Previous Issue
Volume 15, June-2
 
 

Buildings, Volume 15, Issue 13 (July-1 2025) – 62 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
35 pages, 14581 KiB  
Article
Reframing Sustainable Informal Learning Environments: Integrating Multi-Domain Environmental Elements, Spatial Usage Patterns, and Student Experience
by Jiachen Yin, Wenyi Fan and Lei Peng
Buildings 2025, 15(13), 2203; https://doi.org/10.3390/buildings15132203 (registering DOI) - 23 Jun 2025
Abstract
Sustainable informal learning environments are increasingly recognized as critical components of educational architecture, yet their environmental and behavioral dynamics remain underexplored. Informal learning spaces (ILS) support flexible, student-driven learning beyond formal classrooms. While prior research often isolates individual environmental factors, integrated multi-domain interactions [...] Read more.
Sustainable informal learning environments are increasingly recognized as critical components of educational architecture, yet their environmental and behavioral dynamics remain underexplored. Informal learning spaces (ILS) support flexible, student-driven learning beyond formal classrooms. While prior research often isolates individual environmental factors, integrated multi-domain interactions and reciprocal occupant–space dynamics receive less attention. This study adopts a dual-perspective analytical framework, combining spatial analysis and student surveys (n = 1048 ) across 130 ILS in five academic buildings in China. The findings highlight several environmental dimensions influencing student experience. One extracted factor combines acoustic and thermal comfort with learning atmosphere—domains seldom grouped together—indicating their collective relevance to student experience. Additionally, spatial openness and natural connectivity further enhance student experience. Importantly, the results show that frequently used spaces receive lower physical quality ratings, group collaboration areas outperform individual study zones, and spontaneously formed spaces—informally appropriated, unplanned areas such as corridors or leftover corners—score lowest. These patterns may reflect mismatches between spatial supply and use intensity, institutional investment priorities, and differing levels of student autonomy and environmental control. This research extends conventional post-occupancy evaluations by introducing a comprehensive dual-perspective framework that links spatial characteristics with user-driven dynamics, and by identifying the combined effects of multi-domain physical environmental and supportive elements on student experience. The insights offer empirical grounding and actionable strategies for campus planners and architects, including prioritizing sensory comfort, enhancing spatial diversity, and supporting student-led adaptations to promote sustainable learning environments. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
16 pages, 2054 KiB  
Article
Study on the Deflection Calculation of a Steel Truss Web–Concrete Composite Beam Under Pre-Stress
by Chunmei Ni, Xiaowei Liu, Zhilong Wang and Sheng Li
Buildings 2025, 15(13), 2202; https://doi.org/10.3390/buildings15132202 (registering DOI) - 23 Jun 2025
Abstract
The aim of this study is to establish an accurate calculation method for the deflection caused by the effect of pre-stress in a steel truss web–concrete composite girder bridge based on the energy variational principle, considering the influence of shear deformation and the [...] Read more.
The aim of this study is to establish an accurate calculation method for the deflection caused by the effect of pre-stress in a steel truss web–concrete composite girder bridge based on the energy variational principle, considering the influence of shear deformation and the shear lag effect of the steel truss web member on the accuracy of the deflection calculation. The pre-stress effect is determined by the equivalent load method, and the deflection analytical solution for a composite girder bridge under straight-line, broken-line, and curve pre-stressing tendon arrangements is established. The reliability of the formula is verified using ANSYS 2022 finite element numerical simulation. At the same time, the influence of shear deformation, the shear lag effect, and their combined (dual) effect on the deflection calculation accuracy is analyzed under different linear pre-stressed reinforcement arrangements and comprehensive arrangements of pre-stressed reinforcement. The analysis of the example shows that the analytical solution for the deflection of the steel truss web–concrete composite beam, when considering only the shear deformation and the dual effect, is more consistent with the finite element numerical solution. The shear deformation of the steel truss web member under the eccentric straight-line arrangement alone does not cause additional deflection, and the additional deflection caused by the shear lag effect can be ignored. The influence of shear deformation on deflection is higher than that of the shear lag effect. The contribution ratio of the additional deflection caused by the dual effect is greater than 14%, and the influence of the dual effect on deflection is more obvious under a broken-line arrangement. Under the comprehensive arrangement of pre-stressing tendons, the contribution rate of shear deformation to the total deflection is about 3.5 times that of shear lag. Compared with the deflection value of the primary beam, the mid-span deflection is increased by 3.0%, 11.0%, and 13.9% when only considering the shear lag effect, only considering shear deformation, and considering the dual effect, respectively. Therefore, shear deformation and the shear lag effect should be considered when calculating the camber of a steel truss web–concrete composite girder bridge to improve the calculation accuracy. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

37 pages, 12672 KiB  
Article
Optimized Design of Cultural Space in Wuhan Metro: Analysis and Reflection Based on Multi-Source Data
by Zhengcong Wei, Yangxue Hu, Yile Chen and Tianjia Wang
Buildings 2025, 15(13), 2201; https://doi.org/10.3390/buildings15132201 (registering DOI) - 23 Jun 2025
Abstract
As urbanization has accelerated, rail transit has evolved from being a mere means of transportation to a public area that houses the city’s cultural memory and serves as a crucial portal for the public to understand the culture of the city. As an [...] Read more.
As urbanization has accelerated, rail transit has evolved from being a mere means of transportation to a public area that houses the city’s cultural memory and serves as a crucial portal for the public to understand the culture of the city. As an urban public space with huge passenger flow, the metro (or subway) cultural space has also become a public cultural space, serving communal welfare and representing the image of the city. It is currently attracting more and more attention from the academic community. Wuhan, located in central China, has many subway lines and its engineering construction has set several national firsts, which is a typical sample of urban subway development in China. In this study, we use Python 3.13.0 crawler technology to capture the public’s comments on cultural space of Wuhan metro in social media and adopt SnowNLP sentiment score and LDA thematic clustering analysis to explore the overall quality, distinct characteristics, and deficiencies of Wuhan metro cultural space construction, and propose targeted design optimization strategies based on this study. The main findings are as follows: (1) The metro cultural space is an important window for the public to perceive the city culture, and the public in general shows positive perception of emotions: among the 16,316 data samples, 47.7% are positive comments, 17.8% are neutral comments, and 34.5% are negative comments. (2) Based on the frequency of content in the sample data for metro station exit and entrance space, metro train space, metro concourse and platform space, they are ranked as weak cultural spaces (18%), medium cultural spaces (33%), and strong cultural spaces (49%) in terms of the public’s perception of urban culture. (3) At present, there are certain deficiencies in Wuhan metro cultural space: the circulation paths in concourses and platforms are overly dominant, leaving little space for rest or interaction; the cultural symbols of metro train space are fragmented; the way of articulation between cultural and functional space in the metro station exit and entrance space is weak, and the space is single in form. (4) Wuhan metro cultural space needs to be based on locality landscape expression, functional zoning reorganization, innovative scene creation to optimize the visual symbol system and behavioral symbol system in the space, to establish a good image of the space, and to strengthen the public’s cultural identity and emotional resonance. Full article
(This article belongs to the Special Issue Digital Management in Architectural Projects and Urban Environment)
Show Figures

