDNA progression predated RECIST 1.1 progression by a median of 118 days (range: 61–272 days) in 11 (55%) patients. Of nine patients without ctDNA progression by ddPCR, two patients had an increase in mutant EGFR by eLB and two patients were found to have ctDNA progression by NGS. Levels of ctDNA measured by ddPCR and NGS at early time points, but not volumetric tumor burden, were associated with PFS. EGFR/ERBB2/MET/KRAS amplifications, EGFR C797S, PIK3CA E545K, PTEN V9del, and CTNNB1 S45P were key resistance mechanisms identified by NGS. Conclusion: Serial assessment of ctDNA in plasma and saliva predicts response and resistance to osimertinib, with each assay having supplementary roles. Full article
Show Figures

Figure 1

Article
Metastatic Risk Factors Associated with Class 1A Uveal Melanoma Patients
Cancers 2021, 13(13), 3292; https://doi.org/10.3390/cancers13133292 - 30 Jun 2021
Cited by 2 | Viewed by 1371
Abstract
In uveal melanoma (UM), gene expression profiling (GEP) is commonly used to classify metastatic risk into three groups (Class 1A, 1B, and 2). Class 1A patients have a lower metastatic risk of 2% at 5 years compared to other groups. We aimed to [...] Read more.
In uveal melanoma (UM), gene expression profiling (GEP) is commonly used to classify metastatic risk into three groups (Class 1A, 1B, and 2). Class 1A patients have a lower metastatic risk of 2% at 5 years compared to other groups. We aimed to describe clinical features associated with the development of metastasis in this low-risk group. This single-center IRB-approved retrospective case series review included all UM patients between February 2006 and March 2019 with an archived or fresh specimen classified as Class 1A. Cox regression and receiver operating characteristics analyses were used to identify factors associated with metastasis development and OS. Among 73 UM patients with Class 1A, the 5-year cumulative incidence of local recurrence and distant metastasis was 4.2% and 17.0%, respectively. Stage III disease (HR 20.7; 95% confidence interval (95% CI) 1.4–300.6; p= 0.0264) was found to be independently associated with metastatic recurrence, while primary therapy was associated with OS (enucleation vs. brachytherapy, HR 13.5; 95% CI 1.3–147.6; p = 0.0348). Combined clinical decision-making utilizing factors such as GEP class, American Joint Committee on Cancer (AJCC) stage, and COMS size could have a significant clinical impact by improving risk stratification and adapting follow-up intervals in UM Class 1A patients. Full article
Show Figures

Figure 1

Article
High Serum Elafin Prediction of Poor Prognosis of Locoregional Esophageal Squamous Cell Carcinoma
Cancers 2021, 13(12), 3082; https://doi.org/10.3390/cancers13123082 - 21 Jun 2021
Viewed by 1099
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly aggressive tumor known to have locally advanced and metastatic features which cause a dismal prognosis. We sought to determine whether elafin, a non-invasive and secretory small-molecule marker, could be used to predict prognosis in locoregional [...] Read more.
Esophageal squamous cell carcinoma (ESCC) is a highly aggressive tumor known to have locally advanced and metastatic features which cause a dismal prognosis. We sought to determine whether elafin, a non-invasive and secretory small-molecule marker, could be used to predict prognosis in locoregional ESCC patients in human and in vitro studies. In our human study, 119 subjects were identified as having incident and pathologically-proved ESCC with stage I-IIIA tumors from southern Taiwan between 2000 and 2016. We measured their serum elafin levels at baseline and followed them until the date of cancer death or until January 2020, the end of this study. Those with high serum elafin levels were found to have a 1.99-fold risk (95% confidence interval: 1.17–3.38) shorter survival than those who did not. In our in vitro experiments, elevated elafin levels were found to drive ESCC cell proliferation, migration and invasion, while attenuation of elafin level by shRNA abrogated those effects. We concluded that elafin promotes ESCC motility and invasion and leads to a worse clinical prognosis in ESCC patients without distant metastasis. Full article
Show Figures

Figure 1

Article
Metabolic Changes in Early-Stage Non–Small Cell Lung Cancer Patients after Surgical Resection
Cancers 2021, 13(12), 3012; https://doi.org/10.3390/cancers13123012 - 16 Jun 2021
Cited by 5 | Viewed by 1511
Abstract
Metabolic alterations in malignant cells play a vital role in tumor initiation, proliferation, and metastasis. Biofluids from patients with non–small cell lung cancer (NSCLC) harbor metabolic biomarkers with potential clinical applications. In this study, we assessed the changes in the metabolic profile of [...] Read more.
Metabolic alterations in malignant cells play a vital role in tumor initiation, proliferation, and metastasis. Biofluids from patients with non–small cell lung cancer (NSCLC) harbor metabolic biomarkers with potential clinical applications. In this study, we assessed the changes in the metabolic profile of patients with early-stage NSCLC using mass spectrometry and nuclear magnetic resonance spectroscopy before and after surgical resection. A single cohort of 35 patients provided a total of 29 and 32 pairs of urine and serum samples, respectively, pre-and post-surgery. We identified a profile of 48 metabolites that were significantly different pre- and post-surgery: 17 in urine and 31 in serum. A higher proportion of metabolites were upregulated than downregulated post-surgery (p < 0.01); however, the median fold change (FC) was higher for downregulated than upregulated metabolites (p < 0.05). Purines/pyrimidines and proteins had a larger dysregulation than other classes of metabolites (p < 0.05 for each class). Several of the dysregulated metabolites have been previously associated with cancer, including leucyl proline, asymmetric dimethylarginine, isopentenyladenine, fumaric acid (all downregulated post-surgery), as well as N6-methyladenosine and several deoxycholic acid moieties, which were upregulated post-surgery. This study establishes metabolomic analysis of biofluids as a path to non-invasive diagnostics, screening, and monitoring in NSCLC. Full article
Show Figures

Figure 1

Review
Podocalyxin in Normal Tissue and Epithelial Cancer
Cancers 2021, 13(12), 2863; https://doi.org/10.3390/cancers13122863 - 08 Jun 2021
Cited by 5 | Viewed by 2194
Abstract
Podocalyxin (PODXL), a glycosylated cell surface sialomucin of the CD34 family, is normally expressed in kidney podocytes, vascular endothelial cells, hematopoietic progenitors, mesothelium, as well as a subset of neurons. In the kidney, PODXL functions primarily as an antiadhesive molecule in podocyte epithelial [...] Read more.
Podocalyxin (PODXL), a glycosylated cell surface sialomucin of the CD34 family, is normally expressed in kidney podocytes, vascular endothelial cells, hematopoietic progenitors, mesothelium, as well as a subset of neurons. In the kidney, PODXL functions primarily as an antiadhesive molecule in podocyte epithelial cells, regulating adhesion and cell morphology, and playing an essential role in the development and function of the organ. Outside the kidney, PODXL plays subtle roles in tissue remodelling and development. Furthermore, many cancers, especially those that originated from the epithelium, have been reported to overexpress PODXL. Collective evidence suggests that PODXL overexpression is linked to poor prognosis, more aggressive tumour progression, unfavourable treatment outcomes, and possibly chemoresistance. This review summarises our current knowledge of PODXL in normal tissue function and epithelial cancer, with a particular focus on its underlying roles in cancer metastasis, likely involvement in chemoresistance, and potential use as a diagnostic and prognostic biomarker. Full article
Show Figures

Figure 1

Article
Deep Learning Improves Pancreatic Cancer Diagnosis Using RNA-Based Variants
Cancers 2021, 13(11), 2654; https://doi.org/10.3390/cancers13112654 - 28 May 2021
Cited by 3 | Viewed by 2322
Abstract
For optimal pancreatic cancer treatment, early and accurate diagnosis is vital. Blood-derived biomarkers and genetic predispositions can contribute to early diagnosis, but they often have limited accuracy or applicability. Here, we seek to exploit the synergy between them by combining the biomarker CA19-9 [...] Read more.
For optimal pancreatic cancer treatment, early and accurate diagnosis is vital. Blood-derived biomarkers and genetic predispositions can contribute to early diagnosis, but they often have limited accuracy or applicability. Here, we seek to exploit the synergy between them by combining the biomarker CA19-9 with RNA-based variants. We use deep sequencing and deep learning to improve differentiating pancreatic cancer and chronic pancreatitis. We obtained samples of nucleated cells found in peripheral blood from 268 patients suffering from resectable, non-resectable pancreatic cancer, and chronic pancreatitis. We sequenced RNA with high coverage and obtained millions of variants. The high-quality variants served as input together with CA19-9 values to deep learning models. Our model achieved an area under the curve (AUC) of 96% in differentiating resectable cancer from pancreatitis using a test cohort. Moreover, we identified variants to estimate survival in resectable cancer. We show that the blood transcriptome harbours variants, which can substantially improve noninvasive clinical diagnosis. Full article
Show Figures

