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Simple Summary: A vital task in contemporary cancer research is to discover clinically useful
molecular markers for diagnosis and prognosis from microarray or sequencing data. However,
reliable and efficient statistical tools are lacking in terms of marker screening and selection for high-
throughput data with complicated survival endpoints, such as competing risks. Motivated by a
study on progression of non-muscle invasive bladder carcinoma for 300 subjects with competing risk
endpoints, this paper proposed a controlled screening procedure to fast eliminate most of irrelevant
markers, before more precise selection can be further pursued. Combining screening with a boosting
procedure, a significant six-gene signature for progression was identified subsequently, showing
improved prediction performance over existing alternatives at a lower computational cost. The
proposed method is readily applicable to other types of high-throughput cancer data with competing
risk events, providing a desired addition to a biomedical researcher’s toolbox.

Abstract: Background: Discovering clinically useful molecular markers for predicting the survival
of patients diagnosed with non–muscle-invasive bladder cancer can provide insights into cancer
dynamics and improve treatment outcomes. However, the presence of competing risks (CR) end-
points complicates the estimation and inferential framework. There is also a lack of statistical analysis
tools and software for coping with the high-throughput nature of these data, in terms of marker
screening and selection. Aims: To propose a gene screening procedure for proportional subdistri-
bution hazards regression under a CR framework, and illustrate its application in using molecular
profiling to predict survival for non-muscle invasive bladder carcinoma. Methods: Tumors from
300 patients diagnosed with bladder cancer were analyzed for genomic abnormalities while con-
trolling for clinically important covariates. Genes with expression patterns that were associated
with survival were identified through a screening procedure based on proportional subdistribution
hazards regression. A molecular predictor of risk was constructed and examined for prediction
accuracy. Results: A six-gene signature was found to be a significant predictor associated with
survival of non–muscle-invasive bladder cancer, subject to competing risks after adjusting for age,
gender, reevaluated WHO grade, stage and BCG/MMC treatment (p-value < 0.001). Conclusion: The
proposed gene screening procedure can be used to discover molecular determinants of survival for
non–muscle-invasive bladder cancer and in general facilitate high-throughput competing risks data
analysis with easy implementation.

Keywords: bladder cancer; competing risk endpoints; gene screening; subdistribution hazards;
survival analysis

1. Introduction

Bladder cancer is a common type of cancer associated with high morbidity and
mortality [1] rates, if not treated optimally. The disease presents in two different forms:
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non–muscle-invasive (NMI) tumors (stages Tis, Ta and T1), where the cancer is in its
early stages, with cells only appearing in the inner lining of the bladder (and have not
grown into the deeper bladder muscle layers), and muscle-invasive cancers (stages T2–
T4), where cancer cells have spread into the detrusor muscle of the bladder. A variety of
treatment protocols exist, stratified on the degree of risk of the disease, such as complete
resection of the tumor followed by induction, and maintenance immunotherapy through
intravesical BCG vaccine, chemotherapy, transurethral resection, and cystectomy. Most
bladder cancers are diagnosed at an early stage, when the cancer is highly treatable. The
non–muscle-invasive tumors account for roughly 75% of newly diagnosed cases and 50%
of non-muscle-invasive bladder cancers (NMIBC) are low grade [2]. However, even early-
stage bladder cancers can recur after successful treatment; more than 60% of patients
experience recurrence, and some patients develop muscle-invasive tumors over time [3].
Therefore, early diagnosis with personalized treatment and follow-up is the key to a
successful outcome.

Developments in microarray and sequencing technologies have allowed the collection
of massive genomic information that substantially advances the understanding of molecular
mechanisms, biomarker discovery, and personalized medicine. High-throughput data
produced by those techniques are characterized by a large number of features that far
exceeds the sample size (p >> n). In clinical studies, a vital research task is to find
predictive features for survival outcomes and build prognostic models for cancer patients,
which often requires techniques that were developed for specific time-to-event responses.
In bladder cancer, one primary endpoint is time-to-progression, but competing events such
as death from non-cancer causes can also be observed [4]. The proportional subdistribution
hazard (PSH) model proposed by Fine and Gray [5] has become a popular semi-parametric
model for competing risks (CR) data. On the basis of the PSH model, feature selection
approaches have been developed for high dimensional data (p > n) including LASSO-type
methods [6–10] and component-wise boosting [11], among others. These techniques have
been used in identifying gene signatures for predicting bladder cancer progression [6,12].
However, when it comes to ultrahigh dimensional data (p >> n), exact feature selection is
presumably very challenging, if not impossible, to achieve. The aforementioned methods
may become statistical inaccurate and computationally expensive [13].

