Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3085 KB  
Article
Ethanol Electrooxidation at 1–2 nm AuPd Nanoparticles
by Juliette W. Strasser and Richard M. Crooks
Nanomaterials 2022, 12(22), 4093; https://doi.org/10.3390/nano12224093 - 21 Nov 2022
Cited by 3 | Viewed by 1771
Abstract
We report a systematic study of the electrocatalytic properties and stability of a series of 1–2 nm Au, Pd, and AuPd alloy nanoparticles (NPs) for the ethanol oxidation reaction (EOR). Following EOR electrocatalysis, NP sizes and compositions were characterized using aberration-corrected scanning transmission [...] Read more.
We report a systematic study of the electrocatalytic properties and stability of a series of 1–2 nm Au, Pd, and AuPd alloy nanoparticles (NPs) for the ethanol oxidation reaction (EOR). Following EOR electrocatalysis, NP sizes and compositions were characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and energy dispersive spectroscopy (EDS). Two main findings emerge from this study. First, alloyed AuPd NPs exhibit enhanced electrocatalytic EOR activity compared to either monometallic Au or Pd NPs. Specifically, NPs having a 3:1 ratio of Au:Pd exhibit an ~8-fold increase in peak current density compared to Pd NPs, with an onset potential shifted ~200 mV more to the negative compared to Au NPs. Second, the size and composition of AuPd alloy NPs do not (within experimental error) change following 1.0 or 2.0 h chronoamperometry experiments, while monometallic Au NPs increase in size from 2 to 5 nm under the same conditions. Notably, this report demonstrates the importance of post-catalytic ac-STEM/EDS characterization for fully evaluating NP activity and stability, especially for 1–2 nm NPs that may change in size or structure during electrocatalysis. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology for Electrocatalytic Applications)
Show Figures

Figure 1

17 pages, 4515 KB  
Article
Cascade Förster Resonance Energy Transfer Studies for Enhancement of Light Harvesting on Dye-Sensitized Solar Cells
by Mulugeta Tesema Efa, Jheng-Chang Huang and Toyoko Imae
Nanomaterials 2022, 12(22), 4085; https://doi.org/10.3390/nano12224085 - 20 Nov 2022
Cited by 6 | Viewed by 2299
Abstract
This work reports cascade Förster resonance energy transfer (FRET)-based n-type (ZnO) and p-type (NiO) dye-sensitized solar cells (DSSCs), discussing approaches to enhance their overall performance. Although DSSCs suffer from poorer performance than other solar cells, the use of composites with carbon dot (Cdot) [...] Read more.
This work reports cascade Förster resonance energy transfer (FRET)-based n-type (ZnO) and p-type (NiO) dye-sensitized solar cells (DSSCs), discussing approaches to enhance their overall performance. Although DSSCs suffer from poorer performance than other solar cells, the use of composites with carbon dot (Cdot) can enhance the power conversion efficiency (PCE) of DSSCs. However, further improvements are demanded through molecular design to stimulate DSSCs. Here, a photosensitized system based on a cascade FRET was induced alongside the conventional photosensitizer dye (N719). To N719 in a DSSC is transferred the energy cascaded through donor fluorescence materials (pyrene, 3-acetyl-7-N,N-diethyl-coumarin or coumarin and acridine orange), and this process enhances the light-harvesting properties of the sensitizers in the DSSC across a broad region of the solar spectrum. PCE values of 10.7 and 11.3% were achieved for ZnO/Cdot and NiO/Cdot DSSCs, respectively. These high PCE values result from the energy transfer among multi-photosensitizers (cascade FRET fluorophores, N719, and Cdot). Moreover, Cdot can play a role in intensifying the adsorption of dyes and discouraging charge recombination on the semiconductor. The present results raise expectations that a significant improvement in photovoltaic performance can be attained of DSSCs exploiting the cascade FRET photonics phenomenon. Full article
(This article belongs to the Special Issue Quantum Materials for Photonic Devices)
Show Figures

Graphical abstract

22 pages, 4191 KB  
Review
Application of Peptides in Construction of Nonviral Vectors for Gene Delivery
by Yujie Yang, Zhen Liu, Hongchao Ma and Meiwen Cao
Nanomaterials 2022, 12(22), 4076; https://doi.org/10.3390/nano12224076 - 19 Nov 2022
Cited by 8 | Viewed by 2870
Abstract
Gene therapy, which aims to cure diseases by knocking out, editing, correcting or compensating abnormal genes, provides new strategies for the treatment of tumors, genetic diseases and other diseases that are closely related to human gene abnormalities. In order to deliver genes efficiently [...] Read more.
Gene therapy, which aims to cure diseases by knocking out, editing, correcting or compensating abnormal genes, provides new strategies for the treatment of tumors, genetic diseases and other diseases that are closely related to human gene abnormalities. In order to deliver genes efficiently to abnormal sites in vivo to achieve therapeutic effects, a variety of gene vectors have been designed. Among them, peptide-based vectors show superior advantages because of their ease of design, perfect biocompatibility and safety. Rationally designed peptides can carry nucleic acids into cells to perform therapeutic effects by overcoming a series of biological barriers including cellular uptake, endosomal escape, nuclear entrance and so on. Moreover, peptides can also be incorporated into other delivery systems as functional segments. In this review, we referred to the biological barriers for gene delivery in vivo and discussed several kinds of peptide-based nonviral gene vectors developed for overcoming these barriers. These vectors can deliver different types of genetic materials into targeted cells/tissues individually or in combination by having specific structure–function relationships. Based on the general review of peptide-based gene delivery systems, the current challenges and future perspectives in development of peptidic nonviral vectors for clinical applications were also put forward, with the aim of providing guidance towards the rational design and development of such systems. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Engineering)
Show Figures

Figure 1

20 pages, 5067 KB  
Article
High-Performance Room-Temperature NO2 Gas Sensor Based on Au-Loaded SnO2 Nanowires under UV Light Activation
by Bo Zhang, Shuai Zhang, Yi Xia, Pingping Yu, Yin Xu, Yue Dong, Qufu Wei and Jing Wang
Nanomaterials 2022, 12(22), 4062; https://doi.org/10.3390/nano12224062 - 18 Nov 2022
Cited by 18 | Viewed by 3603
Abstract
Optical excitation is widely acknowledged as one of the most effective means of balancing sensor responses and response/recovery properties at room temperature (RT, 25 °C). Moreover, noble metals have been proven to be suitable as photosensitizers for optical excitation. Localized surface plasmon resonance [...] Read more.
Optical excitation is widely acknowledged as one of the most effective means of balancing sensor responses and response/recovery properties at room temperature (RT, 25 °C). Moreover, noble metals have been proven to be suitable as photosensitizers for optical excitation. Localized surface plasmon resonance (LSPR) determines the liberalization of quasi-free electrons in noble metals under light irradiation, and numerous injected electrons in semiconductors will greatly promote the generation of chemisorbed oxygen, thus elevating the sensor response. In this study, pure SnO2 and Au/SnO2 nanowires (NWs) were successfully synthesized through the electrospinning method and validated using XRD, EDS, HRTEM, and XPS. Although a Schottky barrier led to a much higher initial resistance of the Au/SnO2 composite compared with pure SnO2 at RT in the dark, the photoinduced resistance of the Au/SnO2 composite became lower than that of pure SnO2 under UV irradiation with the same intensity, which confirmed the effect of LSPR. Furthermore, when used as sensing materials, a detailed comparison between the sensing properties of pure SnO2 and Au/SnO2 composite toward NO2 in the dark and under UV irradiation highlighted the crucial role of the LSPR effects. In particular, the response of Au/SnO2 NWs toward 5 ppm NO2 could reach 65 at RT under UV irradiation, and the response/recovery time was only 82/42 s, which far exceeded those under Au modification-only or optical excitation-only. Finally, the gas-sensing mechanism corresponding to the change in sensor performance in each case was systematically proposed. Full article
(This article belongs to the Topic Advanced Nanomaterials for Sensing Applications)
Show Figures