Figure 1

Article
Validation of the Combined Biomarker for Prediction of Response to Checkpoint Inhibitor in Patients with Advanced Cancer
Cancers 2021, 13(10), 2316; https://doi.org/10.3390/cancers13102316 - 12 May 2021
Cited by 3 | Viewed by 1312
Abstract
Although immune checkpoint inhibitors can induce durable responses in patients with multiple types of advanced cancer, only a limited number of patients have a known reliable biomarker. This study aimed to validate the IMmunotherapy Against GastrIc Cancer (IMAGiC) model, which was developed based [...] Read more.
Although immune checkpoint inhibitors can induce durable responses in patients with multiple types of advanced cancer, only a limited number of patients have a known reliable biomarker. This study aimed to validate the IMmunotherapy Against GastrIc Cancer (IMAGiC) model, which was developed based on a previous study of four-gene and PD-L1 level, to predict immunotherapy response. We developed a clinical assay for formalin-fixed paraffin-embedded samples using quantitative real-time polymerase chain reaction to measure the expression level of the previously published four-gene set. The predictive performance was validated in a cohort of 89 patients with several advanced tumor types. The IMAGiC score was derived from tumor samples of 89 patients consisting of eight cancer types, and 73 out of 89 patients available for clinical response were analyzed with clinicopathological factors. The IMAGiC group (responder vs. non-responder) was determined with a specific value of the IMAGiC score as a cutoff, which was set by log-rank statistics for progression-free survival (PFS) divided the patients into 56 (76.7%) non-responders and 17 (23.3%) responders. Clinical responders (complete response/partial response) were higher in the IMAGiC responder group than in the non-responder group (70.6 vs. 21.4%). The median PFS of the IMAGiC responder group and non-responder was 20.8 months (95% CI 9.1-not reached) and 6.7 months (95% CI 4.9–11.1, p = 0.007), respectively. Among the 17 IMAGiC responders, 11 patients had tumor mutation burden-low and microsatellite-stable tumors. This study validated a predictive model based on a four-gene expression signature. Along with conventional biomarkers, our model could be useful for predicting response to immunotherapy in patients with advanced cancer. Full article
Show Figures

Figure 1

Article
Clinical Implication of Liquid Biopsy in Colorectal Cancer Patients Treated with Metastasectomy
Cancers 2021, 13(9), 2231; https://doi.org/10.3390/cancers13092231 - 06 May 2021
Cited by 4 | Viewed by 1173
Abstract
Background & Aims: The application of circulating tumor DNA (ctDNA) has been studied for predicting recurrent disease after surgery and treatment response during systemic treatment. Metastasectomy can be curative for well-selected patients with metastatic colorectal cancer (mCRC). This prospective study investigated the ctDNA [...] Read more.
Background & Aims: The application of circulating tumor DNA (ctDNA) has been studied for predicting recurrent disease after surgery and treatment response during systemic treatment. Metastasectomy can be curative for well-selected patients with metastatic colorectal cancer (mCRC). This prospective study investigated the ctDNA level before and after metastasectomy in patients with mCRC to explore its potential as a predictive biomarker. Methods: We collected data on 98 metastasectomies for mCRC performed from March 2017 to February 2020. Somatic mutations in the primary and metastatic tumors were identified and tumor-informed ctDNAs were selected by ultra-deep targeted sequencing. Plasma samples were mandatorily collected before and 3–4 weeks after metastasectomy and serially, if patients agreed. Results: Data on 67 of 98 metastasectomies (58 patients) meeting the criteria were collected. ctDNA was detected in 9 (29%) of 31 cases treated with upfront metastasectomy and in 7 (19.4%) of 36 cases treated with metastasectomy after upfront chemotherapy. The detection rate of ctDNA was higher in liver metastasis (p = 0.0045) and tumors measuring ≥1 cm (p = 0.0183). ctDNA was less likely to be detected if the response to chemotherapy was good. After metastasectomy, ctDNA was found in 4 (6%) cases with rapid progressive disease. Conclusion: The biological factors affecting the ctDNA shedding from the tumor should be considered when applying ctDNA assays in a clinical setting. After metastasectomy for oligometastatic lesions in good responders of chemotherapy, most ctDNA was cleared or existed below the detection level. To assist clinical decision making after metastasectomy for mCRC using ctDNA, further studies for improving specific outcomes are needed. Full article
Show Figures

Figure 1

Article
Characterization of Cell-Bound CA125 on Immune Cell Subtypes of Ovarian Cancer Patients Using a Novel Imaging Platform
Cancers 2021, 13(9), 2072; https://doi.org/10.3390/cancers13092072 - 25 Apr 2021
Cited by 4 | Viewed by 1726
Abstract
MUC16, a sialomucin that contains the ovarian cancer biomarker CA125, binds at low abundance to leucocytes via the immune receptor, Siglec-9. Conventional fluorescence-based imaging techniques lack the sensitivity to assess this low-abundance event, prompting us to develop a novel “digital” optical cytometry technique [...] Read more.
MUC16, a sialomucin that contains the ovarian cancer biomarker CA125, binds at low abundance to leucocytes via the immune receptor, Siglec-9. Conventional fluorescence-based imaging techniques lack the sensitivity to assess this low-abundance event, prompting us to develop a novel “digital” optical cytometry technique for qualitative and quantitative assessment of CA125 binding to peripheral blood mononuclear cells (PBMC). Plasmonic nanoparticle labeled detection antibody allows assessment of CA125 at the near-single molecule level when bound to specific immune cell lineages that are simultaneously identified using multiparameter fluorescence imaging. Image analysis and deep learning were used to quantify CA125 per each cell lineage. PBMC from treatment naïve ovarian cancer patients (N = 14) showed higher cell surface abundance of CA125 on the aggregate PBMC population as well as on NK (p = 0.013), T (p < 0.001) and B cells (p = 0.024) compared to circulating lymphocytes of healthy donors (N = 7). Differences in CA125 binding to monocytes or NK-T cells between the two cohorts were not significant. There was no correlation between the PBMC-bound and serum levels of CA125, suggesting that these two compartments are not in stoichiometric equilibrium. Understanding where and how subset-specific cell-bound surface CA125 takes place may provide guidance towards a new diagnostic biomarker in ovarian cancer. Full article
Show Figures

Figure 1

Article
Neo-Fs Index: A Novel Immunohistochemical Biomarker Panel Predicts Survival and Response to Anti-Angiogenetic Agents in Clear Cell Renal Cell Carcinoma
Cancers 2021, 13(6), 1199; https://doi.org/10.3390/cancers13061199 - 10 Mar 2021
Cited by 1 | Viewed by 1432
Abstract
Background: Frameshift indels have emerged as a predictor of immunotherapy response but were not evaluated yet to predict anti-angiogenetic agent (AAA) response or prognosis in clear cell renal cell carcinoma (ccRCC). Methods: Here, to develop biomarkers that predict survival and response [...] Read more.
Background: Frameshift indels have emerged as a predictor of immunotherapy response but were not evaluated yet to predict anti-angiogenetic agent (AAA) response or prognosis in clear cell renal cell carcinoma (ccRCC). Methods: Here, to develop biomarkers that predict survival and response to AAA, we evaluated the immunohistochemical expression of proteins whose genes frequently harbor frameshift indels in 638 ccRCC patients and correlated the individual and integrated markers with prognosis and AAA response. The mutational landscape was evaluated using targeted next-generation sequencing in 12 patients concerning protein markers. Immune gene signatures were retrieved from TCGA RNA seq data. Results: Five proteins (APC, NOTCH1, ARID1A, EYS, and filamin A) were independent adverse prognosticators and were incorporated into the Neo-fs index. Better overall, disease-specific and recurrence-free survival were observed with high Neo-fs index in univariate and multivariate survival analyses. Better AAA responses were observed with a high Neo-fs index, which reflected increased MHC class I, CD8+ T cell, cytolytic activity, and plasmacytoid dendritic cell signatures and decreased type II-IFN response signatures, as well as greater single-nucleotide variant (SNV) and indel counts. Conclusions: Neo-fs index, reflecting antitumor immune signature and more SNVs. and indels, is a powerful predictor of survival and AAA response in ccRCC. Full article
Show Figures

Figure 1

Review
Resistance to Molecularly Targeted Therapies in Melanoma
Cancers 2021, 13(5), 1115; https://doi.org/10.3390/cancers13051115 - 05 Mar 2021
Cited by 16 | Viewed by 2631
Abstract
Malignant melanoma is the most aggressive type of skin cancer with invasive growth patterns. In 2021, 106,110 patients are projected to be diagnosed with melanoma, out of which 7180 are expected to die. Traditional methods like surgery, radiation therapy, and chemotherapy are not [...] Read more.
Malignant melanoma is the most aggressive type of skin cancer with invasive growth patterns. In 2021, 106,110 patients are projected to be diagnosed with melanoma, out of which 7180 are expected to die. Traditional methods like surgery, radiation therapy, and chemotherapy are not effective in the treatment of metastatic and advanced melanoma. Recent approaches to treat melanoma have focused on biomarkers that play significant roles in cell growth, proliferation, migration, and survival. Several FDA-approved molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) have been developed against genetic biomarkers whose overexpression is implicated in tumorigenesis. The use of targeted therapies as an alternative or supplement to immunotherapy has revolutionized the management of metastatic melanoma. Although this treatment strategy is more efficacious and less toxic in comparison to traditional therapies, targeted therapies are less effective after prolonged treatment due to acquired resistance caused by mutations and activation of alternative mechanisms in melanoma tumors. Recent studies focus on understanding the mechanisms of acquired resistance to these current therapies. Further research is needed for the development of better approaches to improve prognosis in melanoma patients. In this article, various melanoma biomarkers including BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K are described, and their potential mechanisms for drug resistance are discussed. Full article
Show Figures

Figure 1

Article
HER2 Expression Is Predictive of Survival in Cetuximab Treated Patients with RAS Wild Type Metastatic Colorectal Cancer
Cancers 2021, 13(4), 638; https://doi.org/10.3390/cancers13040638 - 05 Feb 2021
Cited by 4 | Viewed by 1597
Abstract
The overexpressed HER2 is an important target for treatment with monoclonal antibody (mAb) trastuzumab, only in patients with breast and gastric cancers, and is an emerging therapeutic biomarker in metastatic colorectal cancer (mCRC) treated with anti-epidermal growth factor receptor (EGFR) mAbs cetuximab and [...] Read more.
The overexpressed HER2 is an important target for treatment with monoclonal antibody (mAb) trastuzumab, only in patients with breast and gastric cancers, and is an emerging therapeutic biomarker in metastatic colorectal cancer (mCRC) treated with anti-epidermal growth factor receptor (EGFR) mAbs cetuximab and panitumumab. In this study, we investigated the relative expression and predictive value of all human epidermal growth factor receptor (HER) family members in 144 cetuximab-treated patients with wild type RAS mCRC. The relative expression of EGFR and HER2 have also been examined in 21-paired primary tumours and their metastatic sites by immunohistochemistry. Of the 144 cases examined, 25%, 97%, 79%, 48%, and 10% were positive for EGFR, HER2, HER3, and HER4 and all four HER family members, respectively. The expression of EGFR was an indicator of poorer overall survival and the membranous expression of HER2 and HER3 3+ intensity was associated with a shorter progression free survival (PFS). In contrast, the cytoplasmic expression of HER2 was associated with better PFS. In 48% and 71% of the cases, there were discordance in the expression of EGFR or one or more HER family members in paired primary and related metastatic tumours, respectively. Our results implicate the importance of a large prospective investigation of the expression level and predictive value of not only the therapeutic target (i.e., EGFR protein) but also HER2 and other HER family members as therapeutic targets, or for response to therapy with anti-EGFR mAbs and other forms of HER inhibitors, in both the primary tumours and metastatic sites in mCRC. Full article
Show Figures

