You are currently viewing a new version of our website. To view the old version click .
  • Tracked forImpact Factor
  • 9.1CiteScore
  • 25 daysTime to First Decision

Journal of Cybersecurity and Privacy

Journal of Cybersecurity and Privacy is an international, peer-reviewed, open access journal on all aspects of computer, systems, and information security, published quarterly online by MDPI.

All Articles (283)

Leveraging Static Analysis for Feedback-Driven Security Patching in LLM-Generated Code

  • Kamel Alrashedy,
  • Abdullah Aljasser and
  • Pradyumna Tambwekar
  • + 1 author

Large language models (LLMs) have shown remarkable potential for automatic code generation. Yet, these models share a weakness with their human counterparts: inadvertently generating code with security vulnerabilities that could allow unauthorized attackers to access sensitive data or systems. In this work, we propose Feedback-Driven Security Patching (FDSP), wherein LLMs automatically refine vulnerable generated code. The key to our approach is a unique framework that leverages automatic static code analysis to enable the LLM to create and implement potential solutions to code vulnerabilities. Further, we curate a novel benchmark, PythonSecurityEval, that can accelerate progress in the field of code generation by covering diverse, real-world applications, including databases, websites, and operating systems. Our proposed FDSP approach achieves the strongest improvements, reducing vulnerabilities by up to 33% when evaluated with Bandit and 12% with CodeQL and outperforming baseline refinement methods.

5 December 2025

Overview of our closed-loop approach: Code generated by the LLM is analyzed with Bandit to detect vulnerabilities (see Figure 2). For each issue, the LLM generates multiple candidate fixes, each refined iteratively up to K times. The process repeats until the code passes static analysis or reaches the iteration limit, as illustrated by the red ‘X’ loop. The details are described in Section 4.

As technology advances, developers continually create innovative solutions to enhance smartphone security. However, the rapid spread of Android malware poses significant threats to devices and sensitive data. The Android Operating System (OS)’s open-source nature and Software Development Kit (SDK) availability mainly contribute to this alarming growth. Conventional malware detection methods, such as signature-based, static, and dynamic analysis, face challenges in detecting obfuscated techniques, including encryption, packing, and compression, in malware. Although developers have created several visualization techniques for malware detection using deep learning (DL), they often fail to accurately identify the critical malicious features of malware. This research introduces MalVis, a unified visualization framework that integrates entropy and N-gram analysis to emphasize meaningful structural and anomalous operational patterns within the malware bytecode. By addressing significant limitations of existing visualization methods, such as insufficient feature representation, limited interpretability, small dataset sizes, and restricted data access, MalVis delivers enhanced detection capabilities, particularly for obfuscated and previously unseen (zero-day) malware. The framework leverages the MalVis dataset introduced in this work, a publicly available large-scale dataset comprising more than 1.3 million visual representations in nine malware classes and one benign class. A comprehensive comparative evaluation was performed against existing state-of-the-art visualization techniques using leading convolutional neural network (CNN) architectures, MobileNet-V2, DenseNet201, ResNet50, VGG16, and Inception-V3. To further boost classification performance and mitigate overfitting, the outputs of these models were combined using eight distinct ensemble strategies. To address the issue of imbalanced class distribution in the multiclass dataset, we employed an undersampling technique to ensure balanced learning across all types of malware. MalVis achieved superior results, with 95% accuracy, 90% F1-score, 92% precision, 89% recall, 87% Matthews Correlation Coefficient (MCC), and 98% Receiver Operating Characteristic Area Under Curve (ROC-AUC). These findings highlight the effectiveness of MalVis in providing interpretable and accurate representation features for malware detection and classification, making it valuable for research and real-world security applications.

4 December 2025

The traditional process for learning patch-based adversarial attacks, conducted in the digital domain and later applied in the physical domain (e.g., via printed stickers), may suffer reduced performance due to adversarial patches’ limited transferability between domains. Given that previous studies have considered using film projectors to apply adversarial attacks, we ask: Can adversarial learning (i.e., patch generation) be performed entirely in the physical domain using a film projector? In this work, we propose the Physical-domain Adversarial Patch Learning Augmentation (PAPLA) framework, a novel end-to-end (E2E) framework that shifts adversarial learning from the digital domain to the physical domain using a film projector. We evaluate PAPLA in scenarios, including controlled laboratory and realistic outdoor settings, demonstrating its ability to ensure attack success compared to conventional digital learning–physical application (DL-PA) methods. We also analyze how environmental factors such as projection surface color, projector strength, ambient light, distance, and the target object’s angle relative to the camera affect patch effectiveness. Finally, we demonstrate the feasibility of the attack against a parked car and a stop sign in a real-world outdoor environment. Our results show that under specific conditions, E2E adversarial learning in the physical domain eliminates transferability issues and ensures evasion of object detectors. We also discuss the challenges and opportunities of adversarial learning in the physical domain and identify where this approach is more effective than using a sticker.

1 December 2025

Evaluating Privacy Technologies in Digital Payments: A Balanced Framework

  • Ioannis Fragkiadakis,
  • Stefanos Gritzalis and
  • Costas Lambrinoudakis

Privacy enhancement technologies are significant in the development of digital payment systems. At present, multiple innovative digital payment solutions have been introduced and may be implemented globally soon. As cyber threats continue to increase in complexity, security is a crucial factor to consider before adopting any technology. In addition to prioritizing security in the development of digital payment systems, it is essential to address user privacy concerns. Modern digital payment solutions offer numerous advantages over traditional systems; however, they also introduce new considerations that must be accounted for during implementation. These considerations go beyond legislative requirements and encompass new payment methods, including transactions made through mobile devices regardless of internet connectivity. A range of regulations and guidelines exist to ensure user privacy in financial transactions, with the General Data Protection Regulation (GDPR) being particularly notable, while technical reports have thoroughly examined the differences between various privacy-enhancing technologies. Additionally, it is important to note that all legal payment systems are required to maintain information for audit purposes. This paper introduces a comprehensive framework that integrates all critical considerations for selecting appropriate privacy enhancement technologies within digital payment systems, while it utilizes a detailed scoring system designed for convenience and adaptability, allowing it to be employed for purposes such as auditing. Thus, the proposed scoring framework integrates security, GDPR compliance, audit, privacy-preserving technical measures, and operational constraints to assess privacy technologies for digital payments.

1 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Machine Learning and Data Analytics for Cyber Security
Reprint

Machine Learning and Data Analytics for Cyber Security

Editors: Phil Legg, Giorgio Giacinto
Cyber Security and Critical Infrastructures - Volume II
Reprint

Cyber Security and Critical Infrastructures - Volume II

Editors: Leandros Maglaras, Helge Janicke, Mohamed Amine Ferrag

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
J. Cybersecur. Priv. - ISSN 2624-800X