Figure 1

11 pages, 4958 KB  
Article
Omnidirectional Triboelectric Nanogenerator for Wide-Speed-Range Wind Energy Harvesting
by Qiman Wang, Wenhao Li, Kun Wang, Yitao Liao, Junjie Zheng, Xiongtu Zhou, Jianpu Lin, Yongai Zhang and Chaoxing Wu
Nanomaterials 2022, 12(22), 4046; https://doi.org/10.3390/nano12224046 - 17 Nov 2022
Cited by 7 | Viewed by 2780
Abstract
The environmentally friendly harvesting of wind energy is an effective technique for achieving carbon neutrality and a green economy. In this work, a core–shell triboelectric nanogenerator (CS-TENG) for harvesting wind energy is demonstrated and the device structure parameters are optimized. The core–shell structure [...] Read more.
The environmentally friendly harvesting of wind energy is an effective technique for achieving carbon neutrality and a green economy. In this work, a core–shell triboelectric nanogenerator (CS-TENG) for harvesting wind energy is demonstrated and the device structure parameters are optimized. The core–shell structure enables the CS-TENG to respond sensitively to wind from any direction and generate electrical output on the basis of the vertical contact–separation mode. A single device can generate a maximum power density of 0.14 W/m3 and can power 124 light-emitting diodes. In addition, wind energy can be harvested even at a wind speed as low as 2.3 m/s by paralleling CS-TENGs of different sizes. Finally, a self-powered water quality testing system that uses the CS-TENG as its power supply is built. The CS-TENG exhibits the advantages of a simple structure, environmentally friendly materials, low cost, and simple fabrication process. These features are of considerable significance for the development of green energy harvesting devices. Full article
(This article belongs to the Special Issue Nanogenerators and Self-Powered Systems)
Show Figures

Figure 1

12 pages, 1023 KB  
Article
Hydrogenated Boron Phosphide THz-Metamaterial-Based Biosensor for Diagnosing COVID-19: A DFT Coupled FEM Study
by Chunjian Tan, Shaogang Wang, Huiru Yang, Qianming Huang, Shizhen Li, Xu Liu, Huaiyu Ye and Guoqi Zhang
Nanomaterials 2022, 12(22), 4024; https://doi.org/10.3390/nano12224024 - 16 Nov 2022
Cited by 5 | Viewed by 2228
Abstract
Recent reports focus on the hydrogenation engineering of monolayer boron phosphide and simultaneously explore its promising applications in nanoelectronics. Coupling density functional theory and finite element method, we investigate the bowtie triangle ring microstructure composed of boron phosphide with hydrogenation based on structural [...] Read more.
Recent reports focus on the hydrogenation engineering of monolayer boron phosphide and simultaneously explore its promising applications in nanoelectronics. Coupling density functional theory and finite element method, we investigate the bowtie triangle ring microstructure composed of boron phosphide with hydrogenation based on structural and performance analysis. We determine the carrier mobility of hydrogenated boron phosphide, reveal the effect of structural and material parameters on resonance frequencies, and discuss the variation of the electric field at the two tips. The results suggest that the mobilities of electrons for hydrogenated BP monolayer in the armchair and zigzag directions are 0.51 and 94.4 cm2·V1·s1, whereas for holes, the values are 136.8 and 175.15 cm2·V1·s1. Meanwhile, the transmission spectra of the bowtie triangle ring microstructure can be controlled by adjusting the length of the bowtie triangle ring microstructure and carrier density of hydrogenated BP. With the increasing length, the transmission spectrum has a red-shift and the electric field at the tips of equilateral triangle rings is significantly weakened. Furthermore, the theoretical sensitivity of the BTR structure reaches 100 GHz/RIU, which is sufficient to determine healthy and COVID-19-infected individuals. Our findings may open up new avenues for promising applications in the rapid diagnosis of COVID-19. Full article
Show Figures

Figure 1

23 pages, 4588 KB  
Article
Targeting Ultrasmall Gold Nanoparticles with cRGD Peptide Increases the Uptake and Efficacy of Cytotoxic Payload
by Richard D. Perrins, Lee-Anne McCarthy, Angela Robinson, Kelly L. Spry, Valentin Cognet, Avelino Ferreira, John Porter, Cristina Espinosa Garcίa, Miguel Ángel Rodriguez, Diana Lopez, Ibon Perera, Kelly Conlon, Africa Barrientos, Tom Coulter, Alessandro Pace, Sarah J. M. Hale, Enrico Ferrari and Csanad Z. Bachrati
Nanomaterials 2022, 12(22), 4013; https://doi.org/10.3390/nano12224013 - 15 Nov 2022
Cited by 9 | Viewed by 4012
Abstract
Cyclic arginyl-glycyl-aspartic acid peptide (cRGD) peptides show a high affinity towards αVβ3 integrin, a receptor overexpressed in many cancers. We aimed to combine the versatility of ultrasmall gold nanoparticles (usGNP) with the target selectivity of cRGD peptide for the directed delivery of a [...] Read more.
Cyclic arginyl-glycyl-aspartic acid peptide (cRGD) peptides show a high affinity towards αVβ3 integrin, a receptor overexpressed in many cancers. We aimed to combine the versatility of ultrasmall gold nanoparticles (usGNP) with the target selectivity of cRGD peptide for the directed delivery of a cytotoxic payload in a novel design. usGNPs were synthesized with a modified Brust-Schiffrin method and functionalized via amide coupling and ligand exchange and their uptake, intracellular trafficking, and toxicity were characterized. Our cRGD functionalized usGNPs demonstrated increased cellular uptake by αVβ3 integrin expressing cells, are internalized via clathrin-dependent endocytosis, accumulated in the lysosomes, and when loaded with mertansine led to increased cytotoxicity. Targeting via cRGD functionalization provides a mechanism to improve the efficacy, tolerability, and retention of therapeutic GNPs. Full article
(This article belongs to the Special Issue Nanomaterials for Applied Nanotechnology and Nanoscience)
Show Figures

Figure 1

13 pages, 2698 KB  
Article
Influence of Cocatalysts (Ni, Co, and Cu) and Synthesis Method on the Photocatalytic Activity of Exfoliated Graphitic Carbon Nitride for Hydrogen Production
by Adeem Ghaffar Rana, Michael Schwarze, Minoo Tasbihi, Xavier Sala, Jordi García-Antón and Mirjana Minceva
Nanomaterials 2022, 12(22), 4006; https://doi.org/10.3390/nano12224006 - 14 Nov 2022
Cited by 6 | Viewed by 3086
Abstract
Exfoliated graphitic carbon nitride (ex-g-CN) was synthesized and loaded with non-noble metals (Ni, Cu, and Co). The synthesized catalysts were tested for hydrogen production using a 300-W Xe lamp equipped with a 395 nm cutoff filter. A noncommercial double-walled quartz-glass reactor irradiated from [...] Read more.
Exfoliated graphitic carbon nitride (ex-g-CN) was synthesized and loaded with non-noble metals (Ni, Cu, and Co). The synthesized catalysts were tested for hydrogen production using a 300-W Xe lamp equipped with a 395 nm cutoff filter. A noncommercial double-walled quartz-glass reactor irradiated from the side was used with a 1 g/L catalyst in 20 mL of a 10 vol% triethanolamine aqueous solution. For preliminary screening, the metal-loaded ex-g-CN was synthesized using the incipient wetness impregnation method. The highest hydrogen production was observed on the Ni-loaded ex-g-CN, which was selected to assess the impact of the synthesis method on hydrogen production. Ni-loaded ex-g-CN was synthesized using different synthesis methods: incipient wetness impregnation, colloidal deposition, and precipitation deposition. The catalysts were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption using the Brunauer–Emmett–Teller method, and transmission electron microscopy. The Ni-loaded ex-g-CN synthesized using the colloidal method performed best with a hydrogen production rate of 43.6 µmol h−1 g−1. By contrast, the catalysts synthesized using the impregnation and precipitation methods were less active, with 28.2 and 10.1 µmol h−1 g−1, respectively. The hydrogen production performance of the suspended catalyst (440 µmol m−2 g−1) showed to be superior to that of the corresponding immobilized catalyst (236 µmol m−2 g−1). Full article
(This article belongs to the Special Issue Environmental Remediation by Photocatalytic Functional Nanomaterials)
Show Figures