Figure 1

Article
Early Prostate-Specific Antigen (PSA) Change at Four Weeks of the First-Line Treatment Using Abiraterone and Enzalutamide Could Predict Early/Primary Resistance in Metastatic Castration-Resistant Prostate Cancer
Cancers 2021, 13(3), 526; https://doi.org/10.3390/cancers13030526 - 30 Jan 2021
Cited by 2 | Viewed by 1756
Abstract
The identification of early or primary resistance to androgen signaling inhibitors (ASIs) is of great value for the treatment of metastatic castration-resistant prostate cancer (mCRPC). This study evaluates the predictive value of prostate-specific antigen (PSA) response at dour weeks of first-line ASIs treatment [...] Read more.
The identification of early or primary resistance to androgen signaling inhibitors (ASIs) is of great value for the treatment of metastatic castration-resistant prostate cancer (mCRPC). This study evaluates the predictive value of prostate-specific antigen (PSA) response at dour weeks of first-line ASIs treatment for mCRPC patients. A total of 254 patients treated with ASIs (abiraterone acetate: AA and enzalutamide: Enz) at the first-line treatment are retrospectively analyzed. Patients are stratified according to the achievement of >30% PSA decline at 4 and 12 weeks from the treatment initiation. At four weeks of the treatment, 157 patients (61.8%) achieved >30% PSA decline from the baseline. Thereafter, 177 patients (69.7%) achieved >30% PSA decline at 12 weeks of the treatment. A multivariate analysis exhibits >30% PSA decline at four weeks as an independent predictor for overall survival (OS). We note that 30 of 97 (30.9%) patients who did not achieve >30% PSA decline at four weeks consequently achieved >30% PSA decline at 12 weeks, and had a comparable favorable three years OS rate as the 147 patients achieving >30% PSA decline at both 4 and 12 weeks. To identify the variables that discriminate the patient survival in 97 patients without achieving >30% PSA decline at four weeks, a multivariate analysis is performed. The duration of androgen deprivation therapy before CRPC ≤ 12 months and Eastern Cooperative Oncology Group Performance Status ≥ 1 are identified as independent predictors for shorter OS for those patients. These data offer a concept of early treatment switch after four weeks of first-line ASIs when not observing >30% PSA decline at four weeks—particularly in patients with a modest effect of ADT and poor performance status. Full article
Show Figures

Figure 1

Article
Radiomics Features of 18F-Fluorodeoxyglucose Positron-Emission Tomography as a Novel Prognostic Signature in Colorectal Cancer
Cancers 2021, 13(3), 392; https://doi.org/10.3390/cancers13030392 - 21 Jan 2021
Cited by 6 | Viewed by 1464
Abstract
The aim of this study was to investigate the prognostic value of radiomics signatures derived from 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) in patients with colorectal cancer (CRC). From April 2008 to Jan 2014, we identified CRC patients who underwent 18 [...] Read more.
The aim of this study was to investigate the prognostic value of radiomics signatures derived from 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) in patients with colorectal cancer (CRC). From April 2008 to Jan 2014, we identified CRC patients who underwent 18F-FDG-PET before starting any neoadjuvant treatments and surgery. Radiomics features were extracted from the primary lesions identified on 18F-FDG-PET. Patients were divided into a training and validation set by random sampling. A least absolute shrinkage and selection operator Cox regression model was applied for prognostic signature building with progression-free survival (PFS) using the training set. Using the calculated radiomics score, a nomogram was developed, and its clinical utility was assessed in the validation set. A total of 381 patients with surgically resected CRC patients (training set: 228 vs. validation set: 153) were included. In the training set, a radiomics signature labeled as a rad_score was generated using two PET-derived features, such as gray-level run length matrix long-run emphasis (GLRLM_LRE) and gray-level zone length matrix short-zone low-gray-level emphasis (GLZLM_SZLGE). Patients with a high rad_score in the training and validation set had a shorter PFS. Multivariable analysis revealed that the rad_score was an independent prognostic factor in both training and validation sets. A radiomics nomogram, developed using rad_score, nodal stage, and lymphovascular invasion, showed good performance in the calibration curve and comparable predictive power with the staging system in the validation set. Textural features derived from 18F-FDG-PET images may enable detailed stratification of prognosis in patients with CRC. Full article
Show Figures

Figure 1

Article
Prognostic Value of Plasma hPG80 (Circulating Progastrin) in Metastatic Renal Cell Carcinoma
Cancers 2021, 13(3), 375; https://doi.org/10.3390/cancers13030375 - 20 Jan 2021
Cited by 3 | Viewed by 1570
Abstract
Precise management of kidney cancer requires the identification of prognostic factors. hPG80 (circulating progastrin) is a tumor promoting peptide present in the blood of patients with various cancers, including renal cell carcinoma (RCC). In this study, we evaluated the prognostic value of [...] Read more.
Precise management of kidney cancer requires the identification of prognostic factors. hPG80 (circulating progastrin) is a tumor promoting peptide present in the blood of patients with various cancers, including renal cell carcinoma (RCC). In this study, we evaluated the prognostic value of plasma hPG80 in 143 prospectively collected patients with metastatic RCC (mRCC). The prognostic impact of hPG80 levels on overall survival (OS) in mRCC patients after controlling for hPG80 levels in non-cancer age matched controls was determined and compared to the International Metastatic Database Consortium (IMDC) risk model (good, intermediate, poor). ROC curves were used to evaluate the diagnostic accuracy of hPG80 using the area under the curve (AUC). Our results showed that plasma hPG80 was detected in 94% of mRCC patients. hPG80 levels displayed high predictive accuracy with an AUC of 0.93 and 0.84 when compared to 18–25 year old controls and 50–80 year old controls, respectively. mRCC patients with high hPG80 levels (>4.5 pM) had significantly lower OS compared to patients with low hPG80 levels (<4.5 pM) (12 versus 31.2 months, respectively; p = 0.0031). Adding hPG80 levels (score of 1 for patients having hPG80 levels > 4.5 pM) to the six variables of the IMDC risk model showed a greater and significant difference in OS between the newly defined good-, intermediate- and poor-risk groups (p = 0.0003 compared to p = 0.0076). Finally, when patients with IMDC intermediate-risk group were further divided into two groups based on hPG80 levels within these subgroups, increased OS were observed in patients with low hPG80 levels (<4.5 pM). In conclusion, our data suggest that hPG80 could be used for prognosticating survival in mRCC alone or integrated to the IMDC score (by adding a variable to the IMDC score or by substratifying the IMDC risk groups), be a prognostic biomarker in mRCC patients. Full article
Show Figures

Figure 1

2020

Jump to: 2022, 2021, 2019

Article
Prognostic Inflammatory Index Based on Preoperative Peripheral Blood for Predicting the Prognosis of Colorectal Cancer Patients
Cancers 2021, 13(1), 3; https://doi.org/10.3390/cancers13010003 - 22 Dec 2020
Cited by 3 | Viewed by 1772
Abstract
Host inflammation is a critical component of tumor progression and its status can be indicated by peripheral blood cell counts. We aimed to construct a comprehensively prognostic inflammatory index (PII) based on preoperative peripheral blood cell counts and further evaluate its prognostic value [...] Read more.
Host inflammation is a critical component of tumor progression and its status can be indicated by peripheral blood cell counts. We aimed to construct a comprehensively prognostic inflammatory index (PII) based on preoperative peripheral blood cell counts and further evaluate its prognostic value for patients with colorectal cancer (CRC). A total of 9315 patients with stage II and III CRC from training and external validation cohorts were included. The PII was constructed by integrating all the peripheral blood cell counts associated with prognosis in the training cohort. Cox analyses were performed to evaluate the association between PII and overall survival (OS) and disease-free survival (DFS). In the training cohort, multivariate Cox analyses indicated that high OS-PII (>4.27) was significantly associated with worse OS (HR: 1.330, 95% CI: 1.189–1.489, p < 0.001); and high DFS-PII (>4.47) was significantly associated with worse DFS (HR: 1.366, 95% CI: 1.206–1.548, p < 0.001). The prognostic values of both OS-PII and DFS-PII were validated in the external validation cohort. The nomograms achieved good accuracy in predicting both OS and DFS. Time-dependent ROC analyses showed that both OS-PII and DFS-PII have a stable prognostic performance at various follow-up times. The prognostic value of tumor-node-metastasis staging could be enhanced by combining it with either OS-PII or DFS-PII. We demonstrated that PIIs are independent prognostic predictors for CRC patients, and the nomograms based on PIIs can be recommended for personalized survival prediction of patients with CRC. Full article
Show Figures

Figure 1

Review
Targeting Glycans and Heavily Glycosylated Proteins for Tumor Imaging
Cancers 2020, 12(12), 3870; https://doi.org/10.3390/cancers12123870 - 21 Dec 2020
Cited by 7 | Viewed by 2811
Abstract
Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed [...] Read more.
Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed on tumor tissue only, preferably from the earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing the preclinical and clinical accomplishments within this field. Additionally, we describe the major advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly, by providing a brief overview of the most attractive tumor-associated glycans and glycosylated proteins in association with their respective tumor types, we set out the way for implementing glycan-based imaging in a clinical practice. Full article
Show Figures