Figure 1

14 pages, 2579 KiB  
Article
Impact Sound Insulation Behavior of Ceramic Tile and Rubber Mat Lightweight Floating Floors Under Prolonged Loading in Residential Buildings
by Sérgio Klippel Filho, Fernanda Pacheco, Hinoel Zamis Ehrenbring, Roberto Christ, Bernardo Fonseca Tutikian and Jorge Patrício
Buildings 2025, 15(13), 2200; https://doi.org/10.3390/buildings15132200 (registering DOI) - 23 Jun 2025
Abstract
Concerning building acoustics, the impact of sound propagation in the building structure can be considered one of the most relevant problems. Floating floors are an efficient solution, composed of a rigid walking surface above a resilient material. Functioning as a spring, the resilient [...] Read more.
Concerning building acoustics, the impact of sound propagation in the building structure can be considered one of the most relevant problems. Floating floors are an efficient solution, composed of a rigid walking surface above a resilient material. Functioning as a spring, the resilient layer must have adequate damping properties and compressive strength against permanent and imposed loads to guarantee its performance over time. In this context, this study aims to completely evaluate the impact sound reduction of composite lightweight floating floors formed by ceramic tiles and recycled rubber mats when subjected to prolonged loads, from material characterization to their application in a hypothetical scenario. This study was based on the dynamic stiffness (ISO 9052-1) and compressive creep (ISO 16534) of the resilient layer and the physical characterization of the ceramic tiles, predicting the present and future (15 years) impact sound reductions and their application in a hypothetical room, considering direct and indirect transmissions paths (ISO 12354-2). The results showed that the lightweight floating floor compositions lost their damping capability to a degree that can reduce their weighted reduction in the impact sound pressure level by up to 2 dB over prolonged periods (15 years). Howsoever, the compositions had considerable initial impact sound insulation capability and adequate performance maintenance over time. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 2372 KiB  
Article
Research on Thermal Performance of Polypropylene Fiber-Reinforced Concrete Wall Panels
by Zhe Zhang, Yiru Hou and Yi Wang
Buildings 2025, 15(13), 2199; https://doi.org/10.3390/buildings15132199 (registering DOI) - 23 Jun 2025
Abstract
The global construction industry faces pressing challenges in enhancing building energy efficiency standards. To address this critical issue, facilitate worldwide green and low-carbon transformation in construction practices and improve the thermal performance of building wall panels to achieve optimal levels, a novel polypropylene [...] Read more.
The global construction industry faces pressing challenges in enhancing building energy efficiency standards. To address this critical issue, facilitate worldwide green and low-carbon transformation in construction practices and improve the thermal performance of building wall panels to achieve optimal levels, a novel polypropylene fiber-reinforced concrete wall panel has been developed and investigated. A three-dimensional steady-state heat transfer finite element model of the wall panel was established to simulate its thermal performance. Key parameters, including the thickness of the inner and outer concrete layers, insulation layer thickness, connector spacing, and connector arrangement patterns, were analyzed to evaluate the thermal performance of the fiber-reinforced concrete composite sandwich wall panel. The results indicate that the heat transfer coefficients of the G-FCSP and FCSP wall panels were 0.768 W/m2 · K and 0.767 W/m2 · K, respectively, suggesting that the glass fiber grid had a negligible impact on the thermal performance of the panels. The embedded insulation layer was crucial for enhancing the thermal insulation performance of the wall panel, effectively preventing heat exchange between the two sides. Increasing the thickness of the concrete layers had a very limited effect on reducing the heat transfer coefficient. Reducing the spacing of the connectors improved the load-bearing capacity of the composite wall panel to some extent but had minimal influence on the heat transfer coefficient; to achieve optimal performance by balancing structural load distribution and thermal damage resistance, a connector spacing ranging from 200 mm to 500 mm is recommended. The variation in heat transfer coefficients among the four different connector arrangement patterns demonstrated that reducing the thermal conduction media within the wall panel should be prioritized while ensuring mechanical performance. It is also recommended that the connectors are arranged in a continuous layout. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 1572 KiB  
Article
Designing Gridshells Using Reused Members as a Sustainable Solution
by Valentina Tomei, Marina Serpe, Ernesto Grande and Maura Imbimbo
Buildings 2025, 15(13), 2198; https://doi.org/10.3390/buildings15132198 (registering DOI) - 23 Jun 2025
Abstract
The building industry is a major consumer of resources and a significant contributor to environmental degradation, largely due to its reliance on energy-intensive materials and construction practices. In this context, the reuse of components from decommissioned structures offers a promising strategy for reducing [...] Read more.
The building industry is a major consumer of resources and a significant contributor to environmental degradation, largely due to its reliance on energy-intensive materials and construction practices. In this context, the reuse of components from decommissioned structures offers a promising strategy for reducing the environmental impact of new constructions. Steel products are particularly suitable for reuse, as they retain their mechanical properties over time. However, the adoption of reused members requires a shift from conventional design approaches, which typically allow for free dimensioning of elements, toward strategies where components must be selected from available stocks and strategically integrated into new structures. This process demands a careful balance between geometric configuration, structural performance, and material availability. This paper presents a new design methodology for gridshells that integrates geometry and sizing optimization to maximize the use of reused members. The proposed approach was validated through application to a dome structure. The structural behavior was assessed through nonlinear buckling analyses, alongside a simplified evaluation of greenhouse gas emissions to quantify the environmental impact. The findings highlight the potential of reuse-based strategies to promote more sustainable structural designs. Full article
(This article belongs to the Section Building Structures)
30 pages, 16377 KiB  
Article
A Study on the Thermal and Moisture Transfer Characteristics of Prefabricated Building Wall Joints in the Inner Mongolia Region
by Liting He and Dezhi Zou
Buildings 2025, 15(13), 2197; https://doi.org/10.3390/buildings15132197 - 23 Jun 2025
Abstract
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection [...] Read more.
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection interfaces during winter significantly exacerbates freeze–thaw damage due to persistent thermal gradients. A coupled heat–moisture transfer model incorporating gas–liquid–solid phase transitions was developed, with the liquid moisture content and temperature gradient as dual driving forces. A validation against internationally recognized BS EN 15026:2007 benchmark cases confirmed the model robustness. The prefabricated sandwich insulation walls reconstructed with region-specific volcanic ash materials underwent a comparative evaluation of temperature and relative humidity distributions under varied winter conditions. Furthermore, we analyze and assess the potential for freezing at connection points and identify the specific areas at risk. Synergistic effects between assembly gaps and indoor–outdoor environmental interactions on wall performance degradation were systematically assessed. The results indicated that, across all working conditions, both the temperature and relative humidity at each wall measurement point underwent periodic variations influenced by the outdoor environment. These fluctuations decreased in amplitude from the exterior to the interior, accompanied by a noticeable delay effect. Specifically, at Section 2, the wall temperatures at points B2–B8 were higher compared to those at A2–A8 of Section 1. The relative humidity gradient remained relatively stable at each measurement point, while the temperature fluctuation amplitude was smaller by 2.58 ± 0.3 °C compared to Section 1. Under subfreezing conditions, Section 1 demonstrates a marked reduction in relative humidity (Cases 1-3 and 2-3) compared to reference cases, which is indicative of internal ice crystallization. Conversely, Section 2 maintains higher relative humidity values under identical therma. These findings suggest that prefabricated building joints significantly impact indoor and outdoor wall temperatures, potentially increasing the indoor heat loss and accelerating temperature transfer during winter. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
22 pages, 18666 KiB  
Article
Optimizing the Food–Energy–Water Nexus: A Multi-Objective Spatial Configuration Framework for High-Density Communities
by Jie Zheng, Hengyu Li, Lulu Sun, Mingxuan Li and Yukun Zhang
Buildings 2025, 15(13), 2196; https://doi.org/10.3390/buildings15132196 - 23 Jun 2025
Abstract
Global urbanization and climate change are intensifying challenges in the sustainable management of the Food–Energy–Water (FEW) system. This study introduces a multi-objective optimization framework that redefines urban spaces through a dual rooftop-ground hierarchy, interlinkage nodes for mapping material and energy flows, and the [...] Read more.
Global urbanization and climate change are intensifying challenges in the sustainable management of the Food–Energy–Water (FEW) system. This study introduces a multi-objective optimization framework that redefines urban spaces through a dual rooftop-ground hierarchy, interlinkage nodes for mapping material and energy flows, and the application of NSGA-II optimization to balance food production, energy output, and costs. The framework was applied to a case study area, generating non-dominated solutions with diverse resource-cost configurations. The findings revealed that optimal scenarios could meet 40.6% of local energy demands and exceed 102.9% of local grain demands, while maintaining economic viability. This approach bridges resource systems theory and spatial planning practice, providing economically viable pathways for high-density cities to transform into hybrid production-consumption spaces, effectively addressing the dual pressures of urbanization and climate change. Full article
33 pages, 2415 KiB  
Article
A Whole-Life Carbon Assessment of a Single-Family House in North India Using BIM-LCA Integration
by Deepak Kumar, Kranti Kumar Maurya, Shailendra K. Mandal, Nandini Halder, Basit Afaq Mir, Anissa Nurdiawati and Sami G. Al-Ghamdi
Buildings 2025, 15(13), 2195; https://doi.org/10.3390/buildings15132195 - 23 Jun 2025
Abstract
As the population increases, the growing demand for residential housing escalates construction activities, significantly impacting global warming by contributing 42% of primary energy use and 39% of global greenhouse gas (GHG) emissions. This study addresses a gap in research on lifecycle assessment (LCA) [...] Read more.
As the population increases, the growing demand for residential housing escalates construction activities, significantly impacting global warming by contributing 42% of primary energy use and 39% of global greenhouse gas (GHG) emissions. This study addresses a gap in research on lifecycle assessment (LCA) for Indian residential buildings by evaluating the full cradle-to-grave carbon footprint of a typical single-family house in Northern India. A BIM-based LCA framework was applied to a 110 m2 single-family dwelling over a 60-year life span. Operational use performance and climate analysis was evaluated via cove tool. The total carbon footprint over a 60-year lifespan was approximately 5884 kg CO2e, with operational energy use accounting for about 87% and embodied carbon approximately 11%. Additional impacts came from maintenance and replacements. Energy usage was calculated as 71.76 kWh/m2/year and water usage as 232.2 m3/year. Energy consumption was the biggest driver of emissions, but substantial impacts also stemmed from material production. Cement-based components and steel were the largest embodied carbon contributors. Under the business-as-usual (BAU) scenario, the operational emissions reach approximately 668,000 kg CO2e with HVAC and 482,000 kg CO2e without HVAC. The findings highlight the necessity of integrating embodied carbon considerations alongside operational energy efficiency in India’s building codes, emphasizing reductions in energy consumption and the adoption of low-carbon materials to mitigate the environmental impact of residential buildings. Future work should focus on the dynamic modeling of electricity decarbonization, improved regional datasets, and scenario-based LCA to better support India’s transition to net-zero emissions by 2070. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
26 pages, 5169 KiB  
Article
DYMOS: A New Software for the Dynamic Identification of Structures
by Fabrizio Gara, Simone Quarchioni and Vanni Nicoletti
Buildings 2025, 15(13), 2194; https://doi.org/10.3390/buildings15132194 - 23 Jun 2025
Abstract
Operational modal analysis (OMA) is widely used for its simplicity and reliance on ambient noise. While commercial OMA software exists, they often limit user control. Some researchers develop their own tools, but independent software tools remain scarce. The number of such independent software [...] Read more.
Operational modal analysis (OMA) is widely used for its simplicity and reliance on ambient noise. While commercial OMA software exists, they often limit user control. Some researchers develop their own tools, but independent software tools remain scarce. The number of such independent software is limited, and the development of new ones with enhanced features, better performance, and varied user interfaces would be beneficial to spread the informed use of dynamic identification techniques, leading to more reliable and valuable results for structural engineering applications. This work introduces the new DYMOS software for OMA from ambient vibration test recordings. DYMOS includes various state-of-art algorithms and tools for vibration-based modal identification and for optimal sensor placement (OSP), allowing for customization of analysis parameters and procedures with the aim of reducing the gap between the needs of professional practice and research. Additionally, a new graphical tool is introduced for visualizing results in both buildings and bridges. By using CAD drawings as input, it streamlines model construction, making the process faster, more intuitive, and efficient. The article aims to describe DYMOS and to demonstrate its potential for OMA and OSP in civil engineering through the application on two real case studies dynamically tested. Full article
Show Figures