Figure 1

22 pages, 4560 KB  
Article
Influence of Tartrate Ligand Coordination over Luminescence Properties of Chiral Lanthanide-Based Metal–Organic Frameworks
by Uxua Huizi-Rayo, Xuban Gastearena, Ana M. Ortuño, Juan M. Cuerva, Antonio Rodríguez-Diéguez, Jose Angel García, Jesus Ugalde, Jose Manuel Seco, Eider San Sebastian and Javier Cepeda
Nanomaterials 2022, 12(22), 3999; https://doi.org/10.3390/nano12223999 - 13 Nov 2022
Cited by 4 | Viewed by 3025
Abstract
The present work reports on a detailed discussion about the synthesis, characterization, and luminescence properties of three pairs of enantiopure 3D metal–organic frameworks (MOFs) with general formula {[Ln2(L/D-tart)3(H2O)2]·3H2O}n (3D_Ln-L/D, where [...] Read more.
The present work reports on a detailed discussion about the synthesis, characterization, and luminescence properties of three pairs of enantiopure 3D metal–organic frameworks (MOFs) with general formula {[Ln2(L/D-tart)3(H2O)2]·3H2O}n (3D_Ln-L/D, where Ln = Sm(III), Eu(III) or Gd(III), and L/D-tart = L- or D-tartrate), and ten pairs of enantiopure 2D coordination polymers (CPs) with general formula [Ln(L/D-Htart)2(OH)(H2O)2]n (2D_Ln-L/D, where Ln = Y(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III) or Yb(III), and L/D-Htart = hydrogen L- or D-tartrate) based on single-crystal X-ray structures. Enantiopure nature of the samples has been further corroborated by Root Mean Square Deviation (RMSD) as well as by circular dichroism (CD) spectra. Solid-state emission spectra of Eu(III), Tb(III), and Dy(III)-based compounds confirm the occurrence of ligand-to-metal charge transfers in view of the characteristic emissions for these lanthanide ions, and emission decay curves were also recorded to estimate the emission lifetimes for the reported compounds. A complete theoretical study was accomplished to better understand the energy transfers occurring in the Eu-based counterparts, which allows for explaining the different performances of 3D-MOFs and 2D-layered compounds. As inferred from the colorimetric diagrams, emission characteristics of Eu-based 2D CPs depend on the temperature, so their luminescent thermometry has been determined on the basis of a ratiometric analysis between the ligand-centered and Eu-centered emission. Finally, a detailed study of the polarized luminescence intensity emitted by the samples is also accomplished to support the occurrence of chiro-optical activity. Full article
Show Figures

Graphical abstract

10 pages, 2287 KB  
Article
Complete Solution-Processed Semitransparent and Flexible Organic Solar Cells: A Success of Polyimide/Ag-Nanowires- and PH1000-Based Electrodes with Plasmonic Enhanced Light Absorption
by Jing Wang, Xiangfei Liang, Jianing Xie, Xiaolong Yin, Jinhao Chen, Tianfu Gu, Yueqi Mo, Jianqing Zhao, Shumei Liu, Donghong Yu, Jibin Zhang and Lintao Hou
Nanomaterials 2022, 12(22), 3987; https://doi.org/10.3390/nano12223987 - 12 Nov 2022
Cited by 7 | Viewed by 2763
Abstract
Organic solar cells (OSCs) have been widely studied due to the advantages of easy fabrication, low cost, light weight, good flexibility and sufficient transparency. In this work, flexible and semitransparent OSCs were successfully fabricated with the adoption of both polyimide/silver nanowires (PI/AgNW) and [...] Read more.
Organic solar cells (OSCs) have been widely studied due to the advantages of easy fabrication, low cost, light weight, good flexibility and sufficient transparency. In this work, flexible and semitransparent OSCs were successfully fabricated with the adoption of both polyimide/silver nanowires (PI/AgNW) and a conducting polymer PEDOT:PSS named PH1000 as the transparent conductive electrodes (TCEs). It is demonstrated that PI/AgNW is more suitable as a cathode rather than an anode in the viewpoint of its work function, photovoltaic performance, and simulations of optical properties. It is also found that the light incidence from PH1000 TCE can produce more plasmonic-enhanced photon absorption than the PI/AgNW electrode does, resulting in more high power conversion efficiency. Moreover, a high light transmittance of 33.8% and a decent efficiency of 3.88% are achieved for the whole all-flexible semitransparent device with only 9% decrease of resistance in PI/AgNW after 3000 bending cycles. This work illustrates that PI/AgNW has great potential and bright prospect in large-area OSC applications in the future. Full article
(This article belongs to the Special Issue Nanotechnology and Renewable Energy)
Show Figures

Figure 1

22 pages, 2994 KB  
Article
Lanthanide(III) Ions and 5-Methylisophthalate Ligand Based Coordination Polymers: An Insight into Their Photoluminescence Emission and Chemosensing for Nitroaromatic Molecules
by Oier Pajuelo-Corral, Laura Razquin-Bobillo, Sara Rojas, Jose Angel García, Duane Choquesillo-Lazarte, Alfonso Salinas-Castillo, Ricardo Hernández, Antonio Rodríguez-Diéguez and Javier Cepeda
Nanomaterials 2022, 12(22), 3977; https://doi.org/10.3390/nano12223977 - 11 Nov 2022
Cited by 5 | Viewed by 2856
Abstract
The work presented herein reports on the synthesis, structural and physico-chemical characterization, luminescence properties and luminescent sensing activity of a family of isostructural coordination polymers (CPs) with the general formula [Ln24-5Meip)3(DMF)]n (where Ln(III) = Sm ( [...] Read more.
The work presented herein reports on the synthesis, structural and physico-chemical characterization, luminescence properties and luminescent sensing activity of a family of isostructural coordination polymers (CPs) with the general formula [Ln24-5Meip)3(DMF)]n (where Ln(III) = Sm (1Sm), Eu (2Eu), Gd (3Gd), Tb (4Tb) and Yb (5Yb) and 5Meip = 5-methylisophthalate, DMF = N,N-dimethylmethanamide). Crystal structures consist of 3D frameworks tailored by the linkage between infinite lanthanide(III)-carboxylate rods by means of the tetradentate 5Meip ligands. Photoluminescence measurements in solid state at variable temperatures reveal the best-in-class properties based on the capacity of the 5Meip ligand to provide efficient energy transfers to the lanthanide(III) ions, which brings intense emissions in both the visible and near-infrared (NIR) regions. On the one hand, compound 5Yb displays characteristic lanthanide-centered bands in the NIR with sizeable intensity even at room temperature. Among the compounds emitting in the visible region, 4Tb presents a high QY of 63%, which may be explained according to computational calculations. At last, taking advantage of the good performance as well as high chemical and optical stability of 4Tb in water and methanol, its sensing capacity to detect 2,4,6-trinitrophenol (TNP) among other nitroaromatic-like explosives has been explored, obtaining high detection capacity (with Ksv around 105 M−1), low limit of detection (in the 10−6–10−7 M) and selectivity among other molecules (especially in methanol). Full article
(This article belongs to the Special Issue Theoretical Calculation and Molecular Modeling of Nanomaterials)
Show Figures

Graphical abstract

17 pages, 2416 KB  
Article
Surface Versus Bulk State Transitions in Inkjet-Printed All-Inorganic Perovskite Quantum Dot Films
by Thilini K. Ekanayaka, Dylan Richmond, Mason McCormick, Shashank R. Nandyala, Halle C. Helfrich, Alexander Sinitskii, Jon M. Pikal, Carolina C. Ilie, Peter A. Dowben and Andrew J. Yost
Nanomaterials 2022, 12(22), 3956; https://doi.org/10.3390/nano12223956 - 10 Nov 2022
Cited by 3 | Viewed by 2294
Abstract
The anion exchange of the halides, Br and I, is demonstrated through the direct mixing of two pure perovskite quantum dot solutions, CsPbBr3 and CsPbI3, and is shown to be both facile and result in a completely alloyed single phase [...] Read more.
The anion exchange of the halides, Br and I, is demonstrated through the direct mixing of two pure perovskite quantum dot solutions, CsPbBr3 and CsPbI3, and is shown to be both facile and result in a completely alloyed single phase mixed halide perovskite. Anion exchange is also observed in an interlayer printing method utilizing the pure, unalloyed perovskite solutions and a commercial inkjet printer. The halide exchange was confirmed by optical absorption spectroscopy, photoluminescent spectroscopy, X-ray diffraction, and X-ray photoemission spectroscopy characterization and indicates that alloying is thermodynamically favorable, while the formation of a clustered alloy is not favored. Additionally, a surface-to-bulk photoemission core level transition is observed for the Cs 4d photoemission feature, which indicates that the electronic structure of the surface is different from the bulk. Time resolved photoluminescence spectroscopy indicates the presence of multiple excitonic decay features, which is argued to originate from states residing at surface and bulk environments. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

