You are currently viewing a new version of our website. To view the old version click .

Applied System Innovation

Applied System Innovation (ASI) is an international, peer-reviewed, open access journal on integrated engineering and technology, and is published bimonthly online.
Quartile Ranking JCR - Q2 (Engineering, Electrical and Electronic | Computer Science, Information Systems | Telecommunications)

All Articles (810)

Decision Support System for Wind Farm Maintenance Using Robotic Agents

  • Vladimir Kureichik,
  • Vladislav Danilchenko and
  • Philip Bulyga
  • + 1 author

The automation of wind turbine maintenance processes is aimed at improving the operational efficiency of wind farms through timely diagnosis of technical condition, predictive identification of potential failures, and optimization of the distribution of repair and restoration procedures. In this context, the main objective of the study is to improve the reliability and efficiency of wind energy infrastructure by developing an intelligent decision support system for wind turbine maintenance. The proposed architecture includes a module for optimizing the routes of robotic agents, which implements a hybrid method based on a combination of the A* algorithm and a modified ant algorithm with dynamic pheromone updating and B-spline trajectory smoothing, as well as a module for detecting based on a modified YOLOv3 model with integrated adaptive feature fusion and bio-inspired anchor frame optimization. The choice of the YOLOv3 architecture is due to the optimal balance between accuracy and inference speed on embedded platforms of robotic autonomous agents, which ensures the functioning of the detection module in real time with limited computing resources. The results of the computational experiment confirmed a 15–20% reduction in route length and energy consumption, as well as a 41% increase in the F1 detection metric relative to the baseline implementation of YOLOv3 while maintaining a performance of 42 frames per second. The set of results obtained confirms the practical feasibility and integration potential of the developed architecture into the predictive maintenance and life cycle management of wind energy infrastructure.

3 December 2025

Distribution of new wind energy installations by country and structure (data for 2010–2025).

This research proposes the development of an Entity-Relationship Diagram—PRO (ERD-PRO) to assist students in understanding the concept of developing Entity-Relationship Diagrams in designing a database. ERD-PRO is an Intelligent Tutoring System (ITS) that is built using a mixed-initiative approach to address the learning challenges by adopting Explainable Artificial Intelligence (XAI) concept to provide individualized and on-demand feedback and guidance. The effectiveness of ERD-PRO is tested on 25 participants from different educational institutions. Pre- development surveys are conducted to determine learning needs and post-development surveys are performed to measure the success. The results show that the design of ERD-PRO, guided by survey findings, successfully addresses key challenges in database design education. 65% of students agreed that the system’s explanation facilities effectively clarified difficult topics, and 90% expressed high satisfaction with the tool. The integration of XAI features within ERD-PRO has enhanced its ability to provide meaningful, scenario-based explanations, demonstrating its potential as an effective intelligent tutoring system. These findings validate the effectiveness of ERD-PRO in meeting its objectives and highlight its value in providing tailored explanations for database design instruction.

2 December 2025

Research Methodology Process Flow.

Fuzzy Fusion of Monocular ORB-SLAM2 and Tachometer Sensor for Car Odometry

  • David Lázaro Mata,
  • José Alfredo Padilla Medina and
  • Juan José Martínez Nolasco
  • + 2 authors

Estimating the absolute scale of reconstructed camera trajectories in monocular odometry is a challenging task due to the inherent scale ambiguity in any monocular vision system. One promising solution is to fuse data from different sensors, which can improve the accuracy and precision of scale estimation. However, this approach often requires additional effort in sensor design and data processing. In this paper, we propose a novel method for fusing single-camera data with wheel odometer readings using a fuzzy system. The architecture of the fuzzy system has as inputs the wheel odometer value and the translation and rotation obtained from ORB-SLAM2. It was trained with the ANFIS tool in MATLAB 2014b. Our approach yields significantly better results compared to state-of-the-art pure monocular systems. In our experiments, the average error relative to GPS measurements was only four percent. A key advantage of this method is the elimination of the sensor calibration step, allowing for straightforward data fusion without a substantial increase in data processing demands.

30 November 2025

Comparison of ground-truth trajectories (in red) and ORB-SLAM2 monocular trajectories (in blue) calculated on route 1 (left) and route 2 (right) for the dataset presented in Section 3.

This study explores how research on carbon capture technologies (CCTs) has developed over time and shows how semantic text mining can improve the analysis of technology trajectories. Although CCTs are widely viewed as essential for net-zero transitions, the literature is still scattered across many subthemes, and links between engineering advances, infrastructure deployment, and policy design are often weak. Methods that rely mainly on citations or keyword frequencies tend to overlook contextual meaning and the subtle diffusion of ideas across these strands, making it difficult to reconstruct clear developmental pathways. To address this problem, we ask the following: How do CCT topics change over time? What evolutionary mechanisms drive these transitions? And which themes act as bridges between technical lineages? We first build a curated corpus using a PRISMA-based screening process. We then apply BERTopic, integrating Sentence-BERT embeddings with UMAP, HDBSCAN, and class-based TF-IDF, to identify and label coherent semantic topics. Topic evolution is modeled through a PCC-weighted, top-K filtered network, where cross-year connections are categorized as inheritance, convergence, differentiation, or extinction. These patterns are further interpreted with a Fish-Scale Multiscience mapping to clarify underlying theoretical and disciplinary lineages. Our results point to a two-stage trajectory: an early formation phase followed by a period of rapid expansion. Long-standing research lines persist in amine absorption, membrane separation, and metal–organic frameworks (MOFs), while direct air capture emerges later and becomes increasingly stable. Across the full period, five evolutionary mechanisms operate in parallel. We also find that techno-economic assessment, life-cycle and carbon accounting, and regulation–infrastructure coordination serve as key “weak-tie” bridges that connect otherwise separated subfields. Overall, the study reconstructs the core–periphery structure and maturity of CCT research and demonstrates that combining semantic topic modeling with theory-aware mapping complements strong-tie bibliometric approaches and offers a clearer, more transferable framework for understanding technology evolution.

30 November 2025

Research framework.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Effectiveness and Sustainable Application on Educational Technology
Reprint

Effectiveness and Sustainable Application on Educational Technology

Editors: Jian-Hong Ye, Yung-Wei Hao, Yu-Feng Wu, Savvas A. Chatzichristofis
Fuzzy Decision Making and Soft Computing Applications
Reprint

Fuzzy Decision Making and Soft Computing Applications

Editors: Giuseppe De Pietro, Marco Pota

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Appl. Syst. Innov. - ISSN 2571-5577