Oxidative Stress in the Pathophysiology of Chronic Venous Disease: An Overview
Abstract
1. Introduction
Data Sources
2. Assessment of ROS Generation, ROS Sources and Markers of Oxidative Stress in CVD
2.1. Assessment of ROS Generation in CVD
2.2. Assessment of ROS Sources in CVD
2.3. Assessment of Oxidative Stress Biomarkers in CVD
2.3.1. Lipid Peroxidation Assays
2.3.2. Protein Oxidation Assays
2.3.3. Prolidase Enzyme Activity
3. Assessment of the Antioxidant Defense in CVD
3.1. Assessment of Enzymatic and Non-Enzymatic Antioxidants in the Setting of CVD
3.1.1. The Role of Enzymatic Antioxidants in CVD
- (a)
- Superoxide dismutase (SOD)
- (b)
- Catalase (CAT)
- (c)
- Glutathione peroxidase (GPx)
3.1.2. The Role of Non-Enzymatic Antioxidants in CVD
- (a)
- Glutathione (GSH)
- (b)
- Thiols
- (c)
- Uric acid (UA)
- (d)
- Ascorbic acid
4. Discussion
5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergan, J.J.; Schmid-Schönbein, G.W.; Smith, P.D.; Nicolaides, A.N.; Boisseau, M.R.; Eklof, B. Chronic venous disease. N. Engl. J. Med. 2006, 355, 488–498. [Google Scholar] [CrossRef]
- Davies, A.H. The Seriousness of Chronic Venous Disease: A Review of Real-World Evidence. Adv. Ther. 2019, 36, 5–12. [Google Scholar] [CrossRef]
- Salim, S.; Machin, M.; Patterson, B.O.; Onida, S.; Davies, A.H. Global Epidemiology of Chronic Venous Disease: A Systematic Review with Pooled Prevalence Analysis. Ann. Surg. 2021, 274, 971–976. [Google Scholar] [CrossRef]
- Ortega, M.A.; Fraile-Martínez, O.; García-Montero, C.; Álvarez-Mon, M.A.; Chaowen, C.; Ruiz-Grande, F.; Pekarek, L.; Monserrat, J.; Asúnsolo, A.; García-Honduvilla, N.; et al. Understanding Chronic Venous Disease: A Critical Overview of Its Pathophysiology and Medical Management. J. Clin. Med. 2021, 10, 3239. [Google Scholar] [CrossRef]
- Nicolaides, A.N.; Labropoulos, N. Burden and Suffering in Chronic Venous Disease. Adv. Ther. 2019, 36, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, E.A.; Khavjou, O.A.; Thompson, H.; Trogdon, J.G.; Pan, L.; Sherry, B.; Dietz, W. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 2012, 42, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.O.; Popplewell, M.; Singhal, R.; Smith, N.; Bradbury, A.W. Obesity and lower limb venous disease—The epidemic of phlebesity. Phlebology 2017, 32, 227–233. [Google Scholar] [CrossRef]
- Deol, Z.K.; Lakhanpal, S.; Franzon, G.; Pappas, P.J. Effect of obesity on chronic venous insufficiency treatment outcomes. J. Vasc. Surg. Venous Lymphat. Disord. 2020, 8, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Michaelidou, M.; Pappachan, J.M.; Jeeyavudeen, M.S. Management of diabesity: Current concepts. World J. Diabetes 2023, 14, 396–411. [Google Scholar] [CrossRef]
- Jarošíková, R.; Roztočil, K.; Husáková, J.; Dubský, M.; Bém, R.; Wosková, V.; Fejfarová, V. Chronic Venous Disease and Its Intersections with Diabetes Mellitus. Physiol. Res. 2023, 72, 280–286. [Google Scholar] [CrossRef]
- De Maeseneer, M.G.; Kakkos, S.K.; Aherne, T.; Baekgaard, N.; Black, S.; Blomgren, L.; Giannoukas, A.; Gohel, M.; de Graaf, R.; Hamel-Desnos, C.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2022 Clinical Practice Guidelines on the Management of Chronic Venous Disease of the Lower Limbs. Eur. J. Vasc. Endovasc. Surg. 2022, 63, 184–267. [Google Scholar] [CrossRef] [PubMed]
- Gloviczki, P.; Lawrence, P.F.; Wasan, S.M.; Meissner, M.H.; Almeida, J.; Brown, K.R.; Bush, R.L.; Di Iorio, M.; Fish, J.; Fukaya, E.; et al. The 2023 Society for Vascular Surgery, American Venous Forum, and American Vein and Lymphatic Society clinical practice guidelines for the management of varicose veins of the lower extremities. J. Vasc. Surg. Venous Lymphat. Disord. 2024, 12, 101670. [Google Scholar] [CrossRef] [PubMed]
- Bernatchez, S.F.; Eysaman-Walker, J.; Weir, D. Venous Leg Ulcers: A Review of Published Assessment and Treatment Algorithms. Adv. Wound Care 2022, 11, 28–41. [Google Scholar] [CrossRef]
- Labropoulos, N. How Does Chronic Venous Disease Progress from the First Symptoms to the Advanced Stages? A Review. Adv. Ther. 2019, 36, 13–19. [Google Scholar] [CrossRef]
- Chung, J.H.; Heo, S. Varicose Veins and the Diagnosis of Chronic Venous Disease in the Lower Extremities. J. Chest Surg. 2024, 57, 109–119. [Google Scholar] [CrossRef]
- Pfisterer, L.; König, G.; Hecker, M.; Korff, T. Pathogenesis of varicose veins—Lessons from biomechanics. Vasa 2014, 43, 88–99. [Google Scholar] [CrossRef]
- Attaran, R.R.; Carr, J.G. Chronic Venous Disease of the Lower Extremities: A State-of-the Art Review. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 100538. [Google Scholar] [CrossRef]
- Raffetto, J.D. Pathophysiology of Chronic Venous Disease and Venous Ulcers. Surg. Clin. N. Am. 2018, 98, 337–347. [Google Scholar] [CrossRef]
- Lim, C.S.; Gohel, M.S.; Shepherd, A.C.; Paleolog, E.; Davies, A.H. Venous hypoxia: A poorly studied etiological factor of varicose veins. J. Vasc. Res. 2011, 48, 185–194. [Google Scholar] [CrossRef]
- Costa, D.; Andreucci, M.; Ielapi, N.; Serraino, G.F.; Mastroroberto, P.; Bracale, U.M.; Serra, R. Molecular Determinants of Chronic Venous Disease: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 1928. [Google Scholar] [CrossRef] [PubMed]
- Ojdana, D.; Safiejko, K.; Lipska, A.; Sacha, P.; Wieczorek, P.; Radziwon, P.; Dadan, J.; Tryniszewska, E. The inflammatory reaction during chronic venous disease of lower limbs. Folia Histochem. Cytobiol. 2009, 47, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Singh, N.; Dhalla, A.K.; Seneviratne, C.; Singal, P.K. Oxidative stress and heart failure. Mol. Cell Biochem. 1995, 147, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; Touyz, R.M. Oxidative Stress, Inflammation, and Vascular Aging in Hypertension. Hypertension 2017, 70, 660–667. [Google Scholar] [CrossRef]
- Simantiris, S.; Papastamos, C.; Antonopoulos, A.S.; Theofilis, P.; Sagris, M.; Bounta, M.; Konisti, G.; Galiatsatos, N.; Xanthaki, A.; Tsioufis, K.; et al. Oxidative Stress Biomarkers in Coronary Artery Disease. Curr. Top. Med. Chem. 2023, 23, 2158–2171. [Google Scholar] [CrossRef]
- Pfenniger, A.; Yoo, S.; Arora, R. Oxidative stress and atrial fibrillation. J. Mol. Cell Cardiol. 2024, 196, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Muntean, D.M.; Sturza, A.; Dănilă, M.D.; Borza, C.; Duicu, O.M.; Mornoș, C. The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. Oxid. Med. Cell Longev. 2016, 2016, 8254942. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Q.; Zhu, J.; Xiao, Q.; Zhang, L. Reactive oxygen species: Key regulators in vascular health and diseases. Br. J. Pharmacol. 2018, 175, 1279–1292. [Google Scholar] [CrossRef]
- Abrashev, H.; Abrasheva, D.; Nikolov, N.; Ananiev, J.; Georgieva, E. A Systematic Review of Endothelial Dysfunction in Chronic Venous Disease—Inflammation, Oxidative Stress, and Shear Stress. Int. J. Mol. Sci. 2025, 26, 3660. [Google Scholar] [CrossRef]
- Pocock, E.S.; Alsaigh, T.; Mazor, R.; Schmid-Schönbein, G.W. Cellular and molecular basis of Venous insufficiency. Vasc. Cell 2014, 6, 24. [Google Scholar] [CrossRef]
- Ortega, M.A.; Fraile-Martínez, O.; García-Montero, C.; Pekarek, L.; Alvarez-Mon, M.A.; Guijarro, L.G.; Del Carmen Boyano, M.; Sainz, F.; Álvarez-Mon, M.; Buján, J.; et al. Tissue remodelling and increased DNA damage in patients with incompetent valves in chronic venous insufficiency. J. Cell Mol. Med. 2021, 25, 7878–7889. [Google Scholar] [CrossRef]
- Gwozdzinski, L.; Pieniazek, A.; Gwozdzinski, K. Factors Influencing Venous Remodeling in the Development of Varicose Veins of the Lower Limbs. Int. J. Mol. Sci. 2024, 25, 1560. [Google Scholar] [CrossRef]