11 pages, 3128 KB  
Article
Bowtie Nanoantenna Coupled Metal-Oxide-Silicon (p-Doped) Diode for 28.3 THz IR Rectification
by Nasim Al Islam and Sangjo Choi
Nanomaterials 2022, 12(22), 3940; https://doi.org/10.3390/nano12223940 - 9 Nov 2022
Cited by 3 | Viewed by 2584
Abstract
Low-temperature waste heat in the infrared (IR) wavelength region offers an opportunity to harvest power from waste energy and requires further investigation in order to find efficient conversion techniques. Although grating-coupled metal-oxide-semiconductor (MOS) diode devices offer efficient conversion from low and moderate-temperature thermal [...] Read more.
Low-temperature waste heat in the infrared (IR) wavelength region offers an opportunity to harvest power from waste energy and requires further investigation in order to find efficient conversion techniques. Although grating-coupled metal-oxide-semiconductor (MOS) diode devices offer efficient conversion from low and moderate-temperature thermal sources, the integration of such diodes with a nanoantenna structure has yet to be explored. We propose a bowtie nanoantenna coupled with a p-doped MOS diode for IR to direct current (DC) conversion without any bias voltage at 28.3 THz. The nanoantenna was designed and optimized to provide maximum field enhancement in a 4 nm-thick oxide layer at the resonant frequency. The device was fabricated following the complementary MOS (CMOS) fabrication process and measured in a custom DC and optical characterization setup using a 10.6 μm wavelength CO2 laser. The results reveal two different types of devices with linear and nonlinear I-V curves having kΩ and MΩ zero-bias resistance, respectively. The linear device generates a micron-level open-circuit voltage (Voc) with clear polarization dependence from the laser input, but the nonlinear case suffers from a weak noise-like signal. Finally, we analyze two types of devices using thermoelectric and tunneling effects and discuss the future direction of nanoantenna-integrated MOS devices for efficient IR harvesters. Full article
(This article belongs to the Special Issue Nanomaterials for Photonics: Advances and Applications)
Show Figures

Figure 1

11 pages, 517 KB  
Article
Electrical Conductive Properties of 3D-Printed Concrete Composite with Carbon Nanofibers
by Guido Goracci, David M. Salgado, Juan J. Gaitero and Jorge S. Dolado
Nanomaterials 2022, 12(22), 3939; https://doi.org/10.3390/nano12223939 - 8 Nov 2022
Cited by 8 | Viewed by 2391
Abstract
Electrical conductive properties in cement-based materials have received attention in recent years due to their key role in many innovative application (i.e., energy harvesting, deicing systems, electromagnetic shielding, and self-health monitoring). In this work, we explore the use 3D printing as an alternative [...] Read more.
Electrical conductive properties in cement-based materials have received attention in recent years due to their key role in many innovative application (i.e., energy harvesting, deicing systems, electromagnetic shielding, and self-health monitoring). In this work, we explore the use 3D printing as an alternative method for the preparation of electrical conductive concretes. With this aim, the conductive performance of cement composites with carbon nanofibers (0, 1, 2.5, and 4 wt%) was explored by means of a combination of thermogravimetric analysis (TGA) and dielectric spectroscopy (DS) and compared with that of specimens prepared with the traditional mold method. The combination of TGA and DS gave us a unique insight into the electrical conductive properties, measuring the specimens’ performance while monitoring the amount in water confined in the porous network. Experimental evidence of an additional contribution to the electrical conductivity due to sample preparation is provided. In particular, in this work, a strong correlation between water molecules in interconnected pores and the σ(ω) values is shown, originating, mainly, from the use of the 3D printing technique. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Applications)
Show Figures

Figure 1

15 pages, 2590 KB  
Article
Design and Development of Magnetic Iron Core Gold Nanoparticle-Based Fluorescent Multiplex Assay to Detect Salmonella
by Xinyi Zhao, Gwendoline Smith, Bilal Javed, Garret Dee, Yurii K. Gun’ko, James Curtin, Hugh J. Byrne, Christine O’Connor and Furong Tian
Nanomaterials 2022, 12(21), 3917; https://doi.org/10.3390/nano12213917 - 7 Nov 2022
Cited by 12 | Viewed by 3394
Abstract
Salmonella is a bacterial pathogen which is one of the leading causes of severe illnesses in humans. The current study involved the design and development of two methods, respectively using iron oxide nanoparticle (IONP) and iron core gold nanoparticle (ICGNP), conjugated with the [...] Read more.
Salmonella is a bacterial pathogen which is one of the leading causes of severe illnesses in humans. The current study involved the design and development of two methods, respectively using iron oxide nanoparticle (IONP) and iron core gold nanoparticle (ICGNP), conjugated with the Salmonella antibody and the fluorophore, 4-Methylumbelliferyl Caprylate (4-MUCAP), used as an indicator, for its selective and sensitive detection in contaminated food products. Twenty double-blind beverage samples, spiked with Salmonella enteritidis, Staphylococcus aureus, and Escherichia coli, were prepared in sterile Eppendorf® tubes at room temperature. The gold layer and spikes of ICGNPs increased the surface areas. The ratio of the surface area is 0.76 (IONPs/ICGNPs). The comparative sensitivity and specificity of the IONP-based and the ICGNP-based methods to detect Salmonella were determined. The ICGNP method shows the limit of detection is 32 Salmonella per mL. The ICGNPs had an 83.3% sensitivity and a 92.9% specificity value for the presence and detection of Salmonella. The IONP method resulted in a limit of detection of 150 Salmonella per mL, and a 66.7% sensitivity and 83.3% specificity for the presence and detection of Salmonella. The higher surface area of ICGNPs increases the efficiency of detection. The monitoring of Salmonella can thus be achieved by a rapid magnetic fluorescent assay using a smartphone for image capture and analyze, providing quantitative results. The findings from the present study would help to detect Salmonella rapidly in water. It can improve the microbial quality of water and food safety due to the presence of Salmonella in the water environment. Full article
Show Figures

Figure 1

13 pages, 15815 KB  
Article
Fe3O4-Nanoparticle-Doped Epoxy Resin as a Detachable Adhesive by Electromagnetic Heating for GFRP Single-Lap Joints
by Xoan F. Sánchez-Romate, Antonio del Bosque, Anabel Crespo, Rafael Alonso, María Sánchez and Alejandro Ureña
Nanomaterials 2022, 12(21), 3913; https://doi.org/10.3390/nano12213913 - 6 Nov 2022
Cited by 2 | Viewed by 2162
Abstract
An adhesive based on a Fe3O4-nanoparticle (MNP)-doped epoxy resin was proposed for the development of detachable adhesive joints with GFRP substrates. The analysis of cryofractures showed that the increasing MNP content promotes a higher presence of larger aggregates and [...] Read more.
An adhesive based on a Fe3O4-nanoparticle (MNP)-doped epoxy resin was proposed for the development of detachable adhesive joints with GFRP substrates. The analysis of cryofractures showed that the increasing MNP content promotes a higher presence of larger aggregates and a lower sedimentation of nanoparticles due to the higher viscosity of the mixture. In this regard, the inclusion of expandable microspheres (MS) induces a more uniform dispersion of MNPs, reducing their sedimentation. The capability of the proposed adhesives for electromagnetic (EM) heating was also evaluated, with increases in temperature of around 100 °C at 750 A, enough to reach the Tg of the polymer required to facilitate the adhesive detachment, which is around 80 °C. Finally, the lap shear strength (LSS) of 14 and 20 wt.% MNP samples was evaluated in a single-lap shear joint with simultaneous EM heating. The LSS values were reduced by 60–80% at 750 A, thus promoting successful adhesive joint detachment under EM heating. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