Recent years have seen an increasing attention to feature screening as a preliminary
procedure to fast filter out unimportant features before using penalized or boosting methods
for more precise selection. Feature screening was initially [13] introduced for a linear model
through marginal independence learning based on the Pearson correlation. The screening
mechanism asymptotically almost surely identifies all important predictors, and thus is
called “sure independence screening” (SIS). Since in many applications researchers know
from previous investigations that certain features are responsible for the outcomes or
should be controlled for in the studies, conditional SIS [14] (CSIS) that allows multiple
covariates to be adjusted for was also proposed for linear models. Although SIS and CSIS
have been substantially extended to handle different types of data including right-censored
survival outcomes [15], not much attention has been attracted to the competing risks data.

In this paper, we propose a conditional gene screening procedure for the PSH model,
controlling for important clinical covariates. The procedure can be combined with available
stepwise selection [16], penalized or boosting methods to identify a short list of influential
genes and build an interpretable prognostic model for subsequent inference. Although the
goal of this paper is variable screening, predictive models were built to evaluate the selected
variables, and to compare our proposal with existing selection methods. The screening
step eases the computational burden of the penalized or boosting approaches, leading to
an enhancement of their performance. We were particularly interested in applying the
proposed procedure to discover a predictive gene signature for progression in early-stage
bladder cancer. We performed screening followed by boosting and validated the prognostic
value of the resulting gene signature after adjusting for the effect of some clinical covariates.
As will be shown, this screening-and-selection paradigm has computational and statistical
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advantages over classical selection tools for high-throughput CR data. The proposed
procedure can be easily implemented with available R packages for CR regression, and
readily applied to other cancer datasets.

2. Materials and Methods
2.1. The Proportional Subdistribution Hazards Model

Let T and C be the failure and censoring times, and ε ∈ {1, . . . , K} be the cause of
failure. Let X ∈ Rp denote the vector of p covariates subject to selection and Z ∈ Rp0 denote
the vector of p0 covariates to be controlled for in the analysis. For typical right-censored
data, we observe Y = min(T, C) and δ = I(T ≤ C), where I(·) is the indicator function.
Our goal is to model the cumulative incidence function (CIF) for failure from the cause of
interest (ε = 1) conditional on the covariates:

F1(t; X, Z) = Pr(T ≤ t, ε = 1|X, Z),

i.e., the probability of experiencing event 1 before time t and before the occurrence of any
other types of event. The subdistribution hazard [17] associated with event 1 is defined as

λ1(t; X, Z) = lim
∆t→0

Pr(t ≤ T ≤ t + ∆t, ε = 1|T ≥ t ∪ (T ≤ t ∩ ε 6= 1), X, Z)
∆t

= −d log(1− F1(t; X, Z))
dt

which measures the instantaneous risk of failure from event 1 for patients who have not
yet experienced the event. Note that this risk set includes those who are currently event
free as well as who have previously experienced a competing event. The subdistribution
hazard for event 1 is assumed to follow a proportional hazard model [5]