- Gwozdzinski, L.; Pieniazek, A.; Gwozdzinski, K. The Roles of Oxidative Stress and Red Blood Cells in the Pathology of the Varicose Vein. Int. J. Mol. Sci. 2024, 25, 13400. [Google Scholar] [CrossRef]
- Saberianpour, S.; Modaghegh, M.H.S.; Rahimi, H.; Kamyar, M.M. Role of mechanosignaling on pathology of varicose vein. Biophys. Rev. 2021, 13, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Raffetto, J.D.; Ligi, D.; Maniscalco, R.; Khalil, R.A.; Mannello, F. Why Venous Leg Ulcers Have Difficulty Healing: Overview on Pathophysiology, Clinical Consequences, and Treatment. J. Clin. Med. 2020, 10, 29. [Google Scholar] [CrossRef]
- Lyons, O.T.A.; Saha, P.; Smith, A. Redox dysregulation in the pathogenesis of chronic venous ulceration. Free Radic. Biol. Med. 2020, 149, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Brandes, R.P.; Weissmann, N.; Schröder, K. NADPH oxidases in cardiovascular disease. Free Radic. Biol. Med. 2010, 49, 687–706. [Google Scholar] [CrossRef] [PubMed]
- Drummond, G.R.; Sobey, C.G. Endothelial NADPH oxidases: Which NOX to target in vascular disease? Trends Endocrinol. Metab. 2014, 25, 452–463. [Google Scholar] [CrossRef]
- Lassègue, B.; Griendling, K.K. NADPH Oxidases: Functions and Pathologies in the Vasculature. Arter. Thromb. Vasc. Biol. 2010, 30, 653–661. [Google Scholar] [CrossRef]
- Vermot, A.; Petit-Härtlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Burtenshaw, D.; Hakimjavadi, R.; Redmond, E.M.; Cahill, P.A. Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate. Antioxidants 2017, 6, 90. [Google Scholar] [CrossRef]
- Konior, A.; Schramm, A.; Czesnikiewicz-Guzik, M.; Guzik, T.J. NADPH oxidases in vascular pathology. Antioxid. Redox Signal 2014, 20, 2794–2814. [Google Scholar] [CrossRef]
- Tejero, J.; Shiva, S.; Gladwin, M.T. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol. Rev. 2019, 99, 311–379. [Google Scholar] [CrossRef]
- Battelli, M.G.; Polito, L.; Bortolotti, M.; Bolognesi, A. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects. Oxid. Med. Cell Longev. 2016, 2016, 3527579. [Google Scholar] [CrossRef]
- Miller, A.F. Superoxide dismutases: Ancient enzymes and new insights. FEBS Lett. 2012, 586, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.M.; Duchen, M.R. Endothelial Mitochondria. Circ. Res. 2007, 100, 1128–1141. [Google Scholar] [CrossRef] [PubMed]
- Di Lisa, F.; Kaludercic, N.; Carpi, A.; Menabò, R.; Giorgio, M. Mitochondria and vascular pathology. Pharmacol. Rep. 2009, 61, 123–130. [Google Scholar] [CrossRef]
- Grossini, E.; Venkatesan, S.; Ola Pour, M.M. Mitochondrial Dysfunction in Endothelial Cells: A Key Driver of Organ Disorders and Aging. Antioxidants 2025, 14, 372. [Google Scholar] [CrossRef]
- Therade-Matharan, S.; Laemmel, E.; Duranteau, J.; Vicaut, E. Reoxygenation after hypoxia and glucose depletion causes reactive oxygen species production by mitochondria in HUVEC. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R1037–R1043. [Google Scholar] [CrossRef]
- Onukwufor, J.O.; Berry, B.J.; Wojtovich, A.P. Physiologic Implications of Reactive Oxygen Species Production by Mitochondrial Complex I Reverse Electron Transport. Antioxidants 2019, 8, 285. [Google Scholar] [CrossRef] [PubMed]
- Hernansanz-Agustín, P.; Enríquez, J.A. Generation of Reactive Oxygen Species by Mitochondria. Antioxidants 2021, 10, 415. [Google Scholar] [CrossRef] [PubMed]
- Pearlstein, D.P.; Ali, M.H.; Mungai, P.T.; Hynes, K.L.; Gewertz, B.L.; Schumacker, P.T. Role of mitochondrial oxidant generation in endothelial cell responses to hypoxia. Arter. Thromb. Vasc. Biol. 2002, 22, 566–573. [Google Scholar] [CrossRef]
- Ali, M.H.; Pearlstein, D.P.; Mathieu, C.E.; Schumacker, P.T. Mitochondrial requirement for endothelial responses to cyclic strain: Implications for mechanotransduction. Am. J. Physiol. Lung Cell Mol. Physiol. 2004, 287, L486–L496. [Google Scholar] [CrossRef]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Ostadkarampour, M.; Putnins, E.E. Monoamine Oxidase Inhibitors: A Review of Their Anti-Inflammatory Therapeutic Potential and Mechanisms of Action. Front. Pharmacol. 2021, 12, 676239. [Google Scholar] [CrossRef]
- Sturza, A.; Popoiu, C.M.; Ionică, M.; Duicu, O.M.; Olariu, S.; Muntean, D.M.; Boia, E.S. Monoamine Oxidase-Related Vascular Oxidative Stress in Diseases Associated with Inflammatory Burden. Oxid. Med. Cell Longev. 2019, 2019, 8954201. [Google Scholar] [CrossRef]
- Sturza, A.; Muntean, D.; Crețu, O. Monoamine Oxidase, Obesity and Related Comorbidities: Discovering Bonds. In Cellular and Biochemical Mechanisms of Obesity; Springer: Berlin/Heidelberg, Germany, 2021; pp. 199–213. [Google Scholar]
- Camici, G.G.; Cosentino, F.; Tanner, F.C.; Lüscher, T.F. The role of p66Shc deletion in age-associated arterial dysfunction and disease states. J. Appl. Physiol. 2008, 105, 1628–1631. [Google Scholar] [CrossRef]
- Di Lisa, F.; Giorgio, M.; Ferdinandy, P.; Schulz, R. New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases. Br. J. Pharmacol. 2017, 174, 1690–1703. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, Y.; Saredy, J.; Wang, X.; Drummer Iv, C.; Shao, Y.; Saaoud, F.; Xu, K.; Liu, M.; Yang, W.Y.; et al. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 2020, 37, 101696. [Google Scholar] [CrossRef]
- Daiber, A.; Di Lisa, F.; Oelze, M.; Kröller-Schön, S.; Steven, S.; Schulz, E.; Münzel, T. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br. J. Pharmacol. 2017, 174, 1670–1689. [Google Scholar] [CrossRef] [PubMed]
- Janaszak-Jasiecka, A.; Płoska, A.; Wierońska, J.M.; Dobrucki, L.W.; Kalinowski, L. Endothelial dysfunction due to eNOS uncoupling: Molecular mechanisms as potential therapeutic targets. Cell Mol. Biol. Lett. 2023, 28, 21. [Google Scholar] [CrossRef] [PubMed]
- Burtenshaw, D.; Kitching, M.; Redmond, E.M.; Megson, I.L.; Cahill, P.A. Reactive Oxygen Species (ROS), Intimal Thickening, and Subclinical Atherosclerotic Disease. Front. Cardiovasc. Med. 2019, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; Schramm, A.; Czesnikiewicz-Guzik, M. Functional Implications of Reactive Oxygen Species (ROS) in Human Blood Vessels. In Systems Biology of Free Radicals and Antioxidants; Laher, I., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1155–1176. [Google Scholar]
- Higashi, Y. Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease. Antioxidants 2022, 11, 1958. [Google Scholar] [CrossRef]
- Guzik, B.; Chwała, M.; Matusik, P.; Ludew, D.; Skiba, D.; Wilk, G.; Mrowiecki, W.; Batko, B.; Cencora, A.; Kapelak, B.; et al. Mechanisms of increased vascular superoxide production in human varicose veins. Pol. Arch. Med. Wewn. 2011, 121, 279–286. [Google Scholar] [CrossRef]
- Flore, R.; Santoliquido, A.; Antonio, D.L.; Pola, E.; Flex, A.; Pola, R.; Muzi, M.G.; Farinon, A.; Rulli, F.; Gaetani, E.; et al. Long saphenous vein stripping reduces local level of reactive oxygen metabolites in patients with varicose disease of the lower limbs. World J. Surg. 2003, 27, 473–475. [Google Scholar] [CrossRef]
- Flore, R.; Ponziani, F.R.; Gerardino, L.; Santoliquido, A.; Di Giorgio, A.; Lupascu, A.; Nesci, A.; Tondi, P. Biomarkers of low-grade inflammation in primary varicose veins of the lower limbs. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 557–562. [Google Scholar]
- Gwozdzinski, L.; Pieniazek, A.; Bernasinska-Slomczewska, J.; Hikisz, P.; Gwozdzinski, K. Alterations in the Plasma and Red Blood Cell Properties in Patients with Varicose Vein: A Pilot Study. Cardiol. Res. Pract. 2021, 2021, 5569961. [Google Scholar] [CrossRef] [PubMed]
- Matei, S.C.; Matei, M.; Anghel, F.M.; Murariu, M.S.; Olariu, S. Cryostripping-A Safe and Efficient Alternative Procedure in Chronic Venous Disease Treatment. J. Clin. Med. 2022, 11, 5028. [Google Scholar] [CrossRef]