12 pages, 2934 KB  
Article
Reduced Thermal Conductivity in Nanostructured AgSbTe2 Thermoelectric Material, Obtained by Arc-Melting
by Javier Gainza, Federico Serrano-Sánchez, Oscar J. Dura, Norbert M. Nemes, Jose Luis Martínez, María Teresa Fernández-Díaz and José Antonio Alonso
Nanomaterials 2022, 12(21), 3910; https://doi.org/10.3390/nano12213910 - 5 Nov 2022
Cited by 5 | Viewed by 3052
Abstract
AgSbTe2 intermetallic compound is a promising thermoelectric material. It has also been described as necessary to obtain LAST and TAGS alloys, some of the best performing thermoelectrics of the last decades. Due to the random location of Ag and Sb atoms in [...] Read more.
AgSbTe2 intermetallic compound is a promising thermoelectric material. It has also been described as necessary to obtain LAST and TAGS alloys, some of the best performing thermoelectrics of the last decades. Due to the random location of Ag and Sb atoms in the crystal structure, the electronic structure is highly influenced by the atomic ordering of these atoms and makes the accurate determination of the Ag/Sb occupancy of paramount importance. We report on the synthesis of polycrystalline AgSbTe2 by arc-melting, yielding nanostructured dense pellets. SEM images show a conspicuous layered nanostructuration, with a layer thickness of 25–30 nm. Neutron powder diffraction data show that AgSbTe2 crystalizes in the cubic Pm-3m space group, with a slight deficiency of Te, probably due to volatilization during the arc-melting process. The transport properties show some anomalies at ~600 K, which can be related to the onset temperature for atomic ordering. The average thermoelectric figure of merit remains around ~0.6 from ~550 up to ~680 K. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials for Thermoelectric Applications)
Show Figures

Figure 1

10 pages, 5196 KB  
Article
Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study
by Bin Liu, Wan-Sheng Su and Bi-Ru Wu
Nanomaterials 2022, 12(21), 3898; https://doi.org/10.3390/nano12213898 - 4 Nov 2022
Cited by 3 | Viewed by 2528
Abstract
Element doping is a universal way to improve the electronic and optical properties of two-dimensional (2D) materials. Here, we investigate the influence of group−ⅣA element (C, Si, Ge, Sn, and Pb) doping on the electronic and optical properties of the ZnS monolayer with [...] Read more.
Element doping is a universal way to improve the electronic and optical properties of two-dimensional (2D) materials. Here, we investigate the influence of group−ⅣA element (C, Si, Ge, Sn, and Pb) doping on the electronic and optical properties of the ZnS monolayer with a tetragonal phase by using first-principles calculations. The results indicate that the doping atoms tend to form tetrahedral structures with neighboring S atoms. In these doped models, the formation energies are all negative, indicating that the formation processes of the doped models will release energy. The formation energy is smallest for C−doped ZnS and gradually increases with the metallicity of the doping element. The doped ZnS monolayer retains a direct band gap, with this band gap changing little in other element doping cases. Moreover, intermediate states are observed that are induced by the sp3 hybridization from the doping atoms and S atoms. Such intermediate states expand the optical absorption range into the visible spectrum. Our findings provide an in-depth understanding of the electronic and optical properties of the ZnS monolayer and the associated doping structures, which is helpful for application in optoelectronic devices. Full article
(This article belongs to the Special Issue First-Principles Investigations of Low-Dimensional Nanomaterials)
Show Figures

Figure 1

13 pages, 2215 KB  
Article
Cancer Diagnosis Using Terahertz-Graphene-Metasurface-Based Biosensor with Dual-Resonance Response
by Chunjian Tan, Shaogang Wang, Shizhen Li, Xu Liu, Jia Wei, Guoqi Zhang and Huaiyu Ye
Nanomaterials 2022, 12(21), 3889; https://doi.org/10.3390/nano12213889 - 3 Nov 2022
Cited by 47 | Viewed by 3721
Abstract
Owing to the outstanding physical properties of graphene, its biosensing applications implemented by the terahertz metasurface are widely concerned and studied. Here, we present a novel design of the graphene metasurface, which consists of an individual graphene ring and an H-shaped graphene structure. [...] Read more.
Owing to the outstanding physical properties of graphene, its biosensing applications implemented by the terahertz metasurface are widely concerned and studied. Here, we present a novel design of the graphene metasurface, which consists of an individual graphene ring and an H-shaped graphene structure. The graphene metasurface exhibits a dual-resonance response, whose resonance frequency strongly varies with the geometrical parameters of the proposed metasurface, the carrier density of graphene, and the analyte composition. The transparency window, including width and position, can be artificially controlled by adjusting the geometrical parameters or the Fermi energy. Furthermore, the sensing parameters of the graphene metasurface for cancerous and normal cells are investigated, focusing on two factors, namely cell quantity and position on the metasurface. The simulated results clearly show that the theoretical sensitivity, figure of merit, and quantity of the graphene metasurface for breast cells reach 1.21 THz/RIU, 2.75 RIU1, and 2.43, respectively. Our findings may open up new avenues for promising applications in the diagnosis of cancers. Full article
(This article belongs to the Topic Advances and Applications of 2D Materials, 2nd Volume)
Show Figures

Figure 1

22 pages, 4019 KB  
Review
Recent Development of Carbon-Nanotube-Based Solar Heat Absorption Devices and Their Application
by Saiful Islam and Hiroshi Furuta
Nanomaterials 2022, 12(21), 3871; https://doi.org/10.3390/nano12213871 - 2 Nov 2022
Cited by 15 | Viewed by 5147
Abstract
Population growth and the current global weather patterns have heightened the need to optimize solar energy harvesting. Solar-powered water filtration, electricity generation, and water heating have gradually multiplied as viable sources of fresh water and power generation, especially for isolated places without access [...] Read more.
Population growth and the current global weather patterns have heightened the need to optimize solar energy harvesting. Solar-powered water filtration, electricity generation, and water heating have gradually multiplied as viable sources of fresh water and power generation, especially for isolated places without access to water and energy. The unique thermal and optical characteristics of carbon nanotubes (CNTs) enable their use as efficient solar absorbers with enhanced overall photothermal conversion efficiency under varying solar light intensities. Due to their exceptional optical absorption efficiency, low cost, environmental friendliness, and natural carbon availability, CNTs have attracted intense scientific interest in the production of solar thermal systems. In this review study, we evaluated CNT-based water purification, thermoelectric generation, and water heating systems under varying solar levels of illumination, ranging from domestic applications to industrial usage. The use of CNT composites or multilayered structures is also reviewed in relation to solar heat absorber applications. An aerogel containing CNTs was able to ameliorate water filtering performance at low solar intensities. CNTs with a Fresnel lens improved thermoelectric output power at high solar intensity. Solar water heating devices utilizing a nanofluid composed of CNTs proved to be the most effective. In this review, we also aimed to identify the most relevant challenges and promising opportunities in relation to CNT-based solar thermal devices. Full article
(This article belongs to the Special Issue State-of-the-Art 2D and Carbon Nanomaterials in Japan)
Show Figures

Figure 1

43 pages, 4139 KB  
Review
Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications
by Ruohua Ren, Chiaxin Lim, Shiqi Li, Yajun Wang, Jiangning Song, Tsung-Wu Lin, Benjamin W. Muir, Hsien-Yi Hsu and Hsin-Hui Shen
Nanomaterials 2022, 12(21), 3855; https://doi.org/10.3390/nano12213855 - 1 Nov 2022
Cited by 41 | Viewed by 5373
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to [...] Read more.
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation. Full article
(This article belongs to the Special Issue Advanced Nanomaterials in Biomedical Application)
Show Figures

Graphical abstract

7 pages, 2426 KB  
Review
Role of Interdiffusion and Segregation during the Life of Indium Gallium Arsenide Quantum Dots, from Cradle to Grave
by Thomas Walther
Nanomaterials 2022, 12(21), 3850; https://doi.org/10.3390/nano12213850 - 31 Oct 2022
Cited by 4 | Viewed by 1972
Abstract
This article summarizes our understanding of the interplay between diffusion and segregation during epitaxial growth of InGaAs and InAs quantum dots. These quantum dots form spontaneously on flat GaAs (001) single-crystalline substrates by the so-called Stranski-Krastanow growth mechanism once a sufficient amount of [...] Read more.
This article summarizes our understanding of the interplay between diffusion and segregation during epitaxial growth of InGaAs and InAs quantum dots. These quantum dots form spontaneously on flat GaAs (001) single-crystalline substrates by the so-called Stranski-Krastanow growth mechanism once a sufficient amount of indium has accumulated on the surface. Initially a perfectly flat wetting layer is formed. This strained layer then starts to roughen as strain increases, leading first to small, long-range surface undulations and then to tiny coherent islands. These continue to grow, accumulating indium both from the underlying wetting layer by lateral indium segregation and from within these islands by vertical segregation, which for InGaAs deposition results in an indium-enriched InGaAs alloy in the centre of the quantum dots. For pure InAs deposition, interdiffusion also results in an InGaAs alloy. Further deposition can lead to the formation of misfit dislocations that nucleate at the edges of the islands and are generally sought to be avoided. Overgrowth by GaAs or InGaAs alloys with low indium content commences preferentially between the islands, avoiding their strained edges, which initially leads to trench formation. Further deposition is necessary to cap these quantum dots effectively and to re-gain an almost flat surface that can then be used for subsequent deposition of multiple layers of quantum dots as needed for many optoelectronic devices. Full article
(This article belongs to the Special Issue Transmission Electron Microscopy for Nanomaterials Research Advances)
Show Figures