λ1(t; X, Z) = λ1,0(t) exp(βTX + γTZ),

where λ1,0(t) is an unspecified baseline hazard, and β ∈ Rp and γ ∈ Rp0 are regression
coefficients. Given a finite sample {Xi, Zi, Yi, δi, εi}n

i=1, the coefficients can be estimated by
maximizing the log partial likelihood function

ln(β, γ) =
n

∑
i=1

∫ ∞

0
{βTxi + γTzi − log

n

∑
j=1

wj(t)Rj(t) exp(βTxj + γTzj)}wi(t)dNi(t),

where Ni(t) = I(Yi ≤ t, εi = 1), Ri(t) = 1−Ni(t−), and wi(t) = I(Ci ≥ Yi ∧ t)Ĝ(t)/Ĝ(Yi ∧
t) are weights to account for censoring with Ĝ(t) being the Kaplan–Meier estimate for the
censoring time G(t) = Pr(C ≥ t). Denote the maximizer by (β̂, γ̂) = arg maxβ,γ ln(β, γ).
Having obtained the estimated regression coefficients, the estimated CIF is obtained by

F̂1(t) = 1− exp(−Ĥ1,0(t) exp(β̂
T

xj + γ̂Tzj)),

where Ĥ1,0(t) is the Breslow estimator of the cumulative baseline subdistribution hazard.
The prediction error of the estimated CIF can then be calculated as

Err(t) =
1
n

n

∑
i=1

(Ni(t)− F̂1(t))2Wi(t)

after accounting for censoring, which is often used to evaluate the performance of the fitted
PSH model. Here, Wi(t) =

I(Yi≤t)I(Yi≤C)
Ĝ(Yi−|Xi)

+ I(Yi>t)
Ĝ(t|Xi)

is the inverse probability of censoring
weights. The estimation, prediction and evaluation of the PSH model can be achieved via
the R packages riskRegression and pec. However, the partial likelihood estimation is no
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longer applicable when p + p0 > n, demanding new techniques to be developed for high
dimensional settings.

2.2. Conditional Sure Independence Screening for PSH

For high dimensional data, we realistically assume that the true parameter β =
(β1, . . . , βp) is sparse. In other words, the subset

XA = {Xj : β j 6= 0, j = 1, . . . , p}

is small. Our aim is therefore to identify the active subset XA and estimate β. Approaches
have been developed to obtain a sparse model by maximizing a penalized likelihood
function [6–10]. Component-wise boosting [11] is an alternative way to obtain parsimonious
model fits, and has been adapted to the PSH setting [12]. It uses a stepwise procedure
that allows us to build up an overall model from many simple fits, and in each boosting
step, the coefficient for one predictor is updated and the overall fit is refined. Boosting and
LASSO-like penalized methods are known to have deep connections [11], and they produce
similar sparse solutions. However, the aforementioned methods may become statistically
inaccurate and computationally expensive when p + p0 >> n [13]. In the next section, we
introduce a feature screening procedure for the PSH model to address the issue.

For each j = 1, . . . , p, consider the PSH model containing an individual predictor Xj
in addition to the control variables

λ1(t; Xj, Z) = λ1,0(t) exp(β jXj + γTZ),

and let
ûj = max

β j ,γ
ln(β j, γ)

denote its estimated maximum log partial likelihood. Then, ûj can be regarded as the
change in likelihood associated with Xj given Z, after ignoring the common constant
maxγ ln(γ). That is, ûj measures the marginal contribution of Xj to the survival outcome
after adjusting for the effect of Z, and a large value suggests β j 6= 0. We therefore propose
to recruit the variables

X̂A = {Xj : ûj is among the first d largest of all}

for a pre-specified model size d. We henceforth refer to the above procedure as conditional
sure independence screening for PSH model, or PSH-CSIS for short. According to the
sure screening property [13], the choice of d can be relatively generous to ensure that all
the important predictors are preserved with high probability. Conventional choices of
d are [n/ log(n)], 2[n/ log(n)], 3[n/ log(n)], and n − p0 − 1 [13,18]. Once the dataset is
sufficiently downsized by PSH-CSIS, existing lower dimensional methods can be used
afterwards for more precise variable selection and statistical inference (Figure 1).
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Original dimension p

Moderate size d

Variable selection
(stepwise selection, 

regularization or boosting)

Final model size M

Variable screening 
(PSH-CSIS)

Figure 1. Overall diagram of variable screening and selection.