Graphical abstract

Article
Serum-Derived Exosomal MicroRNA Profiles Can Predict Poor Survival Outcomes in Patients with Extranodal Natural Killer/T-Cell Lymphoma
Cancers 2020, 12(12), 3548; https://doi.org/10.3390/cancers12123548 - 27 Nov 2020
Cited by 8 | Viewed by 1694
Abstract
Exosomes containing microRNAs (miRNAs) might have utility as biomarkers to predict the risk of treatment failure in extranodal NK/T-cell lymphoma (ENKTL) because exosomal cargo miRNAs could reflect tumor aggressiveness. We analyzed the exosomal miRNAs of patients in favorable (n = 22) and [...] Read more.
Exosomes containing microRNAs (miRNAs) might have utility as biomarkers to predict the risk of treatment failure in extranodal NK/T-cell lymphoma (ENKTL) because exosomal cargo miRNAs could reflect tumor aggressiveness. We analyzed the exosomal miRNAs of patients in favorable (n = 22) and poor outcome (n = 23) groups in a training cohort. Then, using the Nanostring nCounter® microRNA array, we compared them with miRNAs identified in human NK/T lymphoma (NKTL) cell line-derived exosomes to develop exosomal miRNA profiles. We validated the prognostic value of serum exosomal miRNA profiles with an independent cohort (n = 85) and analyzed their association with treatment resistance using etoposide-resistant cell lines. A comparison of the top 20 upregulated miRNAs in the training cohort with poor outcomes with 16 miRNAs that were upregulated in both NKTL cell lines, identified five candidate miRNAs (miR-320e, miR-4454, miR-222-3p, miR-21-5p, and miR-25-3p). Among these, increased levels of exosomal miR-4454, miR-21-5p, and miR-320e were associated with poor overall survival in the validation cohort. Increased levels were also found in relapsed patients post-treatment. These three miRNAs were overexpressed in NKTL cell lines that were resistant to etoposide. Furthermore, transfection of NKTL cell lines with miR-21-5p and miR-320e induced an increase in expression of the proinflammatory cytokines such as macrophage inflammatory protein 1 alpha. These studies show that serum levels of exosomal miR-21-5p, miR-320e, and miR-4454 are increased in ENKTL patients with poor prognosis. Upregulation of these exosomal miRNAs in treatment-resistant cell lines suggests they have a role as biomarkers for the identification of ENKTL patients at high risk of treatment failure. Full article
Show Figures

Figure 1

Review
Liquid Biopsy for Solid Ophthalmic Malignancies: An Updated Review and Perspectives
Cancers 2020, 12(11), 3284; https://doi.org/10.3390/cancers12113284 - 06 Nov 2020
Cited by 11 | Viewed by 1569
Abstract
Tissue biopsy is considered the gold standard when establishing a diagnosis of cancer. However, tissue biopsies of intraocular ophthalmic malignancies are hard to collect and are thought to be associated with a non-negligible risk of extraocular dissemination. Recently, the liquid biopsy (LB) has [...] Read more.
Tissue biopsy is considered the gold standard when establishing a diagnosis of cancer. However, tissue biopsies of intraocular ophthalmic malignancies are hard to collect and are thought to be associated with a non-negligible risk of extraocular dissemination. Recently, the liquid biopsy (LB) has emerged as a viable, non-invasive, repeatable, and promising way of obtaining a diagnosis, prognosis, and theragnosis of patients with solid tumors. LB refers to blood, as well as any human liquid. The natural history of uveal melanoma (UM) and retinoblastoma (RB) are radically opposed. On the one hand, UM is known to disseminate through the bloodstream, and is, therefore, more accessible to systemic venous liquid biopsy. On the other hand, RB rarely disseminates hematogenous, and is, therefore, more accessible to local liquid biopsy by performing an anterior chamber puncture. In this review, we summarize the current knowledge concerning LB in UM, RB, conjunctival tumors, and choroidal metastases. We also develop the current limitations encountered, as well as the perspectives. Full article
Show Figures

Graphical abstract

Article
Prognostic Interactions between FAP+ Fibroblasts and CD8a+ T Cells in Colon Cancer
Cancers 2020, 12(11), 3238; https://doi.org/10.3390/cancers12113238 - 03 Nov 2020
Cited by 10 | Viewed by 1845
Abstract
Inter-case variations in immune cell and fibroblast composition are associated with prognosis in solid tumors, including colon cancer. A series of experimental studies suggest immune-modulatory roles of marker-defined fibroblast populations, including FAP-positive fibroblasts. These studies imply that the fibroblast status of tumors might [...] Read more.
Inter-case variations in immune cell and fibroblast composition are associated with prognosis in solid tumors, including colon cancer. A series of experimental studies suggest immune-modulatory roles of marker-defined fibroblast populations, including FAP-positive fibroblasts. These studies imply that the fibroblast status of tumors might affect the prognostic significance of immune-related features. Analyses of a population-based colon cancer cohort demonstrated good prognosis associations of FAP intensity and CD8a density. Notably, a significant prognostic interaction was detected between these markers (p = 0.013 in nonadjusted analyses and p = 0.003 in analyses adjusted for cofounding factors) in a manner where the good prognosis association of CD8 density was restricted to the FAP intensity-high group. This prognostic interaction was also detected in an independent randomized trial-derived colon cancer cohort (p = 0.048 in nonadjusted analyses). In the CD8-high group, FAP intensity was significantly associated with a higher total tumor density of FoxP3-positive immune cells and a higher ratio of epithelial-to-stromal density of CD8a T cells. The study presents findings relevant for the ongoing efforts to improve the prognostic performance of CD8-related markers and should be followed by additional validation studies. Furthermore, findings support, in general, earlier model-derived studies implying fibroblast subsets as clinically relevant modulators of immune surveillance. Finally, the associations between FAP intensity and specific immune features suggest mechanisms of fibroblast-immune crosstalk with therapeutic potential. Full article
Show Figures

Figure 1

Article
Effect of Citric Acid Cycle Genetic Variants and Their Interactions with Obesity, Physical Activity and Energy Intake on the Risk of Colorectal Cancer: Results from a Nested Case-Control Study in the UK Biobank
Cancers 2020, 12(10), 2939; https://doi.org/10.3390/cancers12102939 - 12 Oct 2020
Cited by 4 | Viewed by 2047
Abstract
Colorectal cancer is a common malignancy worldwide. Physical activity and a healthy diet contribute to energy balance and have been recommended for the prevention of colorectal cancer. We suggest that the individual differences in energy balance can be explained by genetic polymorphisms involved [...] Read more.
Colorectal cancer is a common malignancy worldwide. Physical activity and a healthy diet contribute to energy balance and have been recommended for the prevention of colorectal cancer. We suggest that the individual differences in energy balance can be explained by genetic polymorphisms involved in mitochondria, which play a central role in energy metabolism at the cellular level. This study aimed to evaluate the association between genetic variants of the mitochondrial citric acid cycle and colorectal cancer. Study participants comprised 3523 colorectal cancer cases and 10,522 matched controls from the UK Biobank study. Odds ratios (ORs) and 95% confidence intervals (CIs) for colorectal cancer were estimated using a conditional logistic regression model. We found a significant association between the SUCLG2 gene rs35494829 and colon cancer (ORs [95% CIs] per increment of the minor allele, 0.82 [0.74–0.92]). Statistical significance was observed in the interactions of the citric acid cycle variants with obesity, energy intake, and vigorous physical activity in colorectal cancer. We also identified significant SNP-SNP interactions among citric acid cycle SNPs in colorectal cancer. The results of this study may provide evidence for bioenergetics in the development of colorectal cancer and for establishing a precise prevention strategy. Full article
Show Figures

Figure 1

Article
Screening for Early Gastric Cancer Using a Noninvasive Urine Metabolomics Approach
Cancers 2020, 12(10), 2904; https://doi.org/10.3390/cancers12102904 - 09 Oct 2020
Cited by 12 | Viewed by 1919
Abstract
The early detection of gastric cancer (GC) could decrease its incidence and mortality. However, there are currently no accurate noninvasive markers for GC screening. Therefore, we developed a noninvasive diagnostic approach, employing urine nuclear magnetic resonance (NMR) metabolomics, to discover putative metabolic markers [...] Read more.
The early detection of gastric cancer (GC) could decrease its incidence and mortality. However, there are currently no accurate noninvasive markers for GC screening. Therefore, we developed a noninvasive diagnostic approach, employing urine nuclear magnetic resonance (NMR) metabolomics, to discover putative metabolic markers associated with GC. Changes in urine metabolite levels during oncogenesis were evaluated using samples from 103 patients with GC and 100 age- and sex-matched healthy controls. Approximately 70% of the patients with GC (n = 69) had stage I GC, with the majority (n = 56) having intramucosal cancer. A multivariate statistical analysis of the urine NMR data well discriminated between the patient and control groups and revealed nine metabolites, including alanine, citrate, creatine, creatinine, glycerol, hippurate, phenylalanine, taurine, and 3-hydroxybutyrate, that contributed to the difference. A diagnostic performance test with a separate validation set exhibited a sensitivity and specificity of more than 90%, even with the intramucosal cancer samples only. In conclusion, the NMR-based urine metabolomics approach may have potential as a convenient screening method for the early detection of GC and may facilitate consequent endoscopic examination through risk stratification. Full article
Show Figures