Figure 1

61 pages, 4626 KiB  
Article
Integrating Occupant Behavior into Window Design: A Dynamic Simulation Study for Enhancing Natural Ventilation in Residential Buildings
by Mojgan Pourtangestani, Nima Izadyar, Elmira Jamei and Zora Vrcelj
Buildings 2025, 15(13), 2193; https://doi.org/10.3390/buildings15132193 (registering DOI) - 23 Jun 2025
Abstract
Predicted natural ventilation (NV) often diverges from actual performance in dwellings. This discrepancy arises in part because most design tools do not account for how occupants actually operate windows. This study aims to determine how window geometry and orientation should be adjusted when [...] Read more.
Predicted natural ventilation (NV) often diverges from actual performance in dwellings. This discrepancy arises in part because most design tools do not account for how occupants actually operate windows. This study aims to determine how window geometry and orientation should be adjusted when occupant behavior is considered. Survey data from 150 Melbourne residents were converted into two window-operation schedules: Same Behavior (SB), representing average patterns, and Probable Behavior (PB), capturing stochastic responses to comfort, privacy, and climate. Both schedules were embedded in EnergyPlus and applied to over 200 annual simulations across five window-design stories that varied orientations, placements, and window-to-wall ratios (WWRs). Each story was tested across two living room wall dimensions (7 m and 4.5 m) and evaluated for air-change rate per hour (ACH) and solar gains. PB increased annual ACH by 5–12% over SB, with the greatest uplift in north-facing cross-ventilated layouts on the wider wall. Integrating probabilistic occupant behavior into window design remarkably improves NV effectiveness, with peak summer ACH reaching 4.8, indicating high ventilation rates that support thermal comfort and improved IAQ without mechanical assistance. These results highlight the potential of occupant-responsive window configurations to reduce reliance on mechanical cooling and enhance indoor air quality (IAQ). This study contributes a replicable occupant-centered workflow and ready-to-apply design rules for Australian temperate climates, adapted to different climate zones. Future research will extend the method to different climates, housing types, and user profiles and will integrate smart-sensor feedback, adaptive glazing, and hybrid ventilation strategies through multi-objective optimization. Full article
Show Figures