2.3. Non-Muscle-Invasive Bladder Carcinoma Data

Gene expression data and clinical data for patients with NMI bladder carcinoma were
acquired from GEO database (accession number GSE5479 [19]). In total, 300 patients with
complete information on 1381 microarray features and 5 important clinical covariates (age,
sex, reevaluated WHO grade, reevaluated pathological disease stage and BCG/MMC
treatment) were included for analysis. Table 1 summarizes the 5 clinical covariates. The
primary endpoint, the time to progression or death from bladder cancer, was observed for
83 patients. Besides, 33 patients died from other/unknown causes and 184 patients were
censored during follow-up. The progression-free survival time ranges from 0 to 185 months,
with a median of 47 months.

Table 1. Summary of clinical and pathological characteristics.

Variables Frequency (Percent)

Age
Less than 60 42 (14.0%)
60–69 67 (24.0%)
70–79 105 (35.0%)
80 or greater 81 (27.0%)

Gender
Female 59 (19.7%)
Male 241 (80.3%)

WHO Grade
High 176 (58.7%)
Low 124 (41.3%)

Stage
Ta 173 (57.7%)
T1 127 (42.3%)

Treatment
BCG/MMC 82 (27.3%)
None 218 (72.7%)

The patients were divided into training and testing subgroups (4:1 ratio), such that the
two cohorts share similar clinical characteristics. The sampling procedure was conducted
via the R package SPlit. The training cohort was comprised of 240 samples and the
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testing cohort was comprised of 60 samples. We first performed PSH-CSIS on the training
subset and pre-selected 240− 1− 5 = 234 genes after adjusting for the effect of the clinical
covariates. The likelihood-based boosting approach [12] (CoxBoost) was then applied to the
reduced training data for further gene selection and prognostic modeling simultaneously
through the R package CoxBoost. The clinical covariates remained unpenalized in the
boosting procedure and the optimal tuning parameters were determined through 10-fold
cross validation. The training and testing prediction errors of the estimated CIF were
calculated. As the apparent error evaluated on the training data will underestimate the true
prediction error, bootstrap .632+ prediction error [12] was calculated instead. Besides, the
time-dependent receiver operating characteristic (ROC) curve along with the area under
the curve (AUC) were obtained on the testing data using the R package riskRegression.
A patient’s risk score was defined as the linear combination of the selected genes where the
coefficients were extracted from the fitted model (i.e., the gene signature values). The risk
score was used to classify the patient as having high or low risk, with the median score of the
training group being the cutoff. The same cutoff value was also applied when assigning the
test samples. The two risk groups were contrasted by cumulative incidence analysis [17] via
the R package cmprsk. The performance of the proposed model is compared with a direct
boosting procedure without screening as well as a PSH model containing only the clinical
covariates. All three models were benchmarked against a null model of the Aalen–Johansen
estimator that employs no genetic or clinical covariates. Finally, a PSH model was fitted to
the entire dataset to conduct inference about independent prognostic factors associated with
progression, where the gene signature identified by the PSH-CSIS+CoxBoost model and the
five clinical covariates were used. As pointed out by a reviewer, age ≥ 70 is a potential risk
factor for NMIBC. Hence, age was dichotomized at 70 in the final model. As suggested by
another reviewer, two additional models were considered for sensitivity analysis: (a) PSH
with Lasso penalty and (b) PSH-CSIS followed by PSH with Lasso penalty, using the
same analysis scheme described above. The R package fastcmprsk was used for fitting
the Lasso model. R code for implementing the PSH-CSIS+CoxBoost model is available at
https://github.com/cke23/GeneScreeningBLCA (accessed on 10 October 2022).

3. Results

Table 2 lists the influential genes selected by the PSH-CSIS + CoxBoost model and the
only CoxBoost model. The two models selected five genes in common and post-screening
CoxBoost identified an additional influential gene. Computing times for running the
PSH-CSIS + CoxBoost model and the CoxBoost model (including parameter tuning via
cross validation and model fitting) were 2.95 min and 4.04 min, respectively, on a laptop
with an i5 1.4 GHz processor and 16 G RAM, which suggests the computational benefit of
performing screening before boosting.

Table 2. Genes selected by the two competing models. A risk gene with a positive coefficient from the
fitted model is denoted by “+”, while a protective gene with a negative coefficient is denoted by “-”.