Figure 1

10 pages, 3766 KB  
Article
Hot Electron Extraction in SWCNT/TiO2 for Photocatalytic H2 Evolution from Water
by Masahiro Yamagami, Tomoyuki Tajima, Zihao Zhang, Jun Kano, Ki-ichi Yashima, Takana Matsubayashi, Huyen Khanh Nguyen, Naoto Nishiyama, Tomoya Hayashi and Yutaka Takaguchi
Nanomaterials 2022, 12(21), 3826; https://doi.org/10.3390/nano12213826 - 29 Oct 2022
Cited by 4 | Viewed by 2753
Abstract
Single-walled carbon nanotube (SWCNT)/TiO2 hybrids were synthesized using 1,10-bis(decyloxy)decane-core PAMAM dendrimer as a molecular glue. Upon photoirradiation of a water dispersion of SWCNT/TiO2 hybrids with visible light (λ > 422 nm), the hydrogen evolution reaction proceeded at a rate of 0.95 [...] Read more.
Single-walled carbon nanotube (SWCNT)/TiO2 hybrids were synthesized using 1,10-bis(decyloxy)decane-core PAMAM dendrimer as a molecular glue. Upon photoirradiation of a water dispersion of SWCNT/TiO2 hybrids with visible light (λ > 422 nm), the hydrogen evolution reaction proceeded at a rate of 0.95 mmol/h·g in the presence of a sacrificial agent (1-benzyl-1,4-dihydronicotinamide, BNAH). External quantum yields (EQYs) of the hydrogen production reaction photosensitized by (6,5), (7,5), and (8,3) tubes were estimated to be 5.5%, 3.6%, and 2.2%, respectively, using monochromatic lights corresponding to their E22 absorptions (570 nm, 650 nm, and 680 nm). This order of EQYs (i.e., (6,5) > (7,5) > (8,3)SWCNTs) exhibited the dependence on the C2 energy level of SWCNT for EQY and proved the hot electron extraction pathway. Full article
(This article belongs to the Special Issue State-of-the-Art 2D and Carbon Nanomaterials in Japan)
Show Figures

Graphical abstract

13 pages, 4181 KB  
Article
Fabrication of Cu Micromembrane as a Flexible Electrode
by Bo-Yao Sun, Wai-Hong Cheang, Shih-Cheng Chou, Jung-Chih Chiao and Pu-Wei Wu
Nanomaterials 2022, 12(21), 3829; https://doi.org/10.3390/nano12213829 - 29 Oct 2022
Cited by 1 | Viewed by 2058
Abstract
A Cu micromembrane is successfully fabricated and validated as a porous flexible electrode. The Cu micromembrane is prepared by functionalizing individual polypropylene (PP) fibers in a polypropylene micromembrane (PPMM) using a mixture of polydopamine (PDA) and polyethyleneimine (PEI). The mixture of PDA and [...] Read more.
A Cu micromembrane is successfully fabricated and validated as a porous flexible electrode. The Cu micromembrane is prepared by functionalizing individual polypropylene (PP) fibers in a polypropylene micromembrane (PPMM) using a mixture of polydopamine (PDA) and polyethyleneimine (PEI). The mixture of PDA and PEI provides adhesive, wetting, and reducing functionalities that facilitate subsequent Ag activation and Cu electroless plating. Scanning electron microscopy reveals conformal deposition of Cu on individual PP fibers. Porometer analysis indicates that the porous nature of PPMM is properly maintained. The Cu micromembrane demonstrates impressive electrical conductivities in both the X direction (1.04 ± 0.21 S/cm) and Z direction (2.99 ± 0.54 × 10−3 S/cm). In addition, its tensile strength and strain are better than those of pristine PPMM. The Cu micromembrane is flexible and mechanically robust enough to sustain 10,000 bending cycles with moderate deterioration. Thermogravimetric analysis shows a thermal stability of 400 °C and an effective Cu loading of 5.36 mg/cm2. Cyclic voltammetric measurements reveal that the Cu micromembrane has an electrochemical surface area of 277.8 cm2 in a 1 cm2 geometric area (a roughness factor of 227.81), a value that is 45 times greater than that of planar Cu foil. Full article
(This article belongs to the Special Issue Latest Advances in Inorganic Nanomaterials)
Show Figures

Figure 1

17 pages, 4229 KB  
Article
Photocatalytic Hydrogen Production from Glycerol Aqueous Solutions as Sustainable Feedstocks Using Zr-Based UiO-66 Materials under Simulated Sunlight Irradiation
by Celia M. Rueda-Navarro, Belén Ferrer, Herme G. Baldoví and Sergio Navalón
Nanomaterials 2022, 12(21), 3808; https://doi.org/10.3390/nano12213808 - 28 Oct 2022
Cited by 16 | Viewed by 3424
Abstract
There is an increasing interest in developing cost-effective technologies to produce hydrogen from sustainable resources. Herein we show a comprehensive study on the use of metal–organic frameworks (MOFs) as heterogeneous photocatalysts for H2 generation from photoreforming of glycerol aqueous solutions under simulated [...] Read more.
There is an increasing interest in developing cost-effective technologies to produce hydrogen from sustainable resources. Herein we show a comprehensive study on the use of metal–organic frameworks (MOFs) as heterogeneous photocatalysts for H2 generation from photoreforming of glycerol aqueous solutions under simulated sunlight irradiation. The list of materials employed in this study include some of the benchmark Zr-MOFs such as UiO-66(Zr)-X (X: H, NO2, NH2) as well as MIL-125(Ti)-NH2 as the reference Ti-MOF. Among these solids, UiO-66(Zr)-NH2 exhibits the highest photocatalytic H2 production, and this observation is attributed to its adequate energy level. The photocatalytic activity of UiO-66(Zr)-NH2 can be increased by deposition of small Pt NPs as the reference noble metal co-catalyst within the MOF network. This photocatalyst is effectively used for H2 generation at least for 70 h without loss of activity. The crystallinity of MOF and Pt particle size were maintained as revealed by powder X-ray diffraction and transmission electron microscopy measurements, respectively. Evidence in support of the occurrence of photoinduced charge separation with Pt@UiO-66(Zr)-NH2 is provided from transient absorption and photoluminescence spectroscopies together with photocurrent measurements. This study exemplifies the possibility of using MOFs as photocatalysts for the solar-driven H2 generation using sustainable feedstocks. Full article
Show Figures

Figure 1

23 pages, 6604 KB  
Article
Adsorption of Peptides onto Carbon Nanotubes Grafted with Poly(ethylene Oxide) Chains: A Molecular Dynamics Simulation Study
by Zuzana Benková, Peter Čakánek and Maria Natália D. S. Cordeiro
Nanomaterials 2022, 12(21), 3795; https://doi.org/10.3390/nano12213795 - 27 Oct 2022
Cited by 3 | Viewed by 2041
Abstract
Carbon nanotubes (CNTs) display exceptional properties that predispose them to wide use in technological or biomedical applications. To remove the toxicity of CNTs and to protect them against undesired protein adsorption, coverage of the CNT sidewall with poly(ethylene oxide) (PEO) is often considered. [...] Read more.
Carbon nanotubes (CNTs) display exceptional properties that predispose them to wide use in technological or biomedical applications. To remove the toxicity of CNTs and to protect them against undesired protein adsorption, coverage of the CNT sidewall with poly(ethylene oxide) (PEO) is often considered. However, controversial results on the antifouling effectiveness of PEO layers have been reported so far. In this work, the interactions of pristine CNT and CNT covered with the PEO chains at different grafting densities with polyglycine, polyserine, and polyvaline are studied using molecular dynamics simulations in vacuum, water, and saline environments. The peptides are adsorbed on CNT in all investigated systems; however, the adsorption strength is reduced in aqueous environments. Save for one case, addition of NaCl at a physiological concentration to water does not appreciably influence the adsorption and structure of the peptides or the grafted PEO layer. It turns out that the flexibility of the peptide backbone allows the peptide to adopt more asymmetric conformations which may be inserted deeper into the grafted PEO layer. Water molecules disrupt the internal hydrogen bonds in the peptides, as well as the hydrogen bonds formed between the peptides and the PEO chains. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