Figure 1

Article
Genomic Instability Signature of Palindromic Non-Coding Somatic Mutations in Bladder Cancer
Cancers 2020, 12(10), 2882; https://doi.org/10.3390/cancers12102882 - 08 Oct 2020
Cited by 7 | Viewed by 2087
Abstract
Numerous pan-genomic studies identified alterations in protein-coding genes and signaling pathways involved in bladder carcinogenesis, while non-coding somatic alterations remain weakly explored. The goal of this study was to identify clinical biomarkers in non-coding regions for bladder cancer patients. We have previously identified [...] Read more.
Numerous pan-genomic studies identified alterations in protein-coding genes and signaling pathways involved in bladder carcinogenesis, while non-coding somatic alterations remain weakly explored. The goal of this study was to identify clinical biomarkers in non-coding regions for bladder cancer patients. We have previously identified in bladder tumors two non-coding mutational hotspots occurring at high frequencies (≥30%). These mutations are located close to the GPR126 and PLEKHS1 genes, at the guanine or the cytosine of a TGAACA core motif flanked, on both sides, by a stretch of palindromic sequences. Here, we hypothesize that such a pattern of recurrent non-coding mutations could be a signature of somatic genomic instability specifically involved in bladder cancer. We analyzed 26 additional mutable non-coding sites with the same core motif in a cohort of 103 bladder cancers composed of 44 NMIBC cases and 59 MIBC cases using high-resolution melting (HRM) and Sanger sequencing. Five bladder cancers were additionally analyzed for protein-coding gene mutations using a targeted NGS panel composed of 571 genes. Expression levels of three members of the APOBEC3 family genes were assessed using real-time quantitative RT-PCR. Non-coding somatic mutations were observed for at least one TGAACA core motif locus in 62.1% (64/103) of bladder tumor samples. These non-coding mutations co-occurred in the bladder tumors but were absent in prostate tumor, HPV-positive Head and Neck Squamous Cell Carcinoma, and high microsatellite instability (MSI-H) colorectal tumor series. This signature of palindromic non-coding somatic mutations, specific to bladder tumors, was not associated with patients’ outcome and was more frequent in females. Interestingly, this signature was associated with high tumor mutational burden (TMB) and high expression levels of APOBEC3B and interferon inducible genes. We identified a new type of somatic genomic instability targeting the TGAACA core motif loci flanked by palindromic sequences in bladder cancer. This mutational signature is a promising candidate clinical biomarker for the early detection of relapse and a major low-cost alternative to the TMB to monitor the response to immunotherapy for bladder cancer patients. Full article
Show Figures

Figure 1

Article
Nanoparticles in 472 Human Cerebrospinal Fluid: Changes in Extracellular Vesicle Concentration and miR-21 Expression as a Biomarker for Leptomeningeal Metastasis
Cancers 2020, 12(10), 2745; https://doi.org/10.3390/cancers12102745 - 24 Sep 2020
Cited by 7 | Viewed by 1760
Abstract
Leptomeningeal metastasis (LM) has a poor prognosis and is difficult to diagnose and predict the response of treatment. In this study, we suggested that the monitoring of changes in the concentration of extracellular vesicles in cerebrospinal fluid could help diagnose or predict outcomes [...] Read more.
Leptomeningeal metastasis (LM) has a poor prognosis and is difficult to diagnose and predict the response of treatment. In this study, we suggested that the monitoring of changes in the concentration of extracellular vesicles in cerebrospinal fluid could help diagnose or predict outcomes for LM. We measured nanoparticles in 472 human cerebrospinal fluid (CSF) from patients including LM with both Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA) after two-step centrifugations. NTA revealed that the concentration of CSF nanoparticles was significantly increased in LM compared to other groups (2.80 × 108 /mL vs. 1.49 × 108 /mL, p < 0.01). Changes in NTA-measured nanoparticles concentration after intra-CSF chemotherapy were further examined in 33 non-small cell lung cancer patients with LM. Overall survival was longer for patients with increased EV than the others (442 vs. 165 days, p < 0.001). Markers of extracellular vesicles (CD9/CD63/CD81) significantly decreased in the EV-decreased group. MicroRNA-21 expression decreased in this favorable prognostic group, whereas it increased in the EV-decreased group. In conclusion, the elevated concentration of extracellular vesicles in cerebrospinal fluid in patients with LM may be a predictive marker for survival duration. Moreover, EV changes combined with microRNA-21 might be a biomarker for monitoring the efficacy of intracranial chemotherapy of LM in non-small cell lung cancer patients. Full article
Show Figures

Figure 1

Article
The FMS like Tyrosine Kinase 3 (FLT3) Is Overexpressed in a Subgroup of Multiple Myeloma Patients with Inferior Prognosis
Cancers 2020, 12(9), 2341; https://doi.org/10.3390/cancers12092341 - 19 Aug 2020
Cited by 3 | Viewed by 1597
Abstract
Therapy resistance remains a major challenge in the management of multiple myeloma (MM). We evaluated the expression of FLT3 tyrosine kinase receptor (FLT3, CD135) in myeloma cells as a possible clonal driver. FLT3 expression was analyzed in bone marrow biopsies of patients with [...] Read more.
Therapy resistance remains a major challenge in the management of multiple myeloma (MM). We evaluated the expression of FLT3 tyrosine kinase receptor (FLT3, CD135) in myeloma cells as a possible clonal driver. FLT3 expression was analyzed in bone marrow biopsies of patients with monoclonal gammopathy of undetermined significance or smoldering myeloma (MGUS, SMM), newly diagnosed MM (NDMM), and relapsed/refractory MM (RRMM) by immunohistochemistry (IHC). FLT3 gene expression was analyzed by RNA sequencing (RNAseq) and real-time PCR (rt-PCR). Anti-myeloma activity of FLT3 inhibitors (midostaurin, gilteritinib) was tested in vitro on MM cell lines and primary MM cells by 3H-tymidine incorporation assays or flow cytometry. Semi-quantitative expression analysis applying a staining score (FLT3 expression IHC-score, FES, range 1–6) revealed that a high FES (>3) was associated with a significantly shorter progression-free survival (PFS) in NDMM and RRMM patients (p = 0.04). RNAseq and real-time PCR confirmed the expression of FLT3 in CD138-purified MM samples. The functional relevance of FLT3 expression was corroborated by demonstrating the in vitro anti-myeloma activity of FLT3 inhibitors on FLT3-positive MM cell lines and primary MM cells. FLT3 inhibitors might offer a new targeted therapy approach in a subgroup of MM patients displaying aberrant FLT3 signaling. Full article
Show Figures

Figure 1

Article
Novel Somatic Genetic Variants as Predictors of Resistance to EGFR-Targeted Therapies in Metastatic Colorectal Cancer Patients
Cancers 2020, 12(8), 2245; https://doi.org/10.3390/cancers12082245 - 11 Aug 2020
Cited by 1 | Viewed by 1956
Abstract
Background: About 40% of RAS/BRAF wild-type metastatic colorectal cancer (mCRC) patients undergoing anti-EGFR-based therapy have poor outcomes. Treatment failure is not only associated with poorer prognosis but higher healthcare costs. Our aim was to identify novel somatic genetic variants in the primary tumor [...] Read more.
Background: About 40% of RAS/BRAF wild-type metastatic colorectal cancer (mCRC) patients undergoing anti-EGFR-based therapy have poor outcomes. Treatment failure is not only associated with poorer prognosis but higher healthcare costs. Our aim was to identify novel somatic genetic variants in the primary tumor and assess their effect on anti-EGFR response. Patients and Methods: Tumor (somatic) and blood (germline) DNA samples were obtained from two well-defined cohorts of mCRC patients, those sensitive and those resistant to EGFR blockade. Genetic variant screening of 43 EGFR-related genes was performed using targeted next-generation sequencing (NGS). Relevant clinical data were collected through chart review to assess genetic results. Results: Among 61 patients, 38 were sensitive and 23 were resistant to treatment. We identified eight somatic variants that predicted non-response. Three were located in insulin-related genes (I668N and E1218K in IGF1R, T1156M in IRS2) and three in genes belonging to the LRIG family (T152T in LRIG1, S697L in LRIG2 and V812M in LRIG3). The remaining two variants were found in NRAS (G115Efs*46) and PDGFRA (T301T). We did not identify any somatic variants related to good response. Conclusions: This study provides evidence that novel somatic genetic variants along the EGFR-triggered pathway could modulate the response to anti-EGFR drugs in mCRC patients. It also highlights the influence of insulin-related genes and LRIG genes on anti-EGFR efficacy. Our findings could help characterize patients who are resistant to anti-EGFR blockade despite harboring RAS/BRAF wild-type tumors. Full article
Show Figures

Figure 1

Brief Report
Utility of Circulating Tumor DNA for Detection and Monitoring of Endometrial Cancer Recurrence and Progression
Cancers 2020, 12(8), 2231; https://doi.org/10.3390/cancers12082231 - 10 Aug 2020
Cited by 20 | Viewed by 2894
Abstract
Despite the increasing incidence of endometrial cancer (EC) worldwide and the poor overall survival of patients who recur, no reliable biomarker exists for detecting and monitoring EC recurrence and progression during routine follow-up. Circulating tumor DNA (ctDNA) is a sensitive method for monitoring [...] Read more.
Despite the increasing incidence of endometrial cancer (EC) worldwide and the poor overall survival of patients who recur, no reliable biomarker exists for detecting and monitoring EC recurrence and progression during routine follow-up. Circulating tumor DNA (ctDNA) is a sensitive method for monitoring cancer activity and stratifying patients that are likely to respond to therapy. As a pilot study, we investigated the utility of ctDNA for detecting and monitoring EC recurrence and progression in 13 patients, using targeted next-generation sequencing (tNGS) and personalized ctDNA assays. Using tNGS, at least one somatic mutation at a variant allele frequency (VAF) > 20% was detected in 69% (9/13) of patient tumors. The four patients with no detectable tumor mutations at >20% VAF were whole exome sequenced, with all four harboring mutations in genes not analyzed by tNGS. Analysis of matched and longitudinal plasma DNA revealed earlier detection of EC recurrence and progression and dynamic kinetics of ctDNA levels reflecting treatment response. We also detected acquired high microsatellite instability (MSI-H) in ctDNA from one patient whose primary tumor was MSI stable. Our study suggests that ctDNA analysis could become a useful biomarker for early detection and monitoring of EC recurrence. However, further research is needed to confirm these findings and to explore their potential implications for patient management. Full article
Show Figures