Model Gene Selected

PSH-CSIS + CoxBoost AP1M2(-), CAT(-), CCL3(+), MCM7(+), NCF2(+), PKP4(-)

CoxBoost AP1M2(-), CAT(-), CCL3(+), MCM7(+), NCF2(+)

Prediction error curves of the CIF for all models are displayed in Figure 2. The purely
clinical model (dot curves) is seen to clearly improve over the null model (grey curves),
indicating that valuable information is contained in the clinical covariates. Incorporating
genetic information from the microarray data further assisted in predicting progression,
as shown by the CoxBoost model (dash curves). The PSH-CSIS+CoxBoost model (solid
curves) performed the best among all models. A similar observation can be found on the
ROC curves of the predicted cumulative incidence at 1, 2, 3 and 5 years on the testing data,
which are displayed in Figure 3. In addition, cumulative incidence analyses revealed that

https://github.com/cke23/GeneScreeningBLCA
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the gene signature identified by the PSH-CSIS+CoxBoost model provides effective risk
stratification (p-value < 0.001 for the training cohort and p-value = 0.033 for the testing
cohort; Figure 4).
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Figure 2. Bootstrap .632+ training error curve (left panel) and testing error curve (right panel) for
prediction of the cumulative incidence function.
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competing models on the testing data, at years 1, 2, 3 and 5.
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Figure 4. Cumulative incidence by risk group on the basis of the gene signature identified by the
PSH-CSIS+CoxBoost model.

From the multivariable PSH model fitted to the whole data (Table 3), the six-gene
signature selected by PSH-CSIS+CoxBoost was a significant predictor with an hazard ratio
of 12.55 (p-value < 0.001), adjusted for other clinical covariates. The hazard of progression
on average increased by 55% after age 70 (p-value = 0.058). Having a low grade tumor
led to a reduction of hazard by 57% (p-value = 0.004) compared to high grade tumors
(p-value = 0.005). Diagnosis at an early stage decreased the hazard of progression by 40%
(p-value = 0.056). Receiving BCG/MMC treatment also resulted in a reduction of hazard by
62% (p-value = 0.002). The high hazard ratio associated with the six-gene signature reflects
the strong genetic effect on survival from progression given the clinical covariates already
in the model. The effectiveness of the conditional screening-and-selection procedure is thus
demonstrated.

Finally, in the sensitivity analysis, the Lasso model and the PSH-CSIS+Lasso model
selected the same 5 genes (AP1M2, CAT, CCL3, MCM7, NCF2) as the CoxBoost model.
Furthermore, their predictive performances were also similar to the CoxBoost model, but
inferior to the PSH-CSIS+CoxBoost model. Prediction error curves of the cumulative
incidence for the competing models are displayed in Figure 5. In addition, Figure 6 displays
the ROC curves of the predicted cumulative incidences at 1, 2, 3 and 5 years on the testing
data. We observe that the PSH-CSIS+Lasso model is better than the Lasso-only model
in terms of AUC for all the years, while the PSH-CSIS+CoxBoost model is superior to
the PSH-CSIS+Lasso model for the 3-year and 5-year predictions. Computing times for
running the Lasso model and the PSH-CSIS+Lasso model (including parameter tuning via
cross validation and model fitting) were 11.32 min and 2.82 min, respectively, on a laptop
with i5 1.4 GHz processor and 16 G RAM. Although the two models selected identical
genes and made similar predictions, the computational gain using the latter is substantial.
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Table 3. Hazard ratio estimates, 95% confidence intervals (CI) and p-values for the 6-gene signature
(identified by PSH-CSIS+CoxBoost) and other clinical covariates, corresponding to cumulative
incidence function of Cause 1 (progression, or death from bladder cancer), obtained from fitting the
univariate or multivariable competing risks Cox regression.

