Skip Content
You are currently on the new version of our website. Access the old version .

Applied System Innovation

Applied System Innovation (ASI) is an international, peer-reviewed, open access journal on integrated engineering and technology, published monthly online.
Quartile Ranking JCR - Q2 (Engineering, Electrical and Electronic | Computer Science, Information Systems | Telecommunications)

All Articles (849)

This study investigated how gifted and regular high school students employ different cognitive strategies and integrate information during scientific problem solving, using eye-tracking techniques. Eighteen multiple-choice items were selected from the Investigating Scientific Thinking and Reasoning (iSTAR) assessment developed at The Ohio State University, including nine text-only questions (tMCQs) and nine picture-embedded questions (pMCQs). The items were chosen to ensure clear spatial separation among text, image, and answer areas, allowing reliable region-based eye-movement analysis. Eye-tracking data were analyzed using two indices: fixation time ratio (FTR), reflecting relative attention allocation, and saccade count ratio (SCR), capturing cross-region information integration. The results revealed clear group differences. Gifted students devoted a larger proportion of attention to pictorial information (0.38 vs. 0.32) and showed more frequent transitions between picture and answer regions (0.15 vs. 0.12), indicating more integrative processing and mental model construction. In contrast, regular students spent more time focusing on textual regions and exhibited higher within-text saccade activity, consistent with a direct translation strategy. Furthermore, SCR-based machine learning classification using a Random Forest model demonstrated meaningful discriminative capability between the two groups, particularly for picture-embedded questions, achieving an accuracy of 77.5%. Overall, the findings provide empirical evidence that question format influences students’ cognitive strategies during scientific reasoning. Methodologically, this study combines a validated reasoning assessment, a carefully defined ROI-based eye-tracking design, and interpretable behavioral indicators, offering practical implications for differentiated science instruction.

1 February 2026

System architecture of the eye-tracking measurement.

Existing unsupervised anomaly detection methods suffer from insufficient parameter precision, poor robustness to noise, and limited generalization capability. To address these issues, this paper proposes an Adaptive Diffusion Adversarial Evolutionary Network (ADAEN) for unsupervised anomaly detection in tabular data. The proposed network employs an adaptive hierarchical feature evolution generator that captures multi-scale feature representations at different abstraction levels through learnable attribute encoding and a three-layer Transformer encoder, effectively mitigating the gradient vanishing problem and the difficulty of modeling complex feature relationships that are commonly observed in conventional generators. ADAEN incorporates a multi-scale adaptive diffusion-augmented discriminator, which preserves scale-specific features across different diffusion stages via cosine-scheduled adaptive noise injection, thereby endowing the discriminator with diffusion-stage awareness. Furthermore, ADAEN introduces a multi-scale robust adversarial gradient loss function that ensures training stability through a diffusion-step-conditional Wasserstein loss combined with gradient penalty. The method has been evaluated on 14 UCI benchmark datasets and achieves state-of-the-art performance in anomaly detection compared to existing advanced algorithms, with an average improvement of 8.3% in AUC, an 11.2% increase in F1-Score, and a 15.7% reduction in false positive rate.

30 January 2026

Adaptive diffusion adversarial evolution network framework.

Sustainable virtualization is essential for enterprises seeking to reduce energy use, increase resource efficiency, and connect IT operations with global sustainability goals. This study describes a hybrid decision-support framework that uses the ISO/IEC 25010 quality characteristics and sustainability factors to evaluate virtualization technologies using FAHP, RST, and TOPSIS. To obtain robust FAHP weights in uncertain situations, expert linguistic assessments are converted into fuzzy pairwise comparisons. RST is then used to determine the most important sustainability criteria, thereby improving interpretability while minimizing model complexity. TOPSIS compares virtualization platforms to the best sustainability solution. Empirical validation involved five domain experts, eight criteria, and four virtualization platforms. Performance efficiency, reliability, and security are the main criteria, with lightweight, resource-efficient hypervisors scoring highest in sustainability factors. To implement the framework, a lightweight web-based decision-support dashboard was developed. The dashboard allows real-time FAHP computation, RST reduct extraction, TOPSIS ranking visualization, and automatic sustainability reporting. The proposed technique provides a clear, replicable, and functional tool for sustainability-focused virtualization decisions. It helps IT administrators link digital infrastructure planning with the SDG-driven green IT objectives.

30 January 2026

Rough set attribute reduction workflow.

Since the compressor system in underground gas storage (UGS) facilities operates under highly dynamic and complex injection conditions, traditional rule-based operation and mechanism-based modeling approaches prove inadequate for meeting the stringent requirements of high-accuracy prediction under such variable conditions. To address this, a data-driven two-phase prediction framework for compressor energy consumption is proposed. In the first phase, a convolutional neural network with efficient channel attention (CNN-ECA) is developed to accurately forecast key operating condition parameters. Based on these outputs, the second phase employs a compressor performance prediction model to estimate unit energy consumption with improved precision. In addition, a hybrid prediction strategy integrating a Transformer architecture is introduced to capture long-range temporal dependencies, thereby enhancing both single-step and multi-step forecasting performance. The proposed method is evaluated using operational data from eight compressors at the Xiangguosi underground gas storage. Experimental results show that the framework achieves high prediction accuracy, with a MAPE of 4.0779% (single-step) and 4.2449% (multi-step), outperforming advanced benchmark models.

28 January 2026

The basic structure of the ECA module.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Effectiveness and Sustainable Application on Educational Technology
Reprint

Effectiveness and Sustainable Application on Educational Technology

Editors: Jian-Hong Ye, Yung-Wei Hao, Yu-Feng Wu, Savvas A. Chatzichristofis
Fuzzy Decision Making and Soft Computing Applications
Reprint

Fuzzy Decision Making and Soft Computing Applications

Editors: Giuseppe De Pietro, Marco Pota

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Appl. Syst. Innov. - ISSN 2571-5577