Figure 1

Article
The Roles of Imprinted SLC22A18 and SLC22A18AS Gene Overexpression Caused by Promoter CpG Island Hypomethylation as Diagnostic and Prognostic Biomarkers for Non-Small Cell Lung Cancer Patients
Cancers 2020, 12(8), 2075; https://doi.org/10.3390/cancers12082075 - 27 Jul 2020
Cited by 10 | Viewed by 3085
Abstract
Genomic imprinting is a process that involves one gene copy turned-off in a parent-of-origin-dependent manner. The regulation of imprinted genes is broadly dependent on promoter methylation marks, which are frequently associated with both oncogenes and tumor suppressors. The purpose of this study was [...] Read more.
Genomic imprinting is a process that involves one gene copy turned-off in a parent-of-origin-dependent manner. The regulation of imprinted genes is broadly dependent on promoter methylation marks, which are frequently associated with both oncogenes and tumor suppressors. The purpose of this study was to assess the DNA methylation patterns of the imprinted solute-carrier family 22 member 18 (SLC22A18) and SLC22A18 antisense (SLC22A18AS) genes in non-small cell lung cancer (NSCLC) patients to study their relevance to the disease. We found that both genes were hypomethylated in adenocarcinoma and squamous cell carcinoma patients. Due to this imprinting loss, SLC22A18 and SLC22A18AS were found to be overexpressed in NSCLC tissues, which is significantly more evident in lung adenocarcinoma patients. These results were validated through analyses of public databases of NSCLC patients. The reversed gene profile of both genes was achieved in vitro by treatment with ademetionine. We then showed that high SLC22A18 and SLC22A18AS expression levels were significantly associated with worsening disease progression. In addition, low levels of SLC22A18AS were also correlated with better overall survival for lung adenocarcinoma patients. We found that SLC22A18 and SLC22A18AS knockdown inhibits cell proliferation in vitro. All these results suggest that both genes may be useful as diagnostic and prognostic biomarkers in NSCLC, revealing novel therapeutic opportunities. Full article
Show Figures

Figure 1

Article
Ultra-Short Circulating Tumor DNA (usctDNA) in Plasma and Saliva of Non-Small Cell Lung Cancer (NSCLC) Patients
Cancers 2020, 12(8), 2041; https://doi.org/10.3390/cancers12082041 - 24 Jul 2020
Cited by 18 | Viewed by 2613
Abstract
Mutations identified in the epidermal growth factor receptor (EGFR) predict sensitivity to EGFR-targeted therapy for non-small cell lung carcinoma (NSCLC). We previously reported that Electric Field-Induced Release and Measurement (EFIRM)-based liquid biopsy could detect EGFR ctDNA with >94% concordance with tissue-based genotyping. A [...] Read more.
Mutations identified in the epidermal growth factor receptor (EGFR) predict sensitivity to EGFR-targeted therapy for non-small cell lung carcinoma (NSCLC). We previously reported that Electric Field-Induced Release and Measurement (EFIRM)-based liquid biopsy could detect EGFR ctDNA with >94% concordance with tissue-based genotyping. A side-by-side comparison of concordance of EFIRM and droplet digital PCR (ddPCR) for the detection of the two front-line actionable EFGR mutations was performed with paired plasma and saliva samples from 13 NSCLC patients. Deep sequencing analysis based on single-strand DNA library preparation was employed to determine the size distributions of EGFR L858R ctDNA in plasma and saliva samples. EFIRM detected both EGFR mutations with 100% sensitivity in both plasma and saliva samples, whereas ddPCR detected EGFR mutations with sensitivities of 84.6% and 15.4%, respectively. In saliva samples, the majority of EGFR L858R ctDNA fragments detected were <80 bp. Deep sequencing analysis of ctDNA enriched for the EGFR L858R mutation revealed the significant presence of EGFR L858R ctDNA as ultra-short circulating tumor DNA (usctDNA) with the size of 40–60 bp in patient plasma and saliva. Most of usctDNAs are not amplifiable with the current ddPCR assay. Further examination using cell lines and patient biofluids revealed that the majority of usctDNAs were predominately localized in the exosomal fraction. Our study revealed the abundant existence of EGFR ctDNA in the plasma and saliva of NSCLC patients is usctDNA. usctDNA is a novel type of targets for liquid biopsy that can be efficiently detected by EFIRM technology. Full article
Show Figures

Figure 1

Communication
A Panel of Urinary Volatile Biomarkers for Differential Diagnosis of Prostate Cancer from Other Urological Cancers
Cancers 2020, 12(8), 2017; https://doi.org/10.3390/cancers12082017 - 23 Jul 2020
Cited by 10 | Viewed by 1975
Abstract
Our group recently developed a urinary 6-biomarker panel for the diagnosis of prostate cancer (PCa) which has a higher level of accuracy compared to the serum prostate specific antigen (PSA) test. Herein, urine from an independent cohort of PCa patients and cancer-free controls [...] Read more.
Our group recently developed a urinary 6-biomarker panel for the diagnosis of prostate cancer (PCa) which has a higher level of accuracy compared to the serum prostate specific antigen (PSA) test. Herein, urine from an independent cohort of PCa patients and cancer-free controls was analyzed to further validate the discriminative power of that panel. Additionally, urine from patients diagnosed with bladder cancer (BC) and renal cancer (RC) were included to evaluate the site-specificity of the panel. Results confirmed the ability of the 6-biomarker panel to discriminate PCa patients from controls, but not from other urological cancers. To overcome this limitation, an untargeted approach was performed to unveil discriminant metabolites among the three cancer types. A 10-biomarker panel comprising the original panel plus four new metabolites was established to discriminate PCa from controls, BC, and RC, with 76% sensitivity, 90% specificity, and 92% accuracy. This improved panel also disclosed better accuracy than serum PSA test and provides the basis for a new non-invasive early detection tool for PCa. Full article
Show Figures

Figure 1

Review
Circulating Tumor Cell Detection Technologies and Clinical Utility: Challenges and Opportunities
Cancers 2020, 12(7), 1930; https://doi.org/10.3390/cancers12071930 - 17 Jul 2020
Cited by 65 | Viewed by 5314
Abstract
The potential clinical utility of circulating tumor cells (CTCs) in the diagnosis and management of cancer has drawn a lot of attention in the past 10 years. CTCs disseminate from tumors into the bloodstream and are believed to carry vital information about tumor [...] Read more.
The potential clinical utility of circulating tumor cells (CTCs) in the diagnosis and management of cancer has drawn a lot of attention in the past 10 years. CTCs disseminate from tumors into the bloodstream and are believed to carry vital information about tumor onset, progression, and metastasis. In addition, CTCs reflect different biological aspects of the primary tumor they originate from, mainly in their genetic and protein expression. Moreover, emerging evidence indicates that CTC liquid biopsies can be extended beyond prognostication to pharmacodynamic and predictive biomarkers in cancer patient management. A key challenge in harnessing the clinical potential and utility of CTCs is enumerating and isolating these rare heterogeneous cells from a blood sample while allowing downstream CTC analysis. That being said, there have been serious doubts regarding the potential value of CTCs as clinical biomarkers for cancer due to the low number of promising outcomes in the published results. This review aims to present an overview of the current preclinical CTC detection technologies and the advantages and limitations of each sensing platform, while surveying and analyzing the published evidence of the clinical utility of CTCs. Full article
Show Figures

Figure 1

Article
Study of Ras Mutations’ Prognostic Value in Metastatic Colorectal Cancer: STORIA Analysis
Cancers 2020, 12(7), 1919; https://doi.org/10.3390/cancers12071919 - 16 Jul 2020
Cited by 14 | Viewed by 1902
Abstract
Background: Colorectal cancer (CRC) is the second most common cause of cancer-specific death in both sexes in Western countries. KRAS mutations occur in about 50% of metastatic CRCs (mCRCs). The prognostic value of specific KRAS mutations still remains unexplored and unclear. Methods: Two [...] Read more.
Background: Colorectal cancer (CRC) is the second most common cause of cancer-specific death in both sexes in Western countries. KRAS mutations occur in about 50% of metastatic CRCs (mCRCs). The prognostic value of specific KRAS mutations still remains unexplored and unclear. Methods: Two hundred and forty KRAS wild-type and 206 KRAS/NRAS mutant consecutive unresectable mCRC patients with PS Eastern Cooperative Oncology Group (ECOG) 0 or 1, aged < 80 years, and with a life expectancy >3 months entered into this study. DNA was extracted from paraffin-embedded formalin-fixed tumour tissues, and it was sequenced with the Oncomine Solid Tumour DNA kit (Thermo Fisher Scientific, Waltham, MA, USA). Data were analysed using the Torrent Suite Software v5.0 (Thermo Fisher Scientific). The primary outcome was the analysis of the prognostic role of different KRAS mutations in terms of overall survival (OS). Results: There were no significant differences among the most prevalent mutations (p.G12D, p.G12V, p.G13D, p.G12A, p.G12C, and p.G12S) in terms of age (<65 vs. ≥65 years), gender (male vs. female), grading (G1/G2 vs. G3), side of primary tumour (left vs. right), pT, and pN. At the median follow-up of 25.6 months, there were 77 deaths in KRAS-mutated patients and 94 in wild-type patients. Three homogeneous prognostic groups were identified: wild-type patients (group A, median survival: 27.5 months), p.G13D/p.G12A/p.G12V/p.G12D mutants (group B, median survival: 17.3 months), and p.G12C/p.G12S mutants (group C, median survival: 5.0 months, p < 0.0001 according to Log Rank test). Upon multivariate analysis, metastatic involvement and p.G12C/p.G12S KRAS mutation group C (vs. other mutations) emerged as independent prognostic variables for survival. Conclusions: We show that mutant KRAS is a negative prognostic factor and that p.G12C/p.G12S variants present the worst clinical courses. This information suggests a clear difference among KRAS mutations, and it will be useful to test potentiated and/or innovative therapeutic strategies in p.G12C/p.G12S metastatic CRC patients. Full article
Show Figures