Variable Univariate Analysis Multivariable Analysis
Hazard Ratio (95% CI) p-Value Hazard Ratio (95% CI) p-Value

6-gene signature 8.95 (4.75, 16.90) <0.001 12.55 (6.11, 25.80) <0.001
Age

Age > 70 1.70 (1.11, 2.60) 0.015 1.55 (0.99, 2.45) 0.058
Age ≤ 70 - - - -

Gender
Male 0.80 (0.43, 1.33) 0.38 0.84 (0.46, 1.55) 0.580
Female - - - -

WHO Grade
low 0.40 (0.28, 0.64) <0.001 0.43 (0.24, 0.77) 0.005
high - - - -

Stage
Ta 0.63 (0.41, 0.97) 0.034 1.66 (0.99, 2.80) 0.056
T2 - - - -

Treatment
None 2.04 (1.19, 3.48) 0.009 2.60 (1.44, 4.69) 0.002
BCG/MMC - - - -

Figure 5. Sensitivity Analysis: testing error curves for the cumulative incidence predicted by the
competing models.

Figure 6. Sensitivity Analysis: ROC curves and assocaited AUC values of the cumulative incidence
predicted by the competing models on the testing data, at years 1, 2, 3 and 5.
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4. Discussion

We first highlight some biological insights associated with the genes selected by PSH-
CSIS+CoxBoost. Adaptor related protein complex 1 subunit mu 2 (AP1M2) is a component
of clathrin adaptor complex, which is required for maintaining correct polarity of baso-
lateral membrane proteins in epithelial cells [20]. As yet, there are no functional studies
interrogating the role of AP1M2 in cancer. Bioinformatic analyses on AP1M2 are not con-
clusive, e.g., its level has no effect on patient survival in pancreatic cancer [21], it was
identified as a hub gene in renal cancer in which its expression is downregulated [22], while
its high expression predicted poor outcome in invasive breast carcinoma [23]. AP1M2 is
required for maintaining cell polarity, a marker of differentiation. Dedifferentiation is a
hallmark of cancer and it might be anticipated that loss of AP1M2 will prevent proper
polarization of cells, thereby contributing to dedifferentiation. The observation that low
levels of AP1M2 is associated with poor prognosis in bladder cancer patients is, therefore,
meaningful. Reactive oxygen species (ROS) create oxidative stress, resulting in mutagenesis
and tumor pathogenesis. The antioxidant enzyme catalase (CAT) provides protection
against oxidative stress and downregulation or inactivity of catalase is observed in many
cancers [24]. A decreased catalase expression in cancerous bladder tissues in comparison
with normal tissues and its association with disease recurrence have been reported by
several studies [25,26]. Plakophilin 4 (PKP4), also known as p0071, belongs to the family of
armadillo-like proteins, and is involved in regulating adherens junction organization [27].
Overexpression of PKP4 in A431 cells inhibited the ability to close in vitro wounds, sug-
gesting decreased motility of the cells [28]. As yet, the role of PKP4 in bladder cancer is not
known and other members of this family play a variable role, e.g., PKP2 is upregulated
and PKP3 is downregulated in invasive bladder cancer [29]. It is possible that low levels
of PKP4 facilitate increased the motility of bladder cancer cells, conferring an aggressive,
metastatic disease. Chronic inflammation plays a key role in bladder carcinogenesis [30].
The cytokine C-C motif chemokine ligand 3 (CCL3), also known as macrophage inflam-
matory protein 1 alpha (MIP1A), functions in the tumor microenvironment by recruiting
tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSC), thus
creating an immunosuppressive environment and facilitating metastasis [31]. CCL3 has
been shown to be produced by myeloid cells in bladder cancer patients, which contribute
to the pathogenesis of inflammation and immunosuppression [32]. Mini-chromosome
maintenance proteins (MCM) are key components of pre-replication complex and are es-
sential for genome replication thereby functioning as oncogenes [33]. A member of this
family, MCM7, has been shown to be up-regulated in numerous cancers including bladder
cancer [34,35], especially in human papillomavirus (HPV)-positive tumors [36]. Neutrophil
cytosolic factor 2 (NCF2) is a subunit of NADPH complex found in neutrophils. NCF2 plays
a role in inflammation and cancer, e.g., it is highly expressed in gastric cancer promoting
tumor metastasis and invasion by activating NF-κB signaling [37]. In bladder cancer, a
high expression level of NCF2 was shown to be associated with an undesirable abundance
of chemokine CXCL8, a marker of immunosuppressive MDSCs [38]. Overall, it might be
inferred that the expression pattern of our six gene signature predicts a poor prognosis
based on what is known about the function of each gene. Nonetheless, further studies,
such as multi-center validation, are needed to quantify a stronger evidence and make these
new discoveries feasible for use in clinical practice.