Figure 1

17 pages, 1655 KiB  
Review
Evaluation of Timber Mechanical Properties Through Non-Destructive Testing: A Bibliometric Analysis
by Marwa Brougui, Krisztián Andor and Péter Szabó
Buildings 2025, 15(13), 2192; https://doi.org/10.3390/buildings15132192 - 23 Jun 2025
Abstract
This study presents a comprehensive bibliometric analysis of research trends in evaluating the mechanical properties of timber structures, with a particular emphasis on the modulus of elasticity (MOE) assessed through non-destructive testing (NDT) methods, especially ultrasonic waves. Using VOSviewer software to analyze 129 [...] Read more.
This study presents a comprehensive bibliometric analysis of research trends in evaluating the mechanical properties of timber structures, with a particular emphasis on the modulus of elasticity (MOE) assessed through non-destructive testing (NDT) methods, especially ultrasonic waves. Using VOSviewer software to analyze 129 Scopus-indexed publications, the analysis reveals a marked increase in research activity since the early 2000s and the formation of distinct thematic clusters. The keyword ’non-destructive examination’ consistently emerges as the dominant term, underscoring a sustained and focused scientific interest in this field. Despite this growth, significant gaps remain, notably the lack of standardized methodologies and limited application of ultrasonic NDT techniques for in-service timber structures. This underscores the urgent need for targeted research efforts, including integrating machine learning with ultrasonic analysis, developing standardized testing protocols, exploring hybrid diagnostic approaches, and extending ultrasonic methods to aged and recycled timber. Furthermore, advancing portable, in-situ ultrasonic systems is essential to enable real-time, field-based assessments. This study not only maps the current research landscape but also highlights strategic opportunities to improve the accuracy, reliability, and sustainability of timber mechanical property evaluations, thereby supporting the advancement of timber engineering. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 2563 KiB  
Article
Leveraging Social Media Data to Understand COVID-19 Prevention Measures in Construction: A Machine Learning Approach
by Emmanuel B. Boateng, Daniel Oteng, Dan N. O. Bonsu and Vinod Gopaldasani
Buildings 2025, 15(13), 2191; https://doi.org/10.3390/buildings15132191 - 23 Jun 2025
Abstract
The COVID-19 pandemic was a particularly challenging time for the construction industry as it experienced significant disruptions to operations, affecting various stakeholders. With various national and international health agencies promoting preventive measures, the construction industry struggled with the implementation of these measures due [...] Read more.
The COVID-19 pandemic was a particularly challenging time for the construction industry as it experienced significant disruptions to operations, affecting various stakeholders. With various national and international health agencies promoting preventive measures, the construction industry struggled with the implementation of these measures due to the unique nature of the work involved in construction. This study aimed to highlight the ways in which stakeholders in the construction industry interacted and responded to the prescribed preventive measures through social media analysis. Using model-based clustering and structural topic modelling, this study provided insights into the prevalent discussion topics in social media around prevention measures in construction. In addition, sentiment analysis demonstrated interesting polarisation around the topic areas. Four prevalent topics that encapsulated the entirety of the social media data were identified, with two of the topics showing an upward trend, as expected, while the other two topics showed a contrasting downward trend. These findings offer practical value for construction managers and policymakers by revealing the effectiveness of different communication strategies and identifying areas where prevention measures faced resistance or acceptance. The sentiment polarisation patterns (50% positive, 40% negative) provide actionable insights for developing more targeted engagement approaches, while the topic evolution trends inform the timing and focus of safety communications. Construction organisations can leverage these insights to improve workplace safety protocols and enhance stakeholder buy-in for future health initiatives. This study lays the foundation for future studies to investigate the connections between the prevalent prevention and the interrelated dynamics within the conversation regarding COVID-19 prevention strategies in the construction sector. Full article
Show Figures

Figure 1

24 pages, 2935 KiB  
Article
Outdoor Environment Design Optimization of an Office Building Based on Indoor Thermal Conditions and Building Energy Performance
by Yaolin Lin, Tao Huang, Wei Yang, Melissa Chan, Chun-Qing Li, Mingqi Dai and Pengju Chen
Buildings 2025, 15(13), 2190; https://doi.org/10.3390/buildings15132190 - 23 Jun 2025
Abstract
The outdoor environment greatly affects indoor thermal conditions, yet few investigations have been carried out to optimize the outdoor environment physical parameters that lead to improvements in the indoor thermal environment. This paper proposes a method to optimize the pavement albedo, greening rate, [...] Read more.
The outdoor environment greatly affects indoor thermal conditions, yet few investigations have been carried out to optimize the outdoor environment physical parameters that lead to improvements in the indoor thermal environment. This paper proposes a method to optimize the pavement albedo, greening rate, and the neighboring building distance for an office building in Shanghai, to improve its indoor thermal conditions and energy performance. Firstly, the Latin hypercube sampling approach was applied to obtain 68 sets of design samples. Secondly, ENVI-met 5.1 coupled with EnergyPlus 23.1.0 was adopted to perform simulations and obtain the discomfort degree hours and building energy consumption. Thirdly, two machine learning prediction algorithms were used to develop discomfort degree hours and energy consumption models, and the artificial neural network models were found to have better prediction performance with R-squares greater than 0.99. Fourthly, the artificial neural network models were used as fitness functions for seven optimization algorithms and Pareto front solutions were obtained during the optimization process. The optimal solutions help to reduce building energy consumption by up to 4.12% and indoor discomfort degree hours by up to 7.45%, as against the reference building. This study contributes to multi-objective outdoor physical design optimization for the indoor thermal environment, comparative analysis of prediction models, and optimization approaches. Full article
(This article belongs to the Special Issue Healthy, Low-Carbon and Resilient Built Environments)
Show Figures