- Rațiu, S.; Mariș, M.I.; Furdui-Lința, A.V.; Stanciu-Lelcu, T.; Borza, C.; Olariu, S.; Bratu, T.; Sturza, A.; Muntean, D.M. Vitamin D alleviates oxidative stress in varicose veins: A pilot study in obese and non-obese patients. Mol. Cell. Biochem. 2025, 480, 4797–4807. [Google Scholar] [CrossRef]
- Ortega, M.A.; Romero, B.; Asúnsolo, Á.; Sola, M.; Álavrez-Rocha, M.J.; Sainz, F.; Álavrez-Mon, M.; Buján, J.; García-Honduvilla, N. Patients with Incompetent Valves in Chronic Venous Insufficiency Show Increased Systematic Lipid Peroxidation and Cellular Oxidative Stress Markers. Oxid. Med. Cell Longev. 2019, 2019, 5164576. [Google Scholar] [CrossRef] [PubMed]
- Frangie, C.; Daher, J. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed. Rep. 2022, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Sena, C.M.; Leandro, A.; Azul, L.; Seiça, R.; Perry, G. Vascular Oxidative Stress: Impact and Therapeutic Approaches. Front. Physiol. 2018, 9, 1668. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.L.; Upton, Z.; Edwards, H.; Finlayson, K.; Shooter, G.K. Elevated uric acid correlates with wound severity. Int. Wound J. 2012, 9, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Glowinski, J.; Glowinski, S. Generation of reactive oxygen metabolites by the varicose vein wall. Eur. J. Vasc. Endovasc. Surg. 2002, 23, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Condezo-Hoyos, L.; Rubio, M.; Arribas, S.M.; España-Caparrós, G.; Rodríguez-Rodríguez, P.; Mujica-Pacheco, E.; González, M.C. A plasma oxidative stress global index in early stages of chronic venous insufficiency. J. Vasc. Surg. 2013, 57, 205–213. [Google Scholar] [CrossRef]
- Lee, R.; Margaritis, M.; Channon, K.M.; Antoniades, C. Evaluating oxidative stress in human cardiovascular disease: Methodological aspects and considerations. Curr. Med. Chem. 2012, 19, 2504–2520. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- De Leon, J.A.D.; Borges, C.R. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J. Vis. Exp. 2020, 12, e61122. [Google Scholar] [CrossRef]
- Krzyściak, W.; Kózka, M.; Kazek, G.; Stępniewski, M. Selected indicators of the antioxidant systemin the blood of patients with lower limb varicose veins. Acta Angiol. 2009, 15, 10–19. [Google Scholar]
- Kózka, M.; Krzyściak, W.; Pietrzycka, A.; Stepniewski, M. Obesity and its influence on reactive oxygen species (ROS) in the blood of patients with varicose veins of the lower limbs. Przegląd Lek. 2009, 66, 213–217. [Google Scholar]
- Krzyściak, W.; Kózka, M. Generation of reactive oxygen species by a sufficient, insufficient and varicose vein wall. Acta Biochim. Pol. 2011, 58, 89–94. [Google Scholar] [CrossRef]
- Budzyń, M.; Iskra, M.; Krasiński, Z.; Dzieciuchowicz, Ł.; Kasprzak, M.; Gryszczyńska, B. Serum iron concentration and plasma oxidant-antioxidant balance in patients with chronic venous insufficency. Med. Sci. Monit. 2011, 17, Cr719–Cr727. [Google Scholar] [CrossRef]
- Budzyń, M.; Iskra, M.; Turkiewicz, W.; Krasiński, Z.; Gryszczyńska, B.; Kasprzak, M.P. Plasma concentration of selected biochemical markers of endothelial dysfunction in women with various severity of chronic venous insufficiency (CVI)-A pilot study. PLoS ONE 2018, 13, e0191902. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, D.; Cafueri, G.; Mongelli, F.; Pezzolo, A.; Pistoia, V.; Palombo, D. Telomere shortening and increased oxidative stress are restricted to venous tissue in patients with varicose veins: A merely local disease? Vasc. Med. 2014, 19, 125–130. [Google Scholar] [CrossRef]
- Saribal, D.; Kanber, E.M.; Hocaoglu-Emre, F.S.; Akyolcu, M.C. Effects of the oxidative stress and genetic changes in varicose vein patients. Phlebology 2019, 34, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Yasim, A.; Kilinc, M.; Aral, M.; Oksuz, H.; Kabalci, M.; Eroglu, E.; Imrek, S. Serum concentration of procoagulant, endothelial and oxidative stress markers in early primary varicose veins. Phlebology 2008, 23, 15–20. [Google Scholar] [CrossRef]
- Farbiszewski, R.; Glowinski, J.; Makarewicz-Plonska, M.; Chwiecko, M.; Ostapowicz, R.; Glowinski, S. Oxygen-Derived Free Radicals as Mediators of Varicose Vein Wall Damage. Vasc. Surg. 1996, 30, 47–52. [Google Scholar] [CrossRef]
- Colombo, G.; Clerici, M.; Garavaglia, M.E.; Giustarini, D.; Rossi, R.; Milzani, A.; Dalle-Donne, I. A step-by-step protocol for assaying protein carbonylation in biological samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1019, 178–190. [Google Scholar] [CrossRef]
- Augustyniak, E.; Adam, A.; Wojdyla, K.; Rogowska-Wrzesinska, A.; Willetts, R.; Korkmaz, A.; Atalay, M.; Weber, D.; Grune, T.; Borsa, C.; et al. Validation of protein carbonyl measurement: A multi-centre study. Redox Biol. 2015, 4, 149–157. [Google Scholar] [CrossRef]
- Selmeci, L.; Seres, L.; Antal, M.; Lukács, J.; Regöly-Mérei, A.; Acsády, G. Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: A simple, fast and inexpensive automated technique. Clin. Chem. Lab. Med. 2005, 43, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Bagyura, Z.; Takács, A.; Kiss, L.; Dósa, E.; Vadas, R.; Nguyen, T.D.; Dinya, E.; Soós, P.; Szelid, Z.; Láng, O.; et al. Level of advanced oxidation protein products is associated with subclinical atherosclerosis. BMC Cardiovasc. Disord. 2022, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Wattanapitayakul, S.K.; Bauer, J.A. Oxidative pathways in cardiovascular disease: Roles, mechanisms, and therapeutic implications. Pharmacol. Ther. 2001, 89, 187–206. [Google Scholar] [CrossRef]
- Bodnár, E.; Bakondi, E.; Kovács, K.; Hegedűs, C.; Lakatos, P.; Robaszkiewicz, A.; Regdon, Z.; Virág, L.; Szabó, É. Redox Profiling Reveals Clear Differences between Molecular Patterns of Wound Fluids from Acute and Chronic Wounds. Oxid. Med. Cell Longev. 2018, 2018, 5286785. [Google Scholar] [CrossRef] [PubMed]
- Eni-Aganga, I.; Lanaghan, Z.M.; Balasubramaniam, M.; Dash, C.; Pandhare, J. PROLIDASE: A Review from Discovery to its Role in Health and Disease. Front. Mol. Biosci. 2021, 8, 723003. [Google Scholar] [CrossRef]
- Isbilen, E.; Kulaksizoglu, S.; Kirmizioglu, M.; Karuserci Komurcu, O.; Tabur, S. Role of prolidase activity and oxidative stress biomarkers in unexplained infertility. Int. J. Gynaecol. Obs. 2022, 156, 430–435. [Google Scholar] [CrossRef]
- Gonullu, H.; Aslan, M.; Karadas, S.; Kati, C.; Duran, L.; Milanlioglu, A.; Aydin, M.N.; Demir, H. Serum prolidase enzyme activity and oxidative stress levels in patients with acute hemorrhagic stroke. Scand. J. Clin. Lab. Investig. 2014, 74, 199–205. [Google Scholar] [CrossRef]
- Aslan, M.; Duzenli, U.; Esen, R.; Soyoral, Y.U. Serum prolidase enzyme activity in obese subjects and its relationship with oxidative stress markers. Clin. Chim. Acta 2017, 473, 186–190. [Google Scholar] [CrossRef]
- Akar, İ.; İnce, İ.; Aslan, C.; Benli, İ.; Demir, O.; Altındeger, N.; Dogan, A.; Ceber, M. Oxidative Stress and Prolidase Enzyme Activity in the Pathogenesis of Primary Varicose Veins. Vascular 2018, 26, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Karamalakova, Y.D.; Abrashev, H.M.; Nikolova, G.D.; Kavrakov, T.T.; Gadjeva, V.G. Generation of plasmatic oxidative damages in patients with chronic venous insufficiency. Bulg. Chem. Commun. 2019, 51, 47–52. [Google Scholar]
- Krzyściak, W.; Kowalska, J.; Kózka, M.; Papież, M.A.; Kwiatek, W.M. Iron content (PIXE) in competent and incompetent veins is related to the vein wall morphology and tissue antioxidant enzymes. Bioelectrochemistry 2012, 87, 114–123. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Khelfi, A. Antioxidants. In Biomarkers of Oxidative Stress: Basics and Measurement of Oxidative Stress; Andreescu, S., Henkel, R., Khelfi, A., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 149–169. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med. 1995, 18, 125–126. [Google Scholar] [CrossRef]