16 pages, 6096 KB  
Article
Photocatalytic Investigation of Aerosol-Assisted Atmospheric Pressure Plasma Deposited Hybrid TiO2 Containing Nanocomposite Coatings
by Chiara Lo Porto, Massimo Dell’Edera, Ilaria De Pasquale, Antonella Milella, Francesco Fracassi, Maria Lucia Curri, Roberto Comparelli and Fabio Palumbo
Nanomaterials 2022, 12(21), 3758; https://doi.org/10.3390/nano12213758 - 26 Oct 2022
Cited by 5 | Viewed by 2026
Abstract
We report on the aerosol-assisted atmospheric-pressure plasma deposition onto a stainless-steel woven mesh of a thin nanocomposite coating based on TiO2 nanoparticles hosted in a hybrid organic–inorganic matrix, starting from nanoparticles dispersed in a mixture of hexamethyldisiloxane and isopropyl alcohol. The stainless-steel [...] Read more.
We report on the aerosol-assisted atmospheric-pressure plasma deposition onto a stainless-steel woven mesh of a thin nanocomposite coating based on TiO2 nanoparticles hosted in a hybrid organic–inorganic matrix, starting from nanoparticles dispersed in a mixture of hexamethyldisiloxane and isopropyl alcohol. The stainless-steel mesh was selected as an effective support for the possible future technological application of the coating for photocatalytically assisted water depollution. The prepared coatings were thoroughly investigated from the chemical and morphological points of view and were demonstrated to be photocatalytically active in the degradation of an organic molecule, used as a pollutant model, in water upon UV light irradiation. In order to optimize the photocatalytic performance, different approaches were investigated for the coating’s realization, namely (i) the control of the deposition time and (ii) the application of a postdeposition O2 plasma treatment on the pristine coatings. Both strategies were found to be able to increase the photocatalytic activity, and, remarkably, their combination resulted in a further enhancement of the photoactivity. Indeed, the proposed combined approach allowed a three-fold increase in the kinetic constant of the degradation reaction of the model dye methylene blue with respect to the pristine coating. Interestingly, the chemical and morphological characterizations of all the prepared coatings were able to account for the enhancement of the photocatalytic performance. Indeed, the presence of the TiO2 nanoparticles on the outmost surface of the film confirmed the accessibility of the photocatalytic sites in the nanocomposite and reasonably explained the enhanced photocatalytic performance. In addition, the sustained photoactivity (>5 cycles of use) of the nanocomposites was demonstrated. Full article
Show Figures

Figure 1

14 pages, 2230 KB  
Article
On the Development of Nanocomposite Covalent Associative Networks Based on Polycaprolactone and Reduced Graphite Oxide
by Alberto Vallin, Daniele Battegazzore, Giacomo Damonte, Alberto Fina and Orietta Monticelli
Nanomaterials 2022, 12(21), 3744; https://doi.org/10.3390/nano12213744 - 25 Oct 2022
Cited by 8 | Viewed by 1994
Abstract
In this work, the development of nanocomposite systems based on reduced graphite oxide (rGO) was combined with the development of crosslinked materials characterized by dynamic covalent bonds, i.e., a covalent associative network, starting from ad-hoc synthesized hydroxyl terminated polycaprolactone (PCL-OH). The crosslinking reaction [...] Read more.
In this work, the development of nanocomposite systems based on reduced graphite oxide (rGO) was combined with the development of crosslinked materials characterized by dynamic covalent bonds, i.e., a covalent associative network, starting from ad-hoc synthesized hydroxyl terminated polycaprolactone (PCL-OH). The crosslinking reaction was carried out using methylenediphenyl diisocyanate (MDI) to create systems capable of bond exchanges via transesterification and transcarbamoylation reactions, in the presence of stannous octoate as a catalyst. The above materials were prepared at two different temperatures (120 and 200 °C) and two PCL-OH:MDI ratios. FT-IR measurements proved the formation of urethane bonds in all the prepared samples. Crosslinking was demonstrated by contacting the samples with a solvent capable of dissolving the star-shaped PCL. These tests showed a significant increase in the crosslinked fraction with increasing the temperature and the PCL-OH:MDI ratio. In order to evidence the effect of crosslinking on rGO dispersion and the final properties of the material, a nanocomposite sample was also prepared using a linear commercial PCL, with the nanofiller mixed under the same conditions used to develop the crosslinked systems. The dispersion of rGO, which was investigated using FE-SEM measurements, was similar in the different systems prepared, indicating that the crosslinking process had a minor effect on the dispersibility of the nanofiller. As far as the thermal properties are concerned, the DSC measurements of the prepared samples showed that the crosslinking leads to a decrease in the crystallinity of the polymer, a phenomenon which was particularly evident in the sample prepared at 200 °C with a PCL-OH: MDI ratio of 1:1.33 and was related to the decrease in the polymer chain mobility. Moreover, rGO was found to act as a nucleating agent and increase the crystallization temperature of the nanocomposite sample based on linear commercial PCL, while the contribution of rGO in the crosslinked nanocomposite samples was minor. Rheological measurements confirmed the crosslinking of the PCL-OH system which generates a solid-like behavior depending on the PCL-OH:MDI ratio used. The presence of rGO during crosslinking generated a further huge increase in the viscosity of the melt with a remarkable solid-like behavior, confirming a strong interaction between rGO and crosslinked PCL. Finally, the prepared nanocomposites exhibited self-healing and recyclability properties, thus meeting the requirements for sustainable materials. Full article
Show Figures

Figure 1

15 pages, 3754 KB  
Article
Electrostatic and Environmental Control of the Trion Fine Structure in Transition Metal Dichalcogenide Monolayers
by Yaroslav V. Zhumagulov, Alexei Vagov, Dmitry R. Gulevich and Vasili Perebeinos
Nanomaterials 2022, 12(21), 3728; https://doi.org/10.3390/nano12213728 - 24 Oct 2022
Cited by 2 | Viewed by 2405
Abstract
Charged excitons or trions are essential for optical spectra in low-dimensional doped monolayers (ML) of transitional metal dichalcogenides (TMDC). Using a direct diagonalization of the three-body Hamiltonian, we calculate the low-lying trion states in four types of TMDC MLs as a function of [...] Read more.
Charged excitons or trions are essential for optical spectra in low-dimensional doped monolayers (ML) of transitional metal dichalcogenides (TMDC). Using a direct diagonalization of the three-body Hamiltonian, we calculate the low-lying trion states in four types of TMDC MLs as a function of doping and dielectric environment. We show that the fine structure of the trion is the result of the interplay between the spin-valley fine structure of the single-particle bands and the exchange interaction. We demonstrate that by variations of the doping and dielectric environment, the fine structure of the trion energy can be tuned, leading to anticrossing of the bright and dark states, with substantial implications for the optical spectra of the TMDC ML. Full article
(This article belongs to the Special Issue Recent Advances in Optical Spectroscopy of Layered Materials)
Show Figures

Figure 1

19 pages, 7216 KB  
Article
Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size
by Shu Zhang, Bing Wei, Qun Wei, Renxian Li, Shiguo Chen and Ningning Song
Nanomaterials 2022, 12(21), 3723; https://doi.org/10.3390/nano12213723 - 23 Oct 2022
Cited by 3 | Viewed by 1696
Abstract
In the framework of Generalized Lorenz–Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is [...] Read more.
In the framework of Generalized Lorenz–Mie theory (GLMT), based on the expansion results of electromagnetic field radiation components of Bessel pincer light sheets beam acting on dielectric particles of arbitrary size, the expression of radiation force components in a Cartesian coordinate system is obtained by using the Maxwell stress tensor method. On the one hand, the effects of the refractive index and the equivalent radius of spherical particles on the distribution of radiation force are discussed; On the other hand, the influence of beam scaling parameter and beam order of Bessel pincer light sheets beam on the distribution of radiation force are investigated. The results indicate that the changes of particle’s refractive index and effective radius only affect the distribution of radiation force. However, the beam scaling parameter and beam order of Bessel pincer light sheets beam have a very sharp impact on the convergence position, distribution range and bending degree far away from the wave source of the radiation force. Single-beam optical tweezers using the self-focusing and self-bending Bessel pincer light-sheets beam are crucial for applications such as single molecule biophysics, optical manipulation and particle separation/clearing. Full article
(This article belongs to the Special Issue Research of Photonics at the Nanometer Scale)
Show Figures