Figure 1

Article
Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers
Cancers 2020, 12(7), 1911; https://doi.org/10.3390/cancers12071911 - 15 Jul 2020
Cited by 13 | Viewed by 1983
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic [...] Read more.
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas. Full article
Show Figures

Figure 1

Article
Loss of Function SETD2 Mutations in Poorly Differentiated Metastases from Two Hürthle Cell Carcinomas of the Thyroid
Cancers 2020, 12(7), 1892; https://doi.org/10.3390/cancers12071892 - 14 Jul 2020
Cited by 5 | Viewed by 1716
Abstract
Hürthle cell carcinomas (HCC) are rare differentiated thyroid cancers that display low avidity for radioactive iodine and respond poorly to kinase inhibitors. Here, using next-generation sequencing, we analyzed the mutational status of primary tissue and poorly differentiated metastatic tissue from two HCC patients. [...] Read more.
Hürthle cell carcinomas (HCC) are rare differentiated thyroid cancers that display low avidity for radioactive iodine and respond poorly to kinase inhibitors. Here, using next-generation sequencing, we analyzed the mutational status of primary tissue and poorly differentiated metastatic tissue from two HCC patients. In both cases, metastatic tissues harbored a mutation of SETD2, each resulting in loss of the SRI and WW domains of SETD2, a methyltransferase that trimethylates H3K36 (H3K36me3) and also interacts with p53 to promote its stability. Functional studies of the novel p.D1890fs6* mutation (case 1) revealed significantly reduced H3K36me3 levels in SETD2-mutated tissue and primary cell cultures and decreased levels of the active form of p53. Restoration of SETD2-wildtype expression in the SETD2-mutant cells significantly reduced the expression of four well-known stemness markers (OCT-4, SOX2, IPF1, Goosecoid). These findings suggest potential roles for SETD2 loss-of-function mutations in HCC progression, possibly involving p53 destabilization and promotion of stemness. Their prevalence and potential treatment implications in thyroid cancer, especially HCC, require further study. Full article
Show Figures

Figure 1

Article
Identification of Novel microRNA Prognostic Markers Using Cascaded Wx, a Neural Network-Based Framework, in Lung Adenocarcinoma Patients
Cancers 2020, 12(7), 1890; https://doi.org/10.3390/cancers12071890 - 14 Jul 2020
Cited by 7 | Viewed by 2042
Abstract
The evolution of next-generation sequencing technology has resulted in a generation of large amounts of cancer genomic data. Therefore, increasingly complex techniques are required to appropriately analyze this data in order to determine its clinical relevance. In this study, we applied a neural [...] Read more.
The evolution of next-generation sequencing technology has resulted in a generation of large amounts of cancer genomic data. Therefore, increasingly complex techniques are required to appropriately analyze this data in order to determine its clinical relevance. In this study, we applied a neural network-based technique to analyze data from The Cancer Genome Atlas and extract useful microRNA (miRNA) features for predicting the prognosis of patients with lung adenocarcinomas (LUAD). Using the Cascaded Wx platform, we identified and ranked miRNAs that affected LUAD patient survival and selected the two top-ranked miRNAs (miR-374a and miR-374b) for measurement of their expression levels in patient tumor tissues and in lung cancer cells exhibiting an altered epithelial-to-mesenchymal transition (EMT) status. Analysis of miRNA expression from tumor samples revealed that high miR-374a/b expression was associated with poor patient survival rates. In lung cancer cells, the EMT signal induced miR-374a/b expression, which, in turn, promoted EMT and invasiveness. These findings demonstrated that this approach enabled effective identification and validation of prognostic miRNA markers in LUAD, suggesting its potential efficacy for clinical use. Full article
Show Figures

Figure 1

Article
Prospective Assessment of Systemic MicroRNAs as Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer
Cancers 2020, 12(7), 1820; https://doi.org/10.3390/cancers12071820 - 07 Jul 2020
Cited by 20 | Viewed by 2344
Abstract
Neoadjuvant chemotherapy (NACT) is used in locally advanced breast cancer to reduce tumour burden prior to surgical resection. However, only a subset of NACT treated patients will respond to treatment or achieve a pathologic complete response (pCR). This multicenter, prospective study (CTRIAL-IE (ICORG) [...] Read more.
Neoadjuvant chemotherapy (NACT) is used in locally advanced breast cancer to reduce tumour burden prior to surgical resection. However, only a subset of NACT treated patients will respond to treatment or achieve a pathologic complete response (pCR). This multicenter, prospective study (CTRIAL-IE (ICORG) 10-11 study) evaluated circulating microRNA as novel non-invasive prognostic biomarkers of NACT response in breast cancer. Selected circulating microRNAs (Let-7a, miR-21, miR-145, miR-155, miR-195) were quantified from patients undergoing standard of care NACT treatment (n = 114) from whole blood at collected at diagnosis, and the association with NACT response and clinicopathological features evaluated. NACT responders had significantly lower levels of miR-21 (p = 0.036) and miR-195 (p = 0.017), compared to non-responders. Evaluating all breast cancer cases miR-21 was found to be an independent predictor of response (OR 0.538, 95% CI 0.308–0.943, p < 0.05). Luminal cancer NACT responders were found to have significantly decreased levels of miR-145 (p = 0.033) and miR-21 (p = 0.048), compared to non-responders. This study demonstrates the prognostic ability of miR-21, miR-195 and miR-145 as circulating biomarkers stratifying breast cancer patients by NACT response, identifying patients that will derive the maximum benefit from chemotherapy. Full article
Show Figures

Figure 1

Review
Exploring the Therapeutic Potential of Membrane Transport Proteins: Focus on Cancer and Chemoresistance
Cancers 2020, 12(6), 1624; https://doi.org/10.3390/cancers12061624 - 19 Jun 2020
Cited by 8 | Viewed by 3257
Abstract
Improving the therapeutic efficacy of conventional anticancer drugs represents the best hope for cancer treatment. However, the shortage of druggable targets and the increasing development of anticancer drug resistance remain significant problems. Recently, membrane transport proteins have emerged as novel therapeutic targets for [...] Read more.
Improving the therapeutic efficacy of conventional anticancer drugs represents the best hope for cancer treatment. However, the shortage of druggable targets and the increasing development of anticancer drug resistance remain significant problems. Recently, membrane transport proteins have emerged as novel therapeutic targets for cancer treatment. These proteins are essential for a plethora of cell functions ranging from cell homeostasis to clinical drug toxicity. Furthermore, their association with carcinogenesis and chemoresistance has opened new vistas for pharmacology-based cancer research. This review provides a comprehensive update of our current knowledge on the functional expression profile of membrane transport proteins in cancer and chemoresistant tumours that may form the basis for new cancer treatment strategies. Full article
Show Figures

Figure 1

Article
Circulating Plasma Gelsolin: A Predictor of Favorable Clinical Outcomes in Head and Neck Cancer and Sensitive Biomarker for Early Disease Diagnosis Combined with Soluble Fas Ligand
Cancers 2020, 12(6), 1569; https://doi.org/10.3390/cancers12061569 - 13 Jun 2020
Cited by 7 | Viewed by 1873
Abstract
Head and neck cancer (HNC) accounts for more than 330,000 cancer deaths annually worldwide. Despite late diagnosis being a major factor contributing to HNC mortality, no satisfactory biomarkers exist for early disease detection. Cytoplasmic gelsolin (cGSN) was discovered to predict disease progression in [...] Read more.
Head and neck cancer (HNC) accounts for more than 330,000 cancer deaths annually worldwide. Despite late diagnosis being a major factor contributing to HNC mortality, no satisfactory biomarkers exist for early disease detection. Cytoplasmic gelsolin (cGSN) was discovered to predict disease progression in HNC and other malignancies, and circulating plasma gelsolin (pGSN) levels are significantly correlated with infectious and inflammatory disease prognoses. Here, the plasma levels of five candidate biomarkers (circulating pGSN, squamous cell carcinoma antigen, cytokeratin 19 fragment, soluble Fas, and soluble Fas ligand (sFasL)) in 202 patients with HNC and 45 healthy controls were measured using enzyme-linked immunosorbent assay or Millipore cancer multiplex assay. The results demonstrated that circulating pGSN levels were significantly lower in patients with HNC than in healthy controls. Moreover, circulating pGSN outperformed other candidate biomarkers as an independent diagnostic biomarker of HNC in both sensitivity (82.7%) and specificity (95.6%). Receiver operating characteristic curves indicated that combined pGSN and sFasL levels further augmented this sensitivity (90.6%) for early disease detection. Moreover, higher pGSN levels predicted improved prognosis at both 5-year overall survival and progression-free survival. In conclusion, circulating pGSN could be an independent predictor of favorable clinical outcomes and a novel biomarker for the early HNC detection in combination with sFasL. Full article
Show Figures

Figure 1

Review
Circulating Tumor DNA as a Novel Biomarker Optimizing Chemotherapy for Colorectal Cancer
Cancers 2020, 12(6), 1566; https://doi.org/10.3390/cancers12061566 - 13 Jun 2020
Cited by 11 | Viewed by 2594
Abstract
Liquid biopsy is a minimally invasive method for detecting soluble factors, including circulating tumor DNA (ctDNA), in body fluids. ctDNA carrying tumor-specific genetic or epigenetic alterations is released into circulation from tumor cells. ctDNA in the plasma contains somatic mutations that have occurred [...] Read more.
Liquid biopsy is a minimally invasive method for detecting soluble factors, including circulating tumor DNA (ctDNA), in body fluids. ctDNA carrying tumor-specific genetic or epigenetic alterations is released into circulation from tumor cells. ctDNA in the plasma contains somatic mutations that have occurred in the tumor, and reflects tumor progression and therapeutic effects promptly and accurately. Furthermore, ctDNA is useful for early detection of recurrence and estimation of prognosis and may be utilized for diagnosis and personalized medicine for treatment selection. Thus, in the near future, it will be possible to select the most appropriate treatment based on real-time genetic information using ctDNA. Full article
Show Figures