- Silvestrini, A.; Mancini, A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants 2024, 13, 933. [Google Scholar] [CrossRef]
- Horecka, A.; Biernacka, J.; Hordyjewska, A.; Dąbrowski, W.; Terlecki, P.; Zubilewicz, T.; Musik, I.; Kurzepa, J. Antioxidative mechanism in the course of varicose veins. Phlebology 2018, 33, 464–469. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 2018, 63, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Wali, M.A.; Suleiman, S.A.; Kadoumi, O.F.; Nasr, M.A. Superoxide radical concentration and superoxide dismutase (SOD) enzyme activity in varicose veins. Ann. Thorac. Cardiovasc. Surg. 2002, 8, 286–290. [Google Scholar] [PubMed]
- Krzyściak, W.; Cierniak, A.; Kózka, M.; Kozieł, J. Oxidative DNA Damage in Blood of CVD Patients Taking Detralex. Open Cardiovasc. Med. J. 2011, 5, 179–187. [Google Scholar] [CrossRef]
- Krzyściak, W.; Kózka, M.; Kowalska, J.; Kwiatek, W.M. Role of Zn, Cu--trace elements and superoxide dismutase (SOD) in oxidative stress progression in chronic venous insufficiency (CVI). Przegląd Lek. 2010, 67, 446–449. [Google Scholar]
- Triankina, S.A.; Kolobova, O.I.; Varshavskiĭ, B. The role of peroxidation in pathogenesis of varicose veins. Klin. Lab. Diagn. 2003, 6, 19–20. [Google Scholar]
- Modaghegh, M.H.S.; Saberianpour, S.; Amoueian, S.; Kamyar, M.M. Signaling pathways associated with structural changes in varicose veins: A case-control study. Phlebology 2022, 37, 33–41. [Google Scholar] [CrossRef]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Andrews, N.P.; Padder, F.A.; Husain, M.; Quyyumi, A.A. Glutathione reverses endothelial dysfunction and improves nitric oxide bioavailability. J. Am. Coll. Cardiol. 1999, 34, 507–514. [Google Scholar] [CrossRef]
- Rafea, R.; Siragusa, M.; Fleming, I. The Ever-Expanding Influence of the Endothelial Nitric Oxide Synthase. Basic. Clin. Pharmacol. Toxicol. 2025, 136, e70029. [Google Scholar] [CrossRef] [PubMed]
- Aucoin, M.M.; Barhoumi, R.; Kochevar, D.T.; Granger, H.J.; Burghardt, R.C. Oxidative injury of coronary venular endothelial cells depletes intracellular glutathione and induces HSP 70 mRNA. Am. J. Physiol. 1995, 268, H1651–H1658. [Google Scholar] [CrossRef]
- Noguchi, N.; Saito, Y.; Niki, E. Actions of Thiols, Persulfides, and Polysulfides as Free Radical Scavenging Antioxidants. Antioxid. Redox Signal 2023, 39, 728–743. [Google Scholar] [CrossRef]
- Trujillo, M.; Alvarez, B.; Radi, R. One- and two-electron oxidation of thiols: Mechanisms, kinetics and biological fates. Free Radic. Res. 2016, 50, 150–171. [Google Scholar] [CrossRef]
- Poredos, P.; Spirkoska, A.; Rucigaj, T.; Fareed, J.; Jezovnik, M.K. Do Blood Constituents in Varicose Veins Differ From the Systemic Blood Constituents? Eur. J. Vasc. Endovasc. Surg. 2015, 50, 250–256. [Google Scholar] [CrossRef]
- Turell, L.; Radi, R.; Alvarez, B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic. Biol. Med. 2013, 65, 244–253. [Google Scholar] [CrossRef]
- Belinskaia, D.A.; Voronina, P.A.; Shmurak, V.I.; Vovk, M.A.; Batalova, A.A.; Jenkins, R.O.; Goncharov, N.V. The Universal Soldier: Enzymatic and Non-Enzymatic Antioxidant Functions of Serum Albumin. Antioxidants 2020, 9, 966. [Google Scholar] [CrossRef] [PubMed]
- Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Albuja-Quintana, N.; Chisaguano-Tonato, A.M.; Herrera-Fontana, M.E.; Figueroa-Samaniego, S.; Alvarez-Suarez, J.M. Relationship between plasma uric acid levels, antioxidant capacity, and oxidative damage markers in overweight and obese adults: A cross-sectional study. PLoS ONE 2025, 20, e0312217. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, C.; Wan, T.; Sun, X.; Lin, X.; Yan, D.; Li, J.; Wei, P. Targeting uric acid: A promising intervention against oxidative stress and neuroinflammation in neurodegenerative diseases. Cell Commun. Signal. 2025, 23, 4. [Google Scholar] [CrossRef]
- Michiels, C.; Arnould, T.; Remacle, J. Hypoxia-Induced Activation of Endothelial Cells as a Possible Cause of Venous Diseases: Hypothesis. Angiology 1993, 44, 639–646. [Google Scholar] [CrossRef]
- Michiels, C.; Arnould, T.; Houbion, A.; Remacle, J. Human umbilical vein endothelial cells submitted to hypoxia-reoxygenation in vitro: Implication of free radicals, xanthine oxidase, and energy deficiency. J. Cell Physiol. 1992, 153, 53–61. [Google Scholar] [CrossRef]
- Waring, W.S.; Webb, D.J.; Maxwell, S.R. Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J. Cardiovasc. Pharmacol. 2001, 38, 365–371. [Google Scholar] [CrossRef]
- Gęgotek, A.; Skrzydlewska, E. Ascorbic acid as antioxidant. Vitam. Horm. 2023, 121, 247–270. [Google Scholar] [CrossRef]
- Murphy, M.P.; Bayir, H.; Belousov, V.; Chang, C.J.; Davies, K.J.A.; Davies, M.J.; Dick, T.P.; Finkel, T.; Forman, H.J.; Janssen-Heininger, Y.; et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 2022, 4, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Giustarini, D.; Tsikas, D.; Colombo, G.; Milzani, A.; Dalle-Donne, I.; Fanti, P.; Rossi, R. Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: An elephant in the room. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1019, 21–28. [Google Scholar] [CrossRef]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef]
- Deshwal, S.; Antonucci, S.; Kaludercic, N.; Di Lisa, F. Measurement of Mitochondrial ROS Formation. Methods Mol. Biol. 2018, 1782, 403–418. [Google Scholar] [CrossRef]
- Guzik, T.J.; Harrison, D.G. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov. Today 2006, 11, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Kawagishi, H.; Finkel, T. Unraveling the Truth About Antioxidants: ROS and disease: Finding the right balance. Nat. Med. 2014, 20, 711–713. [Google Scholar] [CrossRef]
- Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C.; Traverso, N. Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants 2022, 11, 1613. [Google Scholar] [CrossRef]
- Lassègue, B.; San Martín, A.; Griendling, K.K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 2012, 110, 1364–1390. [Google Scholar] [CrossRef]
- Li, Y.; Pagano, P.J. Microvascular NADPH oxidase in health and disease. Free Radic. Biol. Med. 2017, 109, 33–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Murugesan, P.; Huang, K.; Cai, H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets. Nat. Rev. Cardiol. 2020, 17, 170–194. [Google Scholar] [CrossRef] [PubMed]
- Sirker, A.; Zhang, M.; Shah, A.M. NADPH oxidases in cardiovascular disease: Insights from in vivo models and clinical studies. Basic. Res. Cardiol. 2011, 106, 735–747. [Google Scholar] [CrossRef] [PubMed]
- La Favor, J.D.; Dubis, G.S.; Yan, H.; White, J.D.; Nelson, M.A.; Anderson, E.J.; Hickner, R.C. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans Is Mediated by NADPH Oxidase: Influence of Exercise Training. Arter. Thromb. Vasc. Biol. 2016, 36, 2412–2420. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; West, N.E.J.; Black, E.; McDonald, D.; Ratnatunga, C.; Pillai, R.; Channon, K.M. Vascular Superoxide Production by NAD(P)H Oxidase. Circ. Res. 2000, 86, e85–e90. [Google Scholar] [CrossRef]
- McNally, J.S.; Davis, M.E.; Giddens, D.P.; Saha, A.; Hwang, J.; Dikalov, S.; Jo, H.; Harrison, D.G. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H2290–H2297. [Google Scholar] [CrossRef] [PubMed]
- Kirkman, D.L.; Robinson, A.T.; Rossman, M.J.; Seals, D.R.; Edwards, D.G. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H2080–H2100. [Google Scholar] [CrossRef]
- Kluge, M.A.; Fetterman, J.L.; Vita, J.A. Mitochondria and endothelial function. Circ. Res. 2013, 112, 1171–1188. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Zinkevich, N.S.; Gutterman, D.D. ROS-induced ROS release in vascular biology: Redox-redox signaling. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H647–H653. [Google Scholar] [CrossRef]