Figure 1

22 pages, 16001 KiB  
Article
Effect of Additional Bonded Steel Plates on the Behavior of FRP-Retrofitted Resilient RC Columns Subjected to Seismic Loading
by Yunjian He, Gaochuang Cai, Amir Si Larbi, Prafulla Bahadur Malla and Cheng Xie
Buildings 2025, 15(13), 2189; https://doi.org/10.3390/buildings15132189 - 23 Jun 2025
Abstract
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that [...] Read more.
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that were retrofitted by different methods, including high-strength mortar retrofit, carbon fiber-reinforced polymer (CFRP) retrofit, and CFRP and steel plate retrofit. In addition, the effect of the axial load was also considered. Quasi-static tests were conducted twice on five specimens, i.e., before and after repairing. The first test was used to create earthquake damage, and the second test was used to compare the seismic behavior of the retrofitted columns. The experimental results indicated that the CFRP retrofit method, whether with a steel plate or not, can restore the lateral resistance capacity well; furthermore, the drift-hardening behavior and self-centering performance were well maintained. The residual drift ratio of the CFRP-retrofitted column was less than 0.5%, even at a drift ratio of 3.5%, and less than 1% at the 6% drift ratio. However, the initial stiffness was only partly restored using the CFRP sheet. The introduction of steel plates was beneficial in restoring the initial stiffness, and the stiffness recovery rate remained above 90% when CFRP sheets and steel plates were used simultaneously. The strain distribution of the CFRP sheet showed that the steel plate did work at the initial loading stage, but the effect was limited. By using the steel plate, the CFRP hoop strain on the south side was reduced by 68% at the 6% drift ratio in the push direction and 38% in the pull direction. The axial strain of CFRP cannot be ignored due to the larger value than the hoop strain, which means that the biaxial stress condition should be considered when using an FRP sheet to retrofit RC columns. Full article
Show Figures

Figure 1

19 pages, 4182 KiB  
Article
Study on the Spatial Coupling Coordination of Public Service Facilities Around Large Comprehensive Hospitals in Beijing from a Supply–Demand Perspective
by Xiaoqi Wang, Bart Julien Dewancker, Tingting Fang, Yingjie Xu, Hai Wang and Andi Zheng
Buildings 2025, 15(13), 2188; https://doi.org/10.3390/buildings15132188 - 23 Jun 2025
Abstract
With the development of urban construction and the improvement of residents’ quality of life, the focus of governance has shifted to a people-centered approach. In the core area of Beijing, there is a mismatch between the existing large comprehensive hospitals (LCHs) and the [...] Read more.
With the development of urban construction and the improvement of residents’ quality of life, the focus of governance has shifted to a people-centered approach. In the core area of Beijing, there is a mismatch between the existing large comprehensive hospitals (LCHs) and the current demand for medical technology and services. Therefore, this study focuses on tertiary LCHs in the core area of Beijing from the perspective of supply and demand (SD) and explores in depth the problem of matching the crowd concentration and the SD of the surrounding public service facilities in the process of seeking medical treatment. By comprehensively analyzing the public service facilities within a 15-min walking distance around the hospital and considering demand, supply, and transport factors, this study identifies 15 key indicators, constructs an SD coupling model (SDCM) evaluation system, and systematically evaluates the space of public service facilities around an LCH. The results show that the higher the spatial coupling and coordination of these facilities around the LCH, the more tightly the system is connected, and the more pronounced the coupling effect is in the vicinity of the hospital, which suggests that the hospital has a clustering effect on its radiating area. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 1463 KiB  
Article
Challenges and Strategies for the Retention of Female Construction Professionals: An Empirical Study in Australia
by Sepani Senaratne, Shashini Jayakodi, Ryan David Pascoe and Annalise Atkins
Buildings 2025, 15(13), 2187; https://doi.org/10.3390/buildings15132187 - 23 Jun 2025
Abstract
The construction industry is perceived as an industry that is not viable for females to progress their careers in. Existing research studies focused on retaining senior female construction professionals are lacking. Particularly, the existing challenges and strategies found through a critical literature review [...] Read more.
The construction industry is perceived as an industry that is not viable for females to progress their careers in. Existing research studies focused on retaining senior female construction professionals are lacking. Particularly, the existing challenges and strategies found through a critical literature review were scattered and not specific to the retention of senior construction professionals. Identifying this gap, this study led to an empirical research phase to gather the firsthand experiences of 14 senior female professionals in Australia through semi-structured interviews. Subsequently, the gathered data was analysed through content analysis using NVivo software (2020). This study revealed several barriers, which were categorised into three clusters: culture in construction, disrupted career progression, and difficult working conditions. The results revealed that some barriers were consistent with the broader literature findings, while some were interesting context-specific barriers such as a lack of recognition and respect, a lack of confidence in decision-making, misalignment of childcare and construction hours, and lack of on-site feeding facilities. Similarly, the strategies were also discussed under three categories: to support females to adapt in construction, support them in their return to work from leave, and increase flexible work. Finally, recommendations were provided for individuals, organisations, and the industry to retain female employees in construction. Theoretically, this study advances understanding by identifying barriers and retention strategies specific to senior female construction professionals, framing retention as a multi-level challenge, while practically, the findings inform targeted policies to address gaps in the Australian context and improve gender equity. Full article
Show Figures

Figure 1

20 pages, 5252 KiB  
Article
Exploring the Factors Influencing the Spread of COVID-19 Within Residential Communities Using a Big Data Approach: A Case Study of Beijing
by Yang Li, Xiaoming Sun, Huiyan Chen, Hong Zhang, Yinong Li, Wenqi Lin and Linan Ding
Buildings 2025, 15(13), 2186; https://doi.org/10.3390/buildings15132186 - 23 Jun 2025
Abstract
The COVID-19 pandemic has profoundly influenced urban planning and disease management in residential areas. Focusing on Beijing as a case study (3898 communities), this research develops a big data analytics framework integrating anonymized mobile phone signals (China Mobile), location-based services (AMAP.com), and municipal [...] Read more.
The COVID-19 pandemic has profoundly influenced urban planning and disease management in residential areas. Focusing on Beijing as a case study (3898 communities), this research develops a big data analytics framework integrating anonymized mobile phone signals (China Mobile), location-based services (AMAP.com), and municipal health records to quantify COVID-19 transmission dynamics. Using logistic regression, we analyzed 15 indicators across four dimensions: mobility behavior, host demographics, spatial characteristics, and facility accessibility. Our analysis reveals three key determinants: (1) Population aged 65 and above (OR = 62.8, p < 0.001) and (2) housing density (OR = 9.96, p = 0.026) significantly increase transmission risk, while (3) population density exhibits a paradoxical negative effect (β = −3.98, p < 0.001) attributable to targeted interventions in high-density zones. We further construct a validated risk prediction model (AUC = 0.7; 95.97% accuracy) enabling high-resolution spatial targeting of non-pharmaceutical interventions (NPIs). The framework provides urban planners with actionable strategies—including senior activity scheduling and ventilation retrofits—while advancing scalable methodologies for infectious disease management in global urban contexts. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 1036 KiB  
Article
Unlocking the Mechanism of Technological Innovation Cooperation in Megaprojects: A 3C Theory Perspective
by Zhenxu Guo, Qing’e Wang and Xiaoping Cao
Buildings 2025, 15(13), 2185; https://doi.org/10.3390/buildings15132185 - 23 Jun 2025
Abstract
In the context of green development and digital transformation, the technological innovation cooperation in megaprojects requires a spanning from policy guidance, technological breakthroughs, and localized pilot projects to driven demand, integrated innovation (i.e., collaborative innovation across sectors, stages, and stakeholders), and comprehensive promotion. [...] Read more.
In the context of green development and digital transformation, the technological innovation cooperation in megaprojects requires a spanning from policy guidance, technological breakthroughs, and localized pilot projects to driven demand, integrated innovation (i.e., collaborative innovation across sectors, stages, and stakeholders), and comprehensive promotion. Despite the potential benefits, many megaprojects face challenges related to complex relationships, behavioral uncertainties, low performance, and technological innovation risks. A question of practical and theoretical significance is how to facilitate technological innovation cooperation in megaprojects. This study proposes the 3C Theory, which integrates cooperative relationships, behaviors, and performance, and investigates how technological innovation risks moderate these interactions. Using data from 19 megaprojects, we employ a mixed-methods approach involving hypothesis testing through regression analysis. The findings reveal that strong cooperative relationships positively influence cooperative performance through cooperative behaviors and that technological innovation risks play a significant moderating role. This study offers several practical recommendations for megaproject managers, including enhancing cooperative relationships, promoting effective behaviors, managing innovation risks, and developing cooperative innovation platforms. This study introduces the 3C Theory to megaprojects and provides novel insights into how collaboration and risk management can drive sustainable innovation. Full article
Show Figures