Figure 1

Article
Serum Type XIX Collagen is Significantly Elevated in Non-Small Cell Lung Cancer: A Preliminary Study on Biomarker Potential
Cancers 2020, 12(6), 1510; https://doi.org/10.3390/cancers12061510 - 09 Jun 2020
Cited by 5 | Viewed by 1533
Abstract
Type XIX collagen is a poorly characterized collagen associated with the basement membrane. It is abnormally regulated during breast cancer progression and the NC1 (XIX) domain has anti-tumorigenic signaling properties. However, little is known about the biomarker potential of collagen XIX in cancer. [...] Read more.
Type XIX collagen is a poorly characterized collagen associated with the basement membrane. It is abnormally regulated during breast cancer progression and the NC1 (XIX) domain has anti-tumorigenic signaling properties. However, little is known about the biomarker potential of collagen XIX in cancer. In this study, we describe a competitive ELISA, named PRO-C19, targeting the C-terminus of collagen XIX using a monoclonal antibody. PRO-C19 was measured in serum of patients with a range of cancer types and was elevated in non-small cell lung cancer (NSCLC) (p < 0.0001), small cell lung cancer (p = 0.0081), breast (p = 0.0005) and ovarian cancer (p < 0.0001) compared to healthy controls. In a separate NSCLC cohort, PRO-C19 was elevated compared to controls when evaluating adenocarcinoma (AD) (p = 0.0003) and squamous cell carcinoma (SCC) (p < 0.0001) patients but was not elevated in chronic obstructive pulmonary disease patients. SCC also had higher PRO-C19 levels than AD (p = 0.0457). PRO-C19 could discriminate between NSCLC and healthy controls (AUROC:0.749 and 0.826 for AD and SCC, respectively) and maintained discriminatory performance in patients of tumor stages I+II (AUROC:0.733 and 0.818 for AD and SCC, respectively). Lastly, we confirmed the elevated type XIX collagen levels using gene expression data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) initiatives. In conclusion, type XIX collagen is released into circulation and is significantly elevated in the serum of cancer patients and PRO-C19 shows promise as a cancer biomarker. Full article
Show Figures

Figure 1

Article
Prognostic Significance of CHIP and RIPK3 in Non-Small Cell Lung Cancer
Cancers 2020, 12(6), 1496; https://doi.org/10.3390/cancers12061496 - 08 Jun 2020
Cited by 3 | Viewed by 1556
Abstract
RIPK3 is a key regulator of necroptosis, which plays a double-edged sword role in tumor progression. CHIP is an E3 ubiquitin ligase that regulates necroptosis by degrading RIPK3. Here, we investigated the prognostic value of RIPK3 and CHIP expression in 404 patients with [...] Read more.
RIPK3 is a key regulator of necroptosis, which plays a double-edged sword role in tumor progression. CHIP is an E3 ubiquitin ligase that regulates necroptosis by degrading RIPK3. Here, we investigated the prognostic value of RIPK3 and CHIP expression in 404 patients with non-small cell lung cancer (NSCLC). Expressions of CHIP and RIPK3 showed opposite correlations with survival. CHIP expression was associated with the longer overall survival (OS), whereas RIPK3 expression was associated with the shorter OS. RIPK3 positivity showed marginal association with shorter OS and disease-free survival (DFS) in adjuvant radiotherapy recipients but not in non-recipients, suggesting that necroptosis may induce radioresistance. In multivariate analysis, CHIP expression was associated with longer OS. Compared with other patients, CHIP(−)/RIPK3(+) patients had shorter OS and DFS. In summary, in patients with NSCLC, the expression of CHIP was an independent favorable prognostic factor while that of RIPK3 was an adverse prognostic factor. Full article
Show Figures

Figure 1

Article
EGFR and αvβ6 as Promising Targets for Molecular Imaging of Cutaneous and Mucosal Squamous Cell Carcinoma of the Head and Neck Region
Cancers 2020, 12(6), 1474; https://doi.org/10.3390/cancers12061474 - 05 Jun 2020
Cited by 12 | Viewed by 2503
Abstract
R0 resection is paramount in cutaneous squamous cell carcinoma (CSCC) and head and neck squamous cell carcinoma (HNSCC). However, in the setting of recurrence, immunocompromised patients, or non-keratinizing squamous cell carcinoma (SCC) with a spindle growth pattern, tumor borders are difficult, if not [...] Read more.
R0 resection is paramount in cutaneous squamous cell carcinoma (CSCC) and head and neck squamous cell carcinoma (HNSCC). However, in the setting of recurrence, immunocompromised patients, or non-keratinizing squamous cell carcinoma (SCC) with a spindle growth pattern, tumor borders are difficult, if not impossible, to determine. Fluorescence-guided surgery (FGS) aids in this differentiation. Potential targets for FGS of CSCC and HNSCC were evaluated. Most sections stained intensely for αvβ6 and epidermal growth factor receptor (EGFR) on tumor cells. Normal epithelium stained less for αvβ6 than for EGFR. In addition, soft tissue and stroma stained negative for both, allowing for clear discrimination of the soft tissue margin. Tumor cells weakly expressed urokinase plasminogen activator receptor (uPAR) while expression on stromal cells was moderate. Normal epithelium rarely expressed uPAR, resulting in clear discrimination of superficial margins. Tumors did not consistently express integrin β3, carcinoembryonic antigen, epithelial cell adhesion molecule, or vascular endothelial growth factor A. In conclusion, αvβ6 and EGFR allowed for precise discrimination of SSC at the surgically problematic soft tissue margins. Superficial margins are ideally distinguished with uPAR. In the future, FGS in the surgically challenging setting of cutaneous and mucosal SCC could benefit from a tailor-made approach, with EGFR and αvβ6 as targets. Full article
Show Figures

Graphical abstract

Article
A Germline Mutation in the POT1 Gene Is a Candidate for Familial Non-Medullary Thyroid Cancer
Cancers 2020, 12(6), 1441; https://doi.org/10.3390/cancers12061441 - 01 Jun 2020
Cited by 14 | Viewed by 3243
Abstract
Non-medullary thyroid cancer (NMTC) is a common endocrine malignancy with a genetic basis that has yet to be unequivocally established. In a recent whole-genome sequencing study of five families with occurrence of NMTCs, we shortlisted promising variants with the help of bioinformatics tools. [...] Read more.
Non-medullary thyroid cancer (NMTC) is a common endocrine malignancy with a genetic basis that has yet to be unequivocally established. In a recent whole-genome sequencing study of five families with occurrence of NMTCs, we shortlisted promising variants with the help of bioinformatics tools. Here, we report in silico analyses and in vitro experiments on a novel germline variant (p.V29L) in the highly conserved oligonucleotide/oligosaccharide binding domain of the Protection of Telomeres 1 (POT1) gene in one of the families. The results showed a reduction in telomere-bound POT1 levels in the mutant protein as compared to its wild-type counterpart. HEK293T cells carrying POT1 p.V29L showed increased telomere length in comparison to wild-type cells, suggesting that the mutation causes telomere dysfunction and may play a role in predisposition to NMTC in this family. While one germline mutation in POT1 has already been reported in a melanoma-prone family with prevalence of thyroid cancers, we report the first of such mutations in a family affected solely by NMTCs, thus expanding current knowledge on shelterin complex-associated cancers. Full article
Show Figures

Figure 1

Article
BAX Redistribution Induces Apoptosis Resistance and Selective Stress Sensitivity in Human HCC
Cancers 2020, 12(6), 1437; https://doi.org/10.3390/cancers12061437 - 31 May 2020
Cited by 8 | Viewed by 2173
Abstract
Cancer therapies induce differential cell responses, ranging from efficient cell death to complete stress resistance. The BCL-2 proteins BAX and BAK govern the cellular decision between survival and mitochondrial apoptosis. Therefore, the status of BAX/BAK regulation can predict the cellular apoptosis predisposition. Relative [...] Read more.
Cancer therapies induce differential cell responses, ranging from efficient cell death to complete stress resistance. The BCL-2 proteins BAX and BAK govern the cellular decision between survival and mitochondrial apoptosis. Therefore, the status of BAX/BAK regulation can predict the cellular apoptosis predisposition. Relative BAX/BAK localization was analyzed in tumor and corresponding non-tumor samples from 34 hepatocellular carcinoma (HCC) patients. Key transcriptome changes and gene expression profiles related to the status of BAX regulation were applied to two independent cohorts including over 500 HCC patients. The prediction of apoptotic response was tested using cell lines and polyclonal tumor isolates. Cellular protection from BAX was confirmed by challenging cells with mitochondrial BAX. We discovered a subgroup of HCC with selective protection from BAX-dependent apoptosis. BAX-protected tumors showed enrichment of signaling pathways associated with oxidative stress response and DNA repair as well as increased genetic heterogeneity. Gene expression profiles characteristic to BAX-specific protection are enriched in poorly differentiated HCCs and show significant association to the overall survival of HCC patients. Consistently, addiction to DNA repair of BAX-protected cancer cells caused selective sensitivity to PARP inhibition. Molecular characteristics of BAX-protected HCC were enriched in cells challenged with mitochondrial BAX. Our results demonstrate that predisposition to BAX activation impairs tumor biology in HCC. Selective BAX inhibition or lack thereof delineates distinct subgroups of HCC patients with molecular features and differential response pattern to apoptotic stimuli and inhibition of DNA repair mechanisms. Full article
Show Figures