- Madamanchi, N.R.; Vendrov, A.; Runge, M.S. Oxidative stress and vascular disease. Arter. Thromb. Vasc. Biol. 2005, 25, 29–38. [Google Scholar] [CrossRef]
- Batty, M.; Bennett, M.R.; Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef]
- Craige, S.M.; Kaur, G.; Bond, J.M.; Caliz, A.D.; Kant, S.; Keaney, J.F. Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease. Antioxid. Redox Signal 2025, 42, 905–932. [Google Scholar] [CrossRef]
- Sies, H. Dynamics of intracellular and intercellular redox communication. Free Radic. Biol. Med. 2024, 225, 933–939. [Google Scholar] [CrossRef]
- Crowley, S.D. The cooperative roles of inflammation and oxidative stress in the pathogenesis of hypertension. Antioxid. Redox Signal 2014, 20, 102–120. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Higashi, Y. Pathophysiological Association between Diabetes Mellitus and Endothelial Dysfunction. Antioxidants 2021, 10, 1306. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef] [PubMed]
- Seyedsadjadi, N.; Grant, R. The Potential Benefit of Monitoring Oxidative Stress and Inflammation in the Prevention of Non-Communicable Diseases (NCDs). Antioxidants 2020, 10, 15. [Google Scholar] [CrossRef]
- Peña-Oyarzun, D.; Bravo-Sagua, R.; Diaz-Vega, A.; Aleman, L.; Chiong, M.; Garcia, L.; Bambs, C.; Troncoso, R.; Cifuentes, M.; Morselli, E.; et al. Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state? Free Radic. Biol. Med. 2018, 124, 61–78. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, Y.; Miao, J.; Zhang, X.; Liu, M.; Zhu, L.; Liu, H.; Shen, X.; Wang, J.; Xie, B.; et al. Oxidative Stress and Inflammation: Drivers of Tumorigenesis and Therapeutic Opportunities. Antioxidants 2025, 14, 735. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Hulsmans, M.; Holvoet, P. The vicious circle between oxidative stress and inflammation in atherosclerosis. J. Cell Mol. Med. 2010, 14, 70–78. [Google Scholar] [CrossRef]
- Petrascu, F.-M.; Matei, S.-C.; Margan, M.-M.; Ungureanu, A.-M.; Olteanu, G.-E.; Murariu, M.-S.; Olariu, S.; Marian, C. The Impact of Inflammatory Markers and Obesity in Chronic Venous Disease. Biomedicines 2024, 12, 2524. [Google Scholar] [CrossRef] [PubMed]
- Wadley, A.J.; van Zanten, J.J.C.S.V.; Aldred, S. The interactions of oxidative stress and inflammation with vascular dysfunction in ageing: The vascular health triad. AGE 2013, 35, 705–718. [Google Scholar] [CrossRef]
- Ortega, M.A.; Asúnsolo, Á.; Leal, J.; Romero, B.; Alvarez-Rocha, M.J.; Sainz, F.; Álvarez-Mon, M.; Buján, J.; García-Honduvilla, N. Implication of the PI3K/Akt/mTOR Pathway in the Process of Incompetent Valves in Patients with Chronic Venous Insufficiency and the Relationship with Aging. Oxid. Med. Cell Longev. 2018, 2018, 1495170. [Google Scholar] [CrossRef]
- Vona, R.; Pallotta, L.; Cappelletti, M.; Severi, C.; Matarrese, P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants 2021, 10, 201. [Google Scholar] [CrossRef]
- Raffetto, J.D.; Khalil, R.A. Mechanisms of Lower Extremity Vein Dysfunction in Chronic Venous Disease and Implications in Management of Varicose Veins. Vessel. Plus 2021, 5, 36. [Google Scholar] [CrossRef]
- di Candia, A.M.; de Avila, D.X.; Moreira, G.R.; Villacorta, H.; Maisel, A.S. Growth differentiation factor-15, a novel systemic biomarker of oxidative stress, inflammation, and cellular aging: Potential role in cardiovascular diseases. Am. Heart J. Plus: Cardiol. Res. Pract. 2021, 9, 100046. [Google Scholar] [CrossRef]
- Sreelakshmi, B.J.; Karthika, C.L.; Ahalya, S.; Kalpana, S.R.; Kartha, C.C.; Sumi, S. Mechanoresponsive ETS1 causes endothelial dysfunction and arterialization in varicose veins via NOTCH4/DLL4 signaling. Eur. J. Cell Biol. 2024, 103, 151420. [Google Scholar] [CrossRef]
- Chandran Latha, K.; Sreekumar, A.; Beena, V.; S.S., B.R.; Lakkappa, R.B.; Kalyani, R.; Nair, R.; Kalpana, S.R.; Kartha, C.C.; Surendran, S. Shear Stress Alterations Activate BMP4/pSMAD5 Signaling and Induce Endothelial Mesenchymal Transition in Varicose Veins. Cells 2021, 10, 3563. [Google Scholar] [CrossRef]
- Serralheiro, P.; Soares, A.; Costa Almeida, C.M.; Verde, I. TGF-β1 in Vascular Wall Pathology: Unraveling Chronic Venous Insufficiency Pathophysiology. Int. J. Mol. Sci. 2017, 18, 2534. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, Y.; Liu, M.; Wang, L.; Li, X. Comprehensive bioinformatics analysis reveals biomarkers of DNA methylation-related genes in varicose veins. Front. Genet. 2022, 13, 1013803. [Google Scholar] [CrossRef] [PubMed]
- Fukaya, E.; Flores, A.M.; Lindholm, D.; Gustafsson, S.; Zanetti, D.; Ingelsson, E.; Leeper, N.J. Clinical and Genetic Determinants of Varicose Veins. Circulation 2018, 138, 2869–2880. [Google Scholar] [CrossRef]
- Jones, D.P.; Sies, H. The Redox Code. Antioxid. Redox Signal 2015, 23, 734–746. [Google Scholar] [CrossRef]
- Jin, S.; Kang, P.M. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants 2024, 13, 923. [Google Scholar] [CrossRef]
- Bielli, A.; Scioli, M.G.; Mazzaglia, D.; Doldo, E.; Orlandi, A. Antioxidants and vascular health. Life Sci. 2015, 143, 209–216. [Google Scholar] [CrossRef]
- Mostafa, R.E.; Ali, D.E.; El-Shiekh, R.A.; El-Alfy, A.N.; Hafeez, M.; Reda, A.M.; Fayek, N.M. Therapeutic applications of natural products in the management of venous diseases: A comprehensive review. Inflammopharmacology 2025, 33, 1673–1712. [Google Scholar] [CrossRef] [PubMed]
- Dimauro, I.; Paronetto, M.P.; Caporossi, D. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol. 2020, 35, 101477. [Google Scholar] [CrossRef]
- Lichota, A.; Gwozdzinski, L.; Gwozdzinski, K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. Eur. J. Med. Chem. 2019, 176, 68–91. [Google Scholar] [CrossRef] [PubMed]
- Bencsik, T.; Balázs, V.L.; Farkas, Á.; Csikós, E.; Horváth, A.; Ács, K.; Kocsis, M.; Doseděl, M.; Fialová, S.B.; Czigle, S.; et al. Herbal drugs in chronic venous disease treatment: An update. Fitoterapia 2024, 179, 106256. [Google Scholar] [CrossRef]
- Casili, G.; Lanza, M.; Campolo, M.; Messina, S.; Scuderi, S.; Ardizzone, A.; Filippone, A.; Paterniti, I.; Cuzzocrea, S.; Esposito, E. Therapeutic potential of flavonoids in the treatment of chronic venous insufficiency. Vasc. Pharmacol. 2021, 137, 106825. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.A.; Gianesini, S.; Khalil, R.A. Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease. Int. Angiol. 2024, 43, 563–590. [Google Scholar] [CrossRef]
- Mansilha, A.; Sousa, J. Pathophysiological Mechanisms of Chronic Venous Disease and Implications for Venoactive Drug Therapy. Int. J. Mol. Sci. 2018, 19, 1669. [Google Scholar] [CrossRef]
- Bjørklund, G.; Chirumbolo, S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition 2017, 33, 311–321. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef]
- Salah, H.M.; Verma, S.; Santos-Gallego, C.G.; Bhatt, A.S.; Vaduganathan, M.; Khan, M.S.; Lopes, R.D.; Al’Aref, S.J.; McGuire, D.K.; Fudim, M. Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling. J. Cardiovasc. Transl. Res. 2022, 15, 944–956. [Google Scholar] [CrossRef]
- Santos, G.L.; Dos Santos, C.F.; Rocha, G.R.; Calmon, M.S.; Lemos, F.F.; Silva, L.G.; Luz, M.S.; Pinheiro, S.L.; Botelho, A.C.; de Melo, F.F. Beyond glycemic control: Roles for sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide-1 receptor agonists in diabetic kidney disease. World J. Diabetes 2025, 16, 104706. [Google Scholar] [CrossRef]