In addition to progression, recurrence (in ≤80% of patients) is another important issue
in NMIBC, especially for patients with non-invasive papillary carcinoma (Ta). Several
clinical and pathological factors of recurrence have been identified such as multiplicity,
tumor size, and prior recurrence rate [39]. A variety of markers has also been linked to
recurrence in bladder cancer, although the role for molecular markers to predict recurrence
seems limited because multifocal disease and incomplete treatment are probably more
important for recurrence than the molecular features of a removed tumor [40]. Recurrence
information is not available in the dataset that we studied in this paper. However, we
expect that similar analysis can be carried out to discover molecular drivers, if the survival
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outcome for recurrence is provided. Metabolomic studies in bladder cancer for diagnosis
and prognosis are also characterized by high dimensional data. Based on different available
samples (urine, blood, tissue sample), advances in molecular pathology have driven efforts
to identify prognostic and predictive markers and classify bladder cancer into subtypes [41].
Potential applications of the proposed screening procedure in metabolomic data analysis
for diagnostic management and pathologic profiling are worthy of future research.

The proposed screening procedure is generalizable, can be combined with other
existing feature selection techniques for the PSH model, and applied to other types of cancer
data containing competing events. The method can also be adapted to some variations
of the PSH model. In practice, the assumption of proportional hazards is unlikely to be
satisfied for all covariates in a high-dimensional setting. Bellach et al. [42] thus developed a
weighted likelihood function that generalizes the PSH model by allowing time-dependent
covariate effects on the subdistribution hazard. On the other hand, control variables such
as age can have dynamic impacts on the survival time, motivating us to consider a varying
coefficient model to assess nonlinear interaction effects between the primary covariates and
control variables [43]. Screening procedures to be developed for these more flexible models
may lead to improved model fit and new marker discoveries.

5. Conclusions

The development of high-throughput biology provides a vast amount of information
about various phenotypic data, including survival endpoints. Finding prognostic gene
signatures for cancer survival became a vital task in biomedical research. The challenge
is often threefold. First, the number of features in microarray or sequencing data is much
larger than the sample size, creating a predicament to the use of classical statistical analysis
tools. How to eliminate noise variables while preserving important features is the key to
successful downstream analysis. Although penalized methods have been widely used for
feature selection, they can be unstable and computational expensive for high-throughput
data. Fast and effective feature screening tools for very high dimensional data have been
emerging in the past decade in the statistics literature. However, the dissemination of
these attractive methods to biomedical fields is limited. Second, survival endpoints are
complicated by censoring and events other than that of primary interest. Data analysis
including feature screening/selection must be tailored for the specific survival setting.
Third, the desire of incorporating both clinical and genetic information also adds to the
difficulty of prognostic modeling. One also has to tradeoff between prediction accuracy
and model interpretability.

In this paper, we aimed to address the aforementioned issues for high-throughput
competing risks data, in the context of bladder cancer prognosis. The PSH model proposed
by Fine and Gray is commonly used for studying survival among competing events, and its
estimation and inference has been well-studied. We therefore proposed a feature screening
procedure for the PSH model and suggested an analysis pipeline of screening-and-selection
for identifying influential genes while controlling for important clinical covariates. The
implementation is straightforward with existing R packages for competing risks regression.
It was demonstrated that our approach was able to reduce the dimension efficiently and
improve the performance of the subsequent boosting procedure for feature selection. In
particular, we identified a predictive six-gene signature, independent of numerous clinical
covariates, for progression in early-stage bladder cancer. The gene signature was shown to
be numerically effective and biologically sensible, but multi-center validation is needed to
better evaluate its potential value in clinical practice.
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