Figure 1

19 pages, 7139 KiB  
Article
Multidimensional Human Responses Under Dynamic Spectra of Daylighting and Electric Lighting
by Yingjun Dong, Guiyi Wu, Jiaxin Shi, Qingxuan Liang, Zhipeng Cui and Peng Xue
Buildings 2025, 15(13), 2184; https://doi.org/10.3390/buildings15132184 - 23 Jun 2025
Abstract
The luminous environment, shaped by daylight and electric light, significantly influences visual performance, physiological responses, and perceptual experiences. While these light sources are often perceived as distinct due to their differing effects on occupants’ cognition and well-being, the underlying mechanisms remain unclear. Nine [...] Read more.
The luminous environment, shaped by daylight and electric light, significantly influences visual performance, physiological responses, and perceptual experiences. While these light sources are often perceived as distinct due to their differing effects on occupants’ cognition and well-being, the underlying mechanisms remain unclear. Nine lighting conditions were evaluated, combining three spectral types—daylight (DL), conventional LED (CLED), and daylight LED (DLED)—with three horizontal illuminance levels (300 lx, 500 lx, and 1000 lx). Twelve healthy subjects completed visual performance tasks (2-back working memory test), physiological measurements (heart rate variability and critical flicker frequency), and subjective evaluations. The results revealed that 500 lx consistently yielded the most favorable outcomes: 2-back task response speed improved by 6.2% over 300 lx and 1000 lx, and the critical flicker frequency difference was smallest, indicating reduced fatigue. DLED lighting achieved cognitive and physiological levels comparable to daylight. Heart rate variability analyzes further confirmed higher alertness levels under 500 lx DLED lighting (LF/HF = 3.31). Subjective ratings corroborated these findings, with perceived alertness and comfort highest under DLED and 500 lx conditions. These results demonstrate that DLED, which offers a balanced spectral composition and improved uniformity, may serve as an effective lighting configuration for supporting both visual and non-visual performance in indoor settings lacking daylight. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

40 pages, 10369 KiB  
Article
Thermoacoustic, Physical, and Mechanical Properties of Bio-Bricks from Agricultural Waste
by Haidee Yulady Jaramillo, Robin Zuluaga-Gallego, Alejandro Arango-Correa and Ricardo Andrés García-León
Buildings 2025, 15(13), 2183; https://doi.org/10.3390/buildings15132183 - 23 Jun 2025
Abstract
This study presents the development and characterization of sustainable bio-bricks incorporating agricultural residues—specifically coffee husks and bovine excreta—as partial substitutes for cement. A mixture design optimized through response surface methodology (RSM) identified the best-performing formulation, namely 960 g of cement, 225 g of [...] Read more.
This study presents the development and characterization of sustainable bio-bricks incorporating agricultural residues—specifically coffee husks and bovine excreta—as partial substitutes for cement. A mixture design optimized through response surface methodology (RSM) identified the best-performing formulation, namely 960 g of cement, 225 g of lignin (extracted from coffee husks), and 315 g of bovine excreta. Experimental evaluations included compressive and flexural strength, water absorption, density, thermal conductivity, transmittance, admittance, and acoustic transmission loss. The optimal mixture achieved a compressive strength of 1.70 MPa and a flexural strength of 0.56 MPa, meeting Colombian technical standards for non-structural masonry. Its thermal conductivity (~0.19 W/(m×K)) and transmittance (~0.20 W/(m2×K)) suggest good insulation performance. Field tests in three Colombian climate zones confirmed improved thermal comfort compared to traditional clay brick walls, with up to 8 °C internal temperature reduction. Acoustic analysis revealed higher sound attenuation in bio-bricks, especially at low frequencies. Chemical and morphological analyses (SEM-EDS, FTIR, and TGA) confirmed favorable thermal stability and the synergistic interaction of organic and inorganic components. The findings support bio-bricks’ potential as eco-efficient, low-carbon alternatives for sustainable building applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 8296 KiB  
Article
Flexural Behavior of Shield Tunnel Joints with Auto-Lock Connectors: A Theoretical and Numerical Investigation with Parametric Analysis
by Lina Luo, Weidong Lin, Haibo Hu, Gang Lei and Hui Liu
Buildings 2025, 15(13), 2182; https://doi.org/10.3390/buildings15132182 - 23 Jun 2025
Abstract
Rapid connectors for shield tunnels represent a critical advancement in underground engineering construction. This study proposes a novel auto-lock connector, detailing its structure and working principle. The flexural behavior of the auto-lock joint is investigated through theoretical analysis and numerical simulation, with a [...] Read more.
Rapid connectors for shield tunnels represent a critical advancement in underground engineering construction. This study proposes a novel auto-lock connector, detailing its structure and working principle. The flexural behavior of the auto-lock joint is investigated through theoretical analysis and numerical simulation, with a comprehensive evaluation of influencing factors. The results indicate that joint opening increases with reduced axial force, peaking at 24.1 mm under negative bending under a 100 kN axial load. The ultimate bending moment demonstrates a nonlinear variation with axial force. At low axial forces, increasing material strength or dimensions enhances joint flexural capacity, with more pronounced improvements under lower loads. This research establishes a theoretical foundation for the practical application of auto-lock connectors. Full article
Show Figures