- Sanz, R.L.; Menéndez, S.G.; Inserra, F.; Ferder, L.; Manucha, W. Cellular and Mitochondrial Pathways Contribute to SGLT2 Inhibitors-mediated Tissue Protection: Experimental and Clinical Data. Curr. Pharm. Des. 2024, 30, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Ionică, L.N.; Lința, A.V.; Bătrîn, A.D.; Hâncu, I.M.; Lolescu, B.M.; Dănilă, M.D.; Petrescu, L.; Mozoș, I.M.; Sturza, A.; Muntean, D.M. The off-Target Cardioprotective Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors: An Overview. Int. J. Mol. Sci. 2024, 25, 7711. [Google Scholar] [CrossRef]
- Patel, T.A.; Zheng, H.; Patel, K.P. Sodium–Glucose Cotransporter 2 Inhibitors as Potential Antioxidant Therapeutic Agents in Cardiovascular and Renal Diseases. Antioxidants 2025, 14, 336. [Google Scholar] [CrossRef] [PubMed]
- Mroueh, A.; Algara-Suarez, P.; Fakih, W.; Gong, D.S.; Matsushita, K.; Park, S.H.; Amissi, S.; Auger, C.; Kauffenstein, G.; Meyer, N.; et al. SGLT2 expression in human vasculature and heart correlates with low-grade inflammation and causes eNOS-NO/ROS imbalance. Cardiovasc. Res. 2025, 121, 643–657. [Google Scholar] [CrossRef]
- Ionică, L.N.; Buriman, D.G.; Lința, A.V.; Șoșdean, R.; Lascu, A.; Streian, C.G.; Feier, H.B.; Petrescu, L.; Mozoș, I.M.; Sturza, A.; et al. Empagliflozin and dapagliflozin decreased atrial monoamine oxidase expression and alleviated oxidative stress in overweight non-diabetic cardiac patients. Mol. Cell Biochem. 2025, 480, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Beucher, L.; Gabillard-Lefort, C.; Baris, O.R.; Mialet-Perez, J. Monoamine oxidases: A missing link between mitochondria and inflammation in chronic diseases? Redox Biol. 2024, 77, 103393. [Google Scholar] [CrossRef]
- Robinson, D.S.; Nies, A.; Davis, J.N.; Bunney, W.E.; Davis, J.M.; Colburn, R.W.; Bourne, H.R.; Shaw, D.M.; Coppen, A.J. Ageing, Monoamines, And Monoamine-Oxidase Levels. Lancet 1972, 299, 290–291. [Google Scholar] [CrossRef]
- Maggiorani, D.; Manzella, N.; Edmondson, D.E.; Mattevi, A.; Parini, A.; Binda, C.; Mialet-Perez, J. Monoamine Oxidases, Oxidative Stress, and Altered Mitochondrial Dynamics in Cardiac Ageing. Oxid. Med. Cell Longev. 2017, 2017, 3017947. [Google Scholar] [CrossRef]
- Hess, D.A.; Verma, S.; Bhatt, D.; Bakbak, E.; Terenzi, D.C.; Puar, P.; Cosentino, F. Vascular repair and regeneration in cardiometabolic diseases. Eur. Heart J. 2022, 43, 450–459. [Google Scholar] [CrossRef]
- Terenzi, D.C.; Bakbak, E.; Teoh, H.; Krishnaraj, A.; Puar, P.; Rotstein, O.D.; Cosentino, F.; Goldenberg, R.M.; Verma, S.; Hess, D.A. Restoration of blood vessel regeneration in the era of combination SGLT2i and GLP-1RA therapy for diabetes and obesity. Cardiovasc. Res. 2024, 119, 2858–2874. [Google Scholar] [CrossRef]
- Mameli, E.; Martello, A.; Caporali, A. Autophagy at the interface of endothelial cell homeostasis and vascular disease. FEBS J. 2022, 289, 2976–2991. [Google Scholar] [CrossRef]
- Hu, M.; Ladowski, J.M.; Xu, H. The Role of Autophagy in Vascular Endothelial Cell Health and Physiology. Cells 2024, 13, 825. [Google Scholar] [CrossRef]
- Ren, H.; Dai, R.; Nik Nabil, W.N.; Xi, Z.; Wang, F.; Xu, H. Unveiling the dual role of autophagy in vascular remodelling and its related diseases. Biomed. Pharmacother. 2023, 168, 115643. [Google Scholar] [CrossRef]
- Okazaki, R.A.; Rizvi, S.H.; Lyons, R.; Behrooz, L.; Hamburg, N.M. Vascular Dysfunction in Diabetes and Pharmacotherapeutic Opportunities: A Focus on Endothelial Cell Health. Am. J. Physiol. Heart Circ. Physiol. 2025. [Google Scholar] [CrossRef]
- Larionov, A.; Hammer, C.M.; Fiedler, K.; Filgueira, L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024, 13, 1276. [Google Scholar] [CrossRef]
- Zhong, J.; Gao, R.R.; Zhang, X.; Yang, J.X.; Liu, Y.; Ma, J.; Chen, Q. Dissecting endothelial cell heterogeneity with new tools. Cell Regen. 2025, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Schmidlin, T. Recent advances in cardiovascular disease research driven by metabolomics technologies in the context of systems biology. npj Metab. Health Dis. 2024, 2, 25. [Google Scholar] [CrossRef]
Study Groups | Samples Assessed | Relevant Findings | Ref. |
---|---|---|---|
ROS Generation | |||
14 VV patients (11♀:3♂) vs. 15 controls (11♀:4♂) | Proximal and distal GSV samples harvested during VV surgery | VVs generate significantly more superoxide anion than healthy veins in their distal segments (p < 0.001) Sources of superoxide anion: NADPH oxidases and uncoupled NOS | [67] |
30 patients (21♀:9♂) with CEAP C2 vs. 30 controls (20♀:10♂) | Peripheral venous blood from a dorsal foot vein of the involved leg after one-hour orthostatism, prior to GSV stripping and in same circumstances, one month after stripping | Local ROMs were significantly higher in pre-surgery patients vs. control (p < 0.0001) Local ROMs after 30 days post-surgery were significantly decreased vs. pre-surgery in patients (p < 0.0001), while their level in controls was unmodified | [68] |
96 patients with CEAP C2 (69♀:27♂): 54 unilateral venous reflux (U-CVD) (39♀:15♂) and 42 with bilateral venous reflux (B-CVD) (30♀:12♂) vs. 65 controls (46♀:19♂) | Peripheral venous blood | No statistical difference in the ROM levels among U-CVD, B-CVD and controls | [69] |
8 VV patients CEAP C2 (2♀:6♂) | Varicose vein blood vs. peripheral venous blood | Peroxides concentration in erythrocytes membrane was similar in the blood from VVs and peripheral (antecubital) vein | [70] |
28 patients with CVD (12 obese/OB, 16 non-obese/non-OB) | VV samples from both obese and non-obese patients undergoing cryostripping surgery for varicose vein ablation | Increased levels of superoxide and hydrogen peroxide in VVs from OB vs. non-OB patients with CVD (p < 0.05) | [72] |
Myeloperoxidase (MPO) | |||
36 VV patients complicated or not with superficial thrombophlebitis (21♀:15♂) vs. 6 normal veins—cadaver organ procurement (2♀:4♂) | GSV samples harvested during surgery: VVs with superficial thrombophlebitis (STP) and unchanged veins (UV) vs. normal veins | The highest MPO content was found in the VVs, followed by STP samples | [77] |
9 VV patients (5♀:4♂) CEAP C2 vs. 10 controls (5♀:5♂) | Peripheral venous blood | No statistical difference in plasma activity of MPO in patients vs. controls | [78] |
Xanthine oxidase (XO) | |||
36 VV patients complicated or not with superficial thrombophlebitis (21♀:15♂) vs. 6 normal veins—cadaver organ procurement (2♀:4♂) | GSV samples harvested during VV surgery—VVs with superficial thrombophlebitis and UV vs. normal veins | Positive intense staining for XO of the endothelium in both VVs and VVs with superficial thrombophlebitis Positive intense staining for XO also of the vasa vasorum in VVs with superficial thrombophlebitis | [77] |
9 VV patients (5♀:4♂) CEAP C2 vs. 10 controls (5♀:5♂) | Peripheral venous blood | Plasma XO activity not statistically different in patients vs. controls | [78] |
Study Groups | Samples Assessed | Relevant Findings | Ref. |
---|---|---|---|
Malondialdehyde (MDA) / Thiobarbituric Acid Reactive Substances (TBARS) | |||
31 VV patients CEAP C2/3 (23♀:8♂) | VV blood samples harvested during VV surgery + peripheral venous blood from the same patients | MDA concentration was significantly higher in the VV blood samples vs. peripheral blood in females (p < 0.007) but not in males (p > 0.05) | [83] |
31 VV patients CEAP C2/3 (23♀:8♂) vs. 31 controls (20♀:11♂) | Peripheral venous blood and VVs blood vs. peripheral venous blood | Overall MDA concentrations were significantly higher in venous blood plasma of CVD patients than in controls (p < 0.0005) MDA levels were significantly higher in obese patients vs. patients with normal BMI (p < 0.001) | [84] |
31 VV patients CEAP C2 (23♀:8♂) | GSV samples harvested during VV surgery: insufficient proximal GSVs, sufficient segments of distal GSVs and varicose saphenous tributaries | The highest MDA concentration was found in VVs and insufficient veins | [85] |