Figure 1

9 pages, 1702 KB  
Article
Design of Reflective Polarization Rotator in Silicon Waveguide
by Li-Ying Liu, Hong-Chang Huang, Chu-Wen Chen, Fu-Li Hsiao, Yu-Chieh Cheng and Chii-Chang Chen
Nanomaterials 2022, 12(20), 3694; https://doi.org/10.3390/nano12203694 - 21 Oct 2022
Cited by 4 | Viewed by 3452
Abstract
In this work, we investigate theoretically the reflective polarization rotator in a silicon waveguide formed by periodically arranged rectangular air holes. The etched air holes generate the large birefringence for the waveguide. The effective refractive index of the non-etched waveguide is isotropic. The [...] Read more.
In this work, we investigate theoretically the reflective polarization rotator in a silicon waveguide formed by periodically arranged rectangular air holes. The etched air holes generate the large birefringence for the waveguide. The effective refractive index of the non-etched waveguide is isotropic. The structure can be regarded as a stack of alternating birefringent waveplates and isotropic material similar to the folded Šolc filter. The band structure of the stack of birefringent waveplates with isotropic background is calculated to confirm the fact that high reflection peaks in the reflection spectra of the waveguide result from the photonic bandgap. The polarization extinction ratio for the reflected light is 15.8 dB. The highest reflectivity of the device is 93.1%, and the device length is 9.21 μm. An ultra-wide operation bandwidth from 1450.3 to 1621.8 nm can be achieved. Full article
(This article belongs to the Special Issue Nanophotonics and Integrated Optics Devices)
Show Figures

Figure 1

10 pages, 23224 KB  
Article
Biofilm Degradation by Seashell-Derived Calcium Hydroxide and Hydrogen Peroxide
by Yuuki Hata, Yuta Bouda, Sumiyo Hiruma, Hiromi Miyazaki and Shingo Nakamura
Nanomaterials 2022, 12(20), 3681; https://doi.org/10.3390/nano12203681 - 20 Oct 2022
Cited by 6 | Viewed by 2698
Abstract
Microbial cells and self-produced extracellular polymeric substances assembled to form biofilms that are difficult to remove from surfaces, causing problems in various fields. Seashell-derived calcium hydroxide, a sustainable inorganic material, has shown high bactericidal activity even for biofilms due to its alkalinity. However, [...] Read more.
Microbial cells and self-produced extracellular polymeric substances assembled to form biofilms that are difficult to remove from surfaces, causing problems in various fields. Seashell-derived calcium hydroxide, a sustainable inorganic material, has shown high bactericidal activity even for biofilms due to its alkalinity. However, its biofilm removal efficacy is relatively low. Herein, we report a biofilm degradation strategy that includes two environmentally friendly reagents: seashell-derived calcium hydroxide and hydrogen peroxide. A biofilm model of Escherichia coli was prepared in vitro, treated with calcium hydroxide–hydrogen peroxide solutions, and semi-quantified by the crystal violet stain method. The treatment significantly improved biofilm removal efficacy compared with treatments by calcium hydroxide alone and hydrogen peroxide alone. The mechanism was elucidated from calcium hydroxide–hydrogen peroxide solutions, which suggested that perhydroxyl anion and hydroxyl radical generated from hydrogen peroxide, as well as the alkalinity of calcium hydroxide, enhanced biofilm degradation. This study showed that concurrent use of other reagents, such as hydrogen peroxide, is a promising strategy for improving the biofilm degradation activity of seashell-derived calcium hydroxide and will contribute to developing efficient biofilm removal methods. Full article
Show Figures

Figure 1

11 pages, 5258 KB  
Article
Laser-Induced Forward Transferred Optical Scattering Nanosilica for Transparent Displays
by Ruo-Zhou Li, Mingqing Yang, Lvjiu Guo, Ke Qu, Tong Jian, Ying Yu and Jing Yan
Nanomaterials 2022, 12(20), 3674; https://doi.org/10.3390/nano12203674 - 19 Oct 2022
Cited by 4 | Viewed by 2649
Abstract
Laser printing has become a promising alternative for large-scale fabrication of functional devices. Here, laser-induced forward transfer (LIFT) of nanosilica was successfully achieved using a lower-cost nanosecond laser with a center wavelength of 1064 nm. To enhance the light absorption of silica, a [...] Read more.
Laser printing has become a promising alternative for large-scale fabrication of functional devices. Here, laser-induced forward transfer (LIFT) of nanosilica was successfully achieved using a lower-cost nanosecond laser with a center wavelength of 1064 nm. To enhance the light absorption of silica, a small amount of graphene oxide (GO) was added to the fumed silica. Investigations were conducted to give an insight into the role of GO in the LIFT process. Pattern deposition was achieved with a minimum line width of 221 μm. The scattering can be tuned from ~2.5% to ~17.5% by changing the laser fluence. The patternable transparent display based on laser transferred nanosilica (LTNS) film was also demonstrated, showing its capability to deliver information on multiple levels. This LIFT based technique promotes fast, flexible, and low-cost manufacturing of scattering-based translucent screens or patterns for transparent displays. Full article
Show Figures

Figure 1

11 pages, 10475 KB  
Article
Electric-Field Control in Phosphorene-Based Heterostructures
by Calin-Andrei Pantis-Simut, Amanda Teodora Preda, Nicolae Filipoiu, Alaa Allosh and George Alexandru Nemnes
Nanomaterials 2022, 12(20), 3650; https://doi.org/10.3390/nano12203650 - 18 Oct 2022
Cited by 4 | Viewed by 2482
Abstract
Phosphorene is a graphene-like material with an intermediate band gap, in contrast to zero-gap graphene and large-gap dichalcogenides or hexagonal boron nitride (hBN), which makes it more suitable for nanoelectronic devices. However, inducing band-gap modulation in freestanding phosphorene nanoribbons (PNRs) is problematic, as [...] Read more.
Phosphorene is a graphene-like material with an intermediate band gap, in contrast to zero-gap graphene and large-gap dichalcogenides or hexagonal boron nitride (hBN), which makes it more suitable for nanoelectronic devices. However, inducing band-gap modulation in freestanding phosphorene nanoribbons (PNRs) is problematic, as high in-plane electric fields are necessary to close the gap. We perform here a detailed investigation concerning the substrate influence on the electric-field control exerted by an external gate, using the density functional theory–non-equilibrium Green’s functions (DFT-NEGF) framework. It is established that the interaction with a hexagonal boron nitride supporting layer significantly enhances the gap modulation. Furthermore, we address the issue of contacting the PNRs, by using conducting graphene nanoribbons embedded in the support hBN layer. Within this setup, a measurable spin polarization is achieved owing to the anti-ferromagnetic coupling between the edges of the graphene nanoribbons. Full article
(This article belongs to the Special Issue Applied Physics and Nanomaterials)
Show Figures

Figure 1

11 pages, 2578 KB  
Article
B-Site Fe/Re Cation-Ordering Control and Its Influence on the Magnetic Properties of Sr2FeReO6 Oxide Powders
by Zhuowei Wang, Qingkai Tang, Zhiwei Wu, Kang Yi, Jiayuan Gu and Xinhua Zhu
Nanomaterials 2022, 12(20), 3640; https://doi.org/10.3390/nano12203640 - 17 Oct 2022
Cited by 4 | Viewed by 2013
Abstract
Double-perovskite oxide Sr2FeReO6 (SFRO) powders have promising applications in spintronics due to their half-metallicity and high Curie temperature. However, their magnetic properties suffer from the existence of anti-site defects (ASDs). Here, we report on the synthesis of SFRO powders by [...] Read more.
Double-perovskite oxide Sr2FeReO6 (SFRO) powders have promising applications in spintronics due to their half-metallicity and high Curie temperature. However, their magnetic properties suffer from the existence of anti-site defects (ASDs). Here, we report on the synthesis of SFRO powders by the sol–gel process. The B-site cationic ordering degree (η) and its influence on magnetic properties are investigated. The results demonstrate that the η value is well controlled by the annealing temperature, which is as high as 85% when annealing at 1100 °C. However, the annealing atmospheres (e.g., