- Article
ADAEN: Adaptive Diffusion Adversarial Evolutionary Network for Unsupervised Anomaly Detection in Tabular Data
- Yong Lu,
- Sen Wang and
- Wenju Wang
- + 1 author
Existing unsupervised anomaly detection methods suffer from insufficient parameter precision, poor robustness to noise, and limited generalization capability. To address these issues, this paper proposes an Adaptive Diffusion Adversarial Evolutionary Network (ADAEN) for unsupervised anomaly detection in tabular data. The proposed network employs an adaptive hierarchical feature evolution generator that captures multi-scale feature representations at different abstraction levels through learnable attribute encoding and a three-layer Transformer encoder, effectively mitigating the gradient vanishing problem and the difficulty of modeling complex feature relationships that are commonly observed in conventional generators. ADAEN incorporates a multi-scale adaptive diffusion-augmented discriminator, which preserves scale-specific features across different diffusion stages via cosine-scheduled adaptive noise injection, thereby endowing the discriminator with diffusion-stage awareness. Furthermore, ADAEN introduces a multi-scale robust adversarial gradient loss function that ensures training stability through a diffusion-step-conditional Wasserstein loss combined with gradient penalty. The method has been evaluated on 14 UCI benchmark datasets and achieves state-of-the-art performance in anomaly detection compared to existing advanced algorithms, with an average improvement of 8.3% in AUC, an 11.2% increase in F1-Score, and a 15.7% reduction in false positive rate.
30 January 2026