35 CVI patients (24♀:11♂) subdivided in 4 groups: M (mild symptoms)—12, S (severe symptoms)—23, Group I (< 10 years of evolution)—15, Group II (>10 years of evolution)—20 vs. 23 controls (16♀:7♂) | Peripheral venous blood | MDA concentration in patients was significantly higher in all diseased groups vs. controls Higher MDA levels were reported in female vs. males with CVI | [86] |
9 VV patients CEAP C2 (5♀:4♂) vs. 10 controls (5♀:5♂) | Peripheral venous blood | MDA concentration was significantly higher in VV blood vs. peripheral blood in females (but not in males) | [78] |
10 ♂ VV patients vs. 10 ♂ controls vs. 10 ♂ abdominal aortic aneurysm (AAA) group | GSV samples harvested during VV surgery + peripheral venous blood vs. Peripheral venous blood vs. Aneurysmal sac samples harvested during surgical repair | MDA concentration in tissue homogenates from VV was high and comparable to the AAA samples MDA concentration in plasma of VV patients significantly lower than in the AAA group MDA concentration in plasma of VV patients—slight increase as compared to controls | [88] |
44 CVI ♀ with 2 subgroups: Moderate CVI (CEAP C2/3) = 26 Severe CVI (CEAP C4/5/6) = 18 vs. 25 ♀ controls | Peripheral venous blood | Elevated plasma levels of MDA in CVI vs. healthy women, which tend to increase with the severity of the disease | [87] |
52 VV patients CEAP C2 (35♀:17♂) vs. 52 controls (36♀:16♂) | Great Saphenous Vein (GSV) samples harvested during varicose vein surgery vs. Healthy GSV samples harvested for CABG patients | Significantly higher MDA in VV patients vs. controls | [89] |
110 CVI patients—2 groups: 81 with reflux (R group) with 2 subgroups (<50y—32, ≥50y—49) and 29 with no reflux (NR group) with 2 subgroups (<50y—13, ≥50y—16) | Peripheral venous blood | MDA plasma levels were significantly higher in the R group vs. NR group (p < 0.05) Patients R < 50 exhibited the highest significant MDA increase among the 4 subgroups (p < 0.005) | [73] |
37 CVI (C2–C4) patients with 2 subgroups: 32 CVI and 5 CVI + T2DM (32♀:5♂) vs. 25 controls (18♀:7♂) | Peripheral venous blood | Increased MDA levels in CVI (p < 0.003) and CVI + T2DM (p < 0.004) vs. controls MDA levels were higher in the CVI + T2DM than in the CVI group (p < 0.003) | [103] |
25 VV patients CEAP C2 (11♀:14♂) vs. 25 controls (10♀:15♂) | Peripheral venous blood | No significant difference in MDA between the groups | [90] |
36 VV patients complicated or not with superficial thrombophlebitis (21♀:15♂) vs. 6 controls during cadaver organ procurement (2♀:4♂) | GSV samples harvested during VV surgery: 34 VV, 9 VV with superficial thrombophlebitis, 27 unchanged vein (UV) and competent parts of diseased GSV vs. healthy vein samples | TBARS levels in VVs complicated with thrombophlebitis were the highest among the groups TBARS levels were higher in the VVs and UVs vs. controls | [77] |
31 VV patients CEAP C2/3 (23♀:8♂) | GSV samples harvested during VV surgery—insufficient proximal GSVs, sufficient segments of distal GSVs and varicose saphenous tributaries | TBARS levels in the insufficient veins were 4x higher than in sufficient veins (p < 0.0001) TBARS levels—higher in VVs and insufficient veins vs. control veins (p < 0.0001) | [104] |
8 VV patients CEAP C2 (2♀:6♂) | VV samples harvested during VV surgery + peripheral venous blood | Significant higher level of TBARS in VV plasma as compared to peripheral vein plasma (p < 0.05) | [70] |
23 VV patients (14♀:9♂) | GSV samples harvested during VV surgery: VV samples, normal GSV samples and thrombosed samples | TBARS levels in VVs—significantly decreased vs. normal GSV (p < 0.05) TBARS in VV with thrombophlebitis—increased compared to normal veins (p < 0.05) | [91] |
Protein carbonyls | |||
9 VV patients CEAP C2 (5♀:4♂) vs. 10 controls (5♀:5♂) | Peripheral venous blood | Plasma carbonyls—significantly higher (almost double) in VV patients vs. controls (p < 0.001) | [78] |
8 VV patients CEAP C2 (2♀:6♂) | VV samples harvested during VV surgery + peripheral venous blood | Higher levels of protein carbonyls in VV plasma as compared to peripheral vein plasma (p < 0.05) Higher levels of protein carbonyls in erythrocyte membrane isolated from the VV blood vs. peripheral vein blood (p < 0.05) | [70] |
Advanced oxidation protein products (AOPP), Total 3-nitrotyrosine (3-NT) | |||
9 VV patients CEAP C2 (5♀:4♂) vs. 10 controls (5♀:5♂) | Peripheral venous blood | AOPP and 3-NT—no statistical difference in VV patients vs. controls | [78] |
Prolidase enzyme | |||
30 VV patients CEAP C2 (13♀:17♂) vs. Control 1 group (30—12♀:18♂) vs. Control 2 group (20—16♀:14♂) | VVs harvested during VV surgery + peripheral venous blood vs. Peripheral venous blood vs. Healthy GSV samples harvested for CABG | Prolidase enzyme activity in tissue was higher in VVs vs. control 2 group (p < 0.008) No significant difference in serum prolidase enzyme activity vs. control 1 group | [102] |
Study Groups | Samples Assessed | Relevant Findings | Ref. |
---|---|---|---|
Total Antioxidant Capacity (TAC) | |||
35 CVI patients (24♀:11♂) subdivided in 4 groups: M (mild symptoms)—12 S (severe symptoms)—23 Group I (<10 years of evolution)—15, Group II (>10 years of evolution)—20 vs. 23 controls (16♀:7♂) | Peripheral venous blood | TAC was significantly higher in patients vs. controls (p < 0.05) TAC highest differences were in S group (p < 0.016) and group II (p < 0.013) vs. controls TAC was significantly lower in CVI women vs. CVI men (p < 0.05) TAC was significantly higher in overweight patients (BMI ≥ 25) vs. patients with BMI < 25 (p < 0.05) TAC was not influenced by age | [86] |
30 VV patients CEAP C2 (13♀:17♂) vs. Control group 1 (30—12♀:18♂) vs. Control group 2 (20—16♀:14♂) | Varicose vein samples harvested during VV surgery + peripheral venous blood Peripheral venous blood Healthy Great Saphenous Vein (GSV) samples harvested for CABG | Tissue TAC level was significantly decrease in VV patients vs. control group 2 (p = 0.003) No significant difference in plasma TAC level in patients vs. control group 1 | [102] |
65 VV patients CEAP C2 (49♀:16♂) vs. Control group 1—10 (8♀:2♂) and Control group 2—20 (11♀:9♂) | GSV samples + peripheral venous blood vs. Healthy GSVs harvested for CABG and Peripheral venous blood | Tissue TAC level was significantly decreased in patients vs. control group 1 (p < 0.05) Plasma TAC level was significantly decreased in patients vs. control group 2 (p < 0.001) | [109] |
9 VV patients CEAP C2 (5♀:4♂) vs. 10 controls (5♀:5♂) | Peripheral venous blood | No significant differences in TAC and ORAC values in patients vs. controls | [78] |
Non-Enzymatic Antioxidant Capacity (NEAC) | |||
8 VV patients CEAP C2 (2♀:6♂) | Peripheral venous blood from antecubital vein and from VVs of the same patient | NEAC was significantly decreased in VV plasma vs. peripheral vein plasma (p < 0.05) | [70] |
Total antioxidant power (TAP) / Ferric-Reducing Ability of Plasma (FRAP) | |||
31VV patients CEAP C2/3 (23♀:8♂) | Peripheral venous blood from the antecubital vein and from VVs of the same patient | FRAP level was significantly decreased in VV blood vs. peripheral blood (p < 0.002) FRAP level in women was significantly lower in VV blood vs. peripheral blood (p < 0.003) No significant differences in FRAP level in male patients in both blood samples | [83] |
31 VV patients CEAP C2 (23♀:8♂) | GSV samples harvested during VV surgery from: insufficient proximal GSVs, sufficient distal GSVs and varicose veins tributaries to GSVs | FRAP level was statistically significant lower in VVs and insufficient GSV samples vs. sufficient GSV samples (p < 0.001) | [85] |
Study Groups | Samples Assessed | Relevant Findings | Ref. |
---|---|---|---|
Superoxide dismutase (SOD) | |||