Figure 1

32 pages, 2847 KiB  
Article
Multisensory Digital Heritage Spaces as Smart Environments in Sustainable Architectural Design
by Weidi Zhang and Ningxin Du
Buildings 2025, 15(13), 2181; https://doi.org/10.3390/buildings15132181 - 22 Jun 2025
Abstract
In the context of sustainable architecture, buildings are no longer isolated entities but are integral components of a broader built environment that shapes and responds to human life. As part of this evolving architectural landscape, immersive digital cultural heritage spaces—such as virtual museums—are [...] Read more.
In the context of sustainable architecture, buildings are no longer isolated entities but are integral components of a broader built environment that shapes and responds to human life. As part of this evolving architectural landscape, immersive digital cultural heritage spaces—such as virtual museums—are emerging as dynamic environments that contribute not only to cultural preservation but also to human well-being. This study examines how multisensory spatial design in virtual heritage environments can meet the physical, psychological, and emotional needs of users, aligning with the principles of smart, responsive architecture. A total of 325 participants experienced three immersive VR scenarios integrating different sensory inputs: visual–auditory, visual–auditory–tactile, and visual–auditory–olfactory. Through factor analyses, a three-dimensional model of user experience was identified, encompassing immersion, cultural engagement, and personalization. Structural equation modeling revealed that informational clarity significantly enhanced immersion (β = 0.617, p < 0.001), while emotional resonance was central to personalization (β = 0.571, p < 0.001). Moreover, ANOVA results indicated significant experiential differences among sensory conditions (F = 4.324, p = 0.014), with the visual–auditory modality receiving the highest user ratings. These findings demonstrate how digital cultural spaces—when designed with human sensory systems in mind—can foster emotionally rich, informative, and sustainable environments. By extending the role of architecture into the digital domain, this study offers insight into how technology, when guided by human-centered design, can create smart environments that support both ecological responsibility and enhanced human experience. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
32 pages, 7045 KiB  
Article
Sustainable Reinforcement Methods for Brick Masonry Walls: An Experimental and Finite Element Analysis Approach
by Tahir Mehmood, Muhammad Amer Abid, Burachat Chatveera, Gritsada Sua-Iam, Panumas Saingam, Ali Ejaz, Qudeer Hussain, Panuwat Joyklad and Suniti Suparp
Buildings 2025, 15(13), 2180; https://doi.org/10.3390/buildings15132180 - 22 Jun 2025
Abstract
This study investigates the enhancement of axial and shear strength in brick masonry walls reinforced with steel and fiberglass meshes. The novelty of this study lies in its thorough evaluation of various reinforcement types and their influence on both axial and shear strength, [...] Read more.
This study investigates the enhancement of axial and shear strength in brick masonry walls reinforced with steel and fiberglass meshes. The novelty of this study lies in its thorough evaluation of various reinforcement types and their influence on both axial and shear strength, offering valuable insights to enhance the performance of brick masonry structures. By using steel and fiberglass meshes for reinforcement, the study promotes the use of durable materials that can extend the lifespan of brick masonry structures, reducing the need for frequent repairs and replacements. The findings reveal that double-layer steel mesh delivers the highest strength, effectively reducing brittleness and improving deformation capacity in both single- and double-brick walls. Specifically, single-brick walls exhibited increases in compressive strength of 38.8% with single-layer steel mesh, 31.2% with fiberglass mesh, and 19.7% with plaster. In contrast, double-brick walls showed enhancements of 73.6% with double-layer steel mesh and 43.5% with fiberglass mesh. For shear strength, single-brick walls improved by 115.1% with single-layer steel mesh, 91.3% with fiberglass mesh, and 42.1% with plaster, while double-brick walls experienced increases of 162.7% with double-layer steel mesh and 132.5% with fiberglass mesh. Additionally, Abaqus modeling under axial and diagonal compression closely matched experimental results, revealing less than a 10% discrepancy across all reinforcement types. Full article
(This article belongs to the Special Issue Modeling and Testing the Performance of Masonry Structures)
Show Figures

Figure 1

14 pages, 1995 KiB  
Article
Mechanical and Bond-Slip Properties of Steel-Fiber-Reinforced Geopolymer Recycled-Aggregate Concrete
by Jianhua Ji, Zening Zhang, Yi Zhang and Xi Liu
Buildings 2025, 15(13), 2179; https://doi.org/10.3390/buildings15132179 - 22 Jun 2025
Abstract
Steel-fiber-reinforced geopolymer recycled-aggregate concrete (SFGRC) represents a promising low-carbon building material, yet data on its bond behavior remains scarce, limiting its structural application. To study the mechanical properties and bond strength of SFGRC, five groups of different mix proportions were designed. The main [...] Read more.
Steel-fiber-reinforced geopolymer recycled-aggregate concrete (SFGRC) represents a promising low-carbon building material, yet data on its bond behavior remains scarce, limiting its structural application. To study the mechanical properties and bond strength of SFGRC, five groups of different mix proportions were designed. The main variation parameters were the content of recycled aggregate and the volume content of steel fiber. The cube compressive strength, splitting tensile strength, and flexural strength tests of SFGRC were completed. The influence law of different anchorage lengths on the bond strength between steel bars and SFGRC was studied through the central pull-out test. A multi-parameter probability prediction model of bond strength based on Bayesian method was established. The results show that with the increase of the content of recycled aggregate, the compressive strength of the specimen shows a downward trend, but the tension-compression ratio is increased by 18–22% compared to concrete with natural aggregates at equivalent strength grades. The content of steel fiber can significantly improve the mechanical properties of SFGRC. The bond strength between steel bars and SFGRC is 14.82–17.57 MPa, and the ultimate slip is 0.30–0.38 mm. A probability prediction model of ultimate bond strength is established based on 123 sets of bond test data. The mean and covariance of the ratio of the predicted value of the probability model to the test value are 1.14 and 2.61, respectively. The model has high prediction accuracy, and continuity and can reasonably calculate the bond strength between steel bars and SFGRC. The developed Bayesian model provides a highly accurate and reliable tool for predicting SFGRC bond strength, facilitating its safe and optimized design in sustainable construction projects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 5097 KiB  
Article
Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections
by Yuqing Han, Yongjun Qin, Wentong Cheng and Qi Chen
Buildings 2025, 15(13), 2178; https://doi.org/10.3390/buildings15132178 - 22 Jun 2025
Abstract
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial [...] Read more.
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial compression ratio on structural performance, five shear wall specimens were tested under low-cycle reversed loading, with detailed analysis of their failure modes and hysteretic behavior. Based on experimental results and theoretical derivation, a restoring force model incorporating connection type was developed. The results demonstrate that hybrid-connected specimens exhibit significantly improved load-bearing capacity, ductility, and seismic performance compared to those with only grouted corrugated metallic duct connections. A higher axial compression ratio enhances structural strength but also accelerates damage progression, particularly after peak loading. A three-line skeleton curve model was established to describe the load, displacement, and stiffness relationships at key characteristic points, and unloading stiffness expressions for different loading stages were proposed. The calculated skeleton and hysteresis curves align well with the experimental results, accurately capturing the cyclic behavior of the hybrid-connected precast shear walls. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