24 VV patients (20♀:4♂) | VV samples harvested during VV surgery: 21 mid-thigh GSVs, 23 distal calf varicosities | SOD activity—significantly higher in the distal calf varicosities vs. mid-thigh GSV walls (p < 0.05) | [113] |
31 VV patients CEAP C2/3 (23♀:8♂) | GSV segments harvested during VV surgery from the same patient: insufficient proximal GSVs, sufficient distal GSVs and varicose saphenous tributaries | SOD activity—significantly higher in insufficient GSVs and varices vs. sufficient GSV segments (p < 0.0001) Increased iron content in the same samples responsible for DNA oxidative damage | [104] |
65 VV patients CEAP C2 (49F:16M) | GSV samples harvested during VV surgery and peripheral venous blood (plasma and erythrocytes) | SOD activity in tissue—significantly increased in patients vs. control (p < 0.05) SOD activity in erythrocytes—significantly decreased in patients vs. control (p < 0.001) | [109] |
23 VV patients (14F:9M) | GSV samples harvested during VV surgery: segments of VV, of veins with thrombophlebitis, and of normal veins | SOD activity—significantly decreased in VV vs. normal veins (p < 0.05) and unchanged in VV with thrombophlebitis | [91] |
37 CVI patients—two subgroups: 32 CEAP C2-C4; 5 CEAP C2 + T2DM (32♀:5♂) vs. 25 controls (18♀:7♂) | Peripheral venous blood | SOD activity—significantly decreased vs. control in both CEAP C2-C4 patients and CEAP C2 diabetic patients (p < 0.05) | [103] |
10 VV patients (9♀:1♂) vs. 4 controls (1♀:3♂) vs. 6 trauma patients (6♂) | GSV samples harvested during VV surgery vs. Healthy GSV samples harvested for CABG vs. Healthy veins | SOD level—significantly decreased in VVs vs. controls (p < 0.0001) | [117] |
52 VV patients CEAP C2 (35♀:17♂) vs. 52 controls (36♀:16♂) | GSV samples Healthy GSV samples harvested for CABG | SOD activity—no statistically significant difference in VV patients vs. controls | [89] |
Glutathione peroxidase (GPx) | |||
31 VV patients CEAP C2 (23♀:8♂) | GSV samples harvested during VV surgery: insufficient proximal GSV, sufficient segments of distal GSV and varicose saphenous tributaries | GPx tissue activity—significantly higher in varices and insufficient veins vs. sufficient veins (p < 0.001) | [104] |
37 CVI patients—two subgroups: 32 CEAP C2-C4; 5 CVI + T2DM (32♀:5♂) vs. 25 controls (18♀:7♂) | Peripheral venous blood | GPx plasma activity—significantly lower in CVI and CVI + T2DM vs. controls (p < 0.05) | [103] |
52 VV patients CEAP C2 (35♀:17♂) vs. 52 controls (36♀:16♂) | GSV samples harvested during VV surgery vs. Healthy GSV samples harvested for CABG | No statistically significant difference in GPx in patients vs. controls | [89] |
Glutathione S-transferase (GST) | |||
52 VV patients CEAP C2 (35♀:17♂) vs. 52 controls (36♀:16♂) | GSV samples harvested during VV surgery vs. Healthy GSV samples harvested for CABG | No statistically significant difference in GST in patient vs. controls | [89] |
Glutathione-reductase (GR) | |||
23 VV patients (14♀:9♂) | GSV samples harvested during VV surgery: segments of VV, of veins with thrombophlebitis, and of normal veins | No statistically significant difference in GR in diseased GSV samples vs. normal GSV | [91] |
Catalase (CAT) | |||
52 VV patients CEAP C2 (35♀:17♂) vs. 52 controls (36♀:16♂) | GSV samples harvested during VV surgery Healthy GSV samples harvested for CABG | CAT activity—significantly increased in patients vs. control (p < 0.001) | [89] |
9 VV patients CEAP C2 (5♀:4♂) vs. 10 controls (5♀:5♂) | Peripheral venous blood | CAT activity—significantly lower in patients vs. control (p < 0.001) | [78] |
37 CVI patients—two subgroups: 32 CEAP C2-C4; 5 CVI + T2DM (32♀:5♂) vs. 25 controls (18♀:7♂) | Peripheral venous blood | CAT activity—significantly decreased in CVI and CVI + T2DM vs. control (p < 0.05) | [103] |
8 VV patients CEAP C2 (2♀:6♂) | Peripheral venous blood from the antecubital vein and from VVs of same patient | CAT activity—significantly lower in VV hemolysate vs. peripheral vein hemolysate (p < 0.05) | [70] |
Study Groups | Samples Assessed | Relevant Findings | Ref. |
---|---|---|---|
Glutathione (GSH) | |||
9 VV patients CEAP C2 (5♀:4♂) vs. 10 controls (5♀:5♂) | Peripheral venous blood | Trend of decreased GSH in VV patients but no statistical difference vs. controls | [78] |
65 VV group CEAP C2 (49♀:16♂) vs. Control 1 group (10—8♀:2♂) vs. Control 2 group (20—11♀:9♂) | Great Saphenous Vein (GSV) samples harvested during VV surgery + peripheral venous blood vs. Healthy GSV samples harvested for CABG vs. Peripheral venous blood from healthy individuals | No significant changes in GSH concentration in tissue (venous wall) and plasma from VV patients vs. controls | [109] |
37 CVI patients—two subgroups: 32 CEAP C2-C4; 5 CVI + T2DM (32♀:5♂) vs. 25 controls (18♀:7♂) | Peripheral venous blood | GSH level—significantly lower in CVI diabetics vs. controls (p < 0.004) GSH level—significantly lower in CVI diabetics vs. CVI patients (p < 0.05) | [103] |
8 VV patients CEAP C2 (2♀:6♂) | Peripheral venous blood from antecubital vein and VV blood from the same patient | No statistical difference in GSH from erythrocytes, plasma in VV blood vs. peripheral vein blood | [70] |
Thiols | |||
9 VV patients CEAP C2 (5♀:4♂) vs. 10 controls (5♀:5♂) | Peripheral venous blood | Total thiols—significantly lower in patient vs. control group | [78] |
8 VV patients CEAP C2 (2♀:6♂) | Peripheral venous blood from the antecubital vein and from VVs of the same patient used to prepare: plasma, hemolysate and erythrocyte membranes | Thiols—significantly lower in products from the VVs blood vs. those from peripheral vein blood (p < 0.05) | [70] |
10 VV patients (9♂:1♀) vs. 4 controls from vascular bypass vs. 6 controls from trauma patients | VV samples harvested during surgery vs. Healthy GSV samples harvested for CABG vs. Healthy vein samples | Total thiols—significantly higher in VV patients vs. both controls (p < 0.0001) | [117] |
Uric Acid (UA) | |||
35 CVI patients (24♀:11♂) in 2 subgroups:
23 controls (16♀:7♂) | Peripheral venous blood | UA—significantly lower in M group (p < 0.047) and group I (p < 0.034) vs. controls UA—significantly lower in CVI women vs. female control group (p < 0.014) | [86] |
9 VV patients CEAP C2 (5♀:4♂) vs. 10 controls (5♀:5♂) | Peripheral venous blood | No significant differences in UA levels in VV patients vs. controls | [78] |
Ascorbic acid | |||
23 VV patients (14♀:9♂) | GSV samples harvested during VV surgery: VVs, thrombosed segments or normal GSV segments | Ascorbic acid—significantly decreased in VVs vs. normal GSV samples (p < 0.05) Ascorbic acid—significantly increased in VV with thrombophlebitis vs. normal GSV samples (p < 0.05) | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rațiu, S.; Mariș, M.I.; Furdui-Lința, A.V.; Sima, L.V.; Bratu, T.I.; Sturza, A.; Muntean, D.M.; Crețu, O.M. Oxidative Stress in the Pathophysiology of Chronic Venous Disease: An Overview. Antioxidants 2025, 14, 989. https://doi.org/10.3390/antiox14080989
Rațiu S, Mariș MI, Furdui-Lința AV, Sima LV, Bratu TI, Sturza A, Muntean DM, Crețu OM. Oxidative Stress in the Pathophysiology of Chronic Venous Disease: An Overview. Antioxidants. 2025; 14(8):989. https://doi.org/10.3390/antiox14080989
Chicago/Turabian StyleRațiu, Sonia, Mihaela I. Mariș, Adina V. Furdui-Lința, Laurențiu V. Sima, Tiberiu I. Bratu, Adrian Sturza, Danina M. Muntean, and Octavian M. Crețu. 2025. "Oxidative Stress in the Pathophysiology of Chronic Venous Disease: An Overview" Antioxidants 14, no. 8: 989. https://doi.org/10.3390/antiox14080989
APA StyleRațiu, S., Mariș, M. I., Furdui-Lința, A. V., Sima, L. V., Bratu, T. I., Sturza, A., Muntean, D. M., & Crețu, O. M. (2025). Oxidative Stress in the Pathophysiology of Chronic Venous Disease: An Overview. Antioxidants, 14(8), 989. https://doi.org/10.3390/antiox14080989