16 pages, 2704 KiB  
Article
Shear Capacity of Masonry Walls Externally Strengthened via Reinforced Khorasan Jacketing
by Cagri Mollamahmutoglu, Mehdi Ozturk and Mehmet Ozan Yilmaz
Buildings 2025, 15(13), 2177; https://doi.org/10.3390/buildings15132177 - 22 Jun 2025
Abstract
This study investigates the in-plane shear behavior of solid brick masonry walls, both unreinforced and retrofitted using Reinforced Khorasan Jacketing (RHJ), a traditional pozzolanic mortar technique rooted in Iranian and Ottoman architecture. Six one-block-thick English bond masonry walls were tested in three configurations: [...] Read more.
This study investigates the in-plane shear behavior of solid brick masonry walls, both unreinforced and retrofitted using Reinforced Khorasan Jacketing (RHJ), a traditional pozzolanic mortar technique rooted in Iranian and Ottoman architecture. Six one-block-thick English bond masonry walls were tested in three configurations: unreinforced with Horasan plaster (Group I), reinforced with steel mesh aligned to wall edges (Group II), and reinforced with mesh aligned diagonally (Group III). All the walls were plastered with 3.5 cm of Horasan mortar and tested after 18 months using diagonal compression, with load-displacement data recorded. A detailed 3D micro-modeling approach was employed in finite element simulations, with bricks and mortar modeled separately. The Horasan mortar was represented using an elastoplastic Mohr-Coulomb model with a custom softening law (parabolic-to-exponential), calibrated via inverse parameter fitting using the Nelder-Mead algorithm. The numerical predictions closely matched the experimental data. Reinforcement improved the shear strength significantly: Group II showed a 1.8 times increase, and Group III up to 2.7 times. Ductility, measured as post-peak deformation capacity, increased by factors of two (parallel) and three (diagonal). These enhancements transformed the brittle failure mode into a more ductile, energy-absorbing behavior. RHJ is shown to be a compatible, effective retrofit solution for historic masonry structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 3416 KiB  
Article
Deflection Prediction of Highway Bridges Using Wireless Sensor Networks and Enhanced iTransformer Model
by Cong Mu, Chen Chang, Jiuyuan Huo and Jiguang Yang
Buildings 2025, 15(13), 2176; https://doi.org/10.3390/buildings15132176 - 22 Jun 2025
Abstract
As an important part of national transportation infrastructure, the operation status of bridges is directly related to transportation safety and social stability. Structural deflection, which reflects the deformation behavior of bridge systems, serves as a key indicator for identifying stiffness degradation and the [...] Read more.
As an important part of national transportation infrastructure, the operation status of bridges is directly related to transportation safety and social stability. Structural deflection, which reflects the deformation behavior of bridge systems, serves as a key indicator for identifying stiffness degradation and the progression of localized damage. The accurate modeling and forecasting of deflection are thus essential for effective bridge health monitoring and intelligent maintenance. To address the limitations of traditional methods in handling multi-source data fusion and nonlinear temporal dependencies, this study proposes an enhanced iTransformer-based prediction model, termed LDAiT (LSTM Differential Attention iTransformer), which integrates Long Short-Term Memory (LSTM) networks and a differential attention mechanism for high-fidelity deflection prediction under complex working conditions. Firstly, a multi-source heterogeneous time series dataset is constructed based on wireless sensor network (WSN) technology, enabling the real-time acquisition and fusion of key structural response parameters such as deflection, strain, and temperature across critical bridge sections. Secondly, LDAiT enhances the modeling capability of long-term dependence through the introduction of LSTM and combines with the differential attention mechanism to improve the precision of response to the local dynamic changes in disturbance. Finally, experimental validation is carried out based on the measured data of Xintian Yellow River Bridge, and the results show that LDAiT outperforms the existing mainstream models in the indexes of R2, RMSE, MAE, and MAPE and has good accuracy, stability and generalization ability. The proposed approach offers a novel and effective framework for deflection forecasting in complex bridge systems and holds significant potential for practical deployment in structural health monitoring and intelligent decision-making applications. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

18 pages, 10785 KiB  
Article
Monitoring and Analysis of Mechanical Response of Main Tunnel Structure During Segment-Cutting Process
by Xiaofeng Liu, Quansheng Zang, Xuanxuan Zi, Mingcong Ji and Changyi Yu
Buildings 2025, 15(13), 2175; https://doi.org/10.3390/buildings15132175 - 22 Jun 2025
Abstract
This study analyzes the deformation and internal force changes of the main tunnel during the cutting process of the pipe jacking method for cross passages. A combination of field monitoring and numerical simulation was used to investigate a construction case of the pipe [...] Read more.
This study analyzes the deformation and internal force changes of the main tunnel during the cutting process of the pipe jacking method for cross passages. A combination of field monitoring and numerical simulation was used to investigate a construction case of the pipe jacking method for the cross passage of Zhengzhou Metro Line 12. The study provides an in-depth analysis of the stress characteristics of the main tunnel structure during the segment-cutting process. The research findings indicate that during the pre-support stage, the internal support system helps to disperse external water and soil pressure, thereby reducing the internal forces and deformation of the tunnel. In the segment-cutting stage, the horizontal diameter of the main tunnel near the hole location gradually increases, while the vertical diameter decreases. At the same time, the stress on the bolts also rises, with the circumferential bolt stress exceeding that of the longitudinal bolts, eventually approaching their yield strength. The upper and lower ends of the tunnel opening are cut to form cantilever ends, leading to inward converging deformation. This deformation causes the internal forces to disperse toward both sides of the opening, resulting in a noticeable increase in internal force at the 90° position of the semi-cutting ring. The research findings provide a theoretical reference for understanding the deformation patterns and internal force transfer mechanisms of the main tunnel structure during the construction process of cross passages using the pipe jacking method. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

48 pages, 3424 KiB  
Review
Circular Industrialized Construction: A Perspective Through Design for Manufacturing, Assembly, and Disassembly
by Héctor Hernández
Buildings 2025, 15(13), 2174; https://doi.org/10.3390/buildings15132174 - 22 Jun 2025
Abstract
Improving resource efficiency by reducing waste and process inefficiencies across the building life cycle is essential for advancing sustainability in the built environment. Circular and industrialized construction offer complementary strategies to meet this challenge. While Design for Manufacturing and Assembly (DfMA) enhances constructability, [...] Read more.
Improving resource efficiency by reducing waste and process inefficiencies across the building life cycle is essential for advancing sustainability in the built environment. Circular and industrialized construction offer complementary strategies to meet this challenge. While Design for Manufacturing and Assembly (DfMA) enhances constructability, standardization, and productivity in early project phases, Design for Disassembly (DfD) facilitates material recovery and adaptability at end-of-life. Despite their synergies, their integrated application remains underexplored. This study proposes a unified framework—Design for Manufacturing, Assembly, and Disassembly (DfMAD)—to align value creation and value retention strategies across the life cycle. A systematic literature review of 102 articles, following PRISMA guidelines, combined bibliometric and thematic analysis to identify key principles, benefits, barriers, and enablers of DfMA and DfD. Cross-mapping these findings revealed conceptual overlaps and distinctions and informed the synthesis of core DfMAD attributes. The resulting framework offers a life cycle-oriented approach that supports product-based delivery, traceability, and circular design strategies. By promoting shared logic across disciplines and project phases, DfMAD provides a foundation for operationalizing circularity in industrialized construction, contributing both theoretical and practical guidance for advancing resource-efficient, adaptable, and disassemblable building systems. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

Previous Issue
Back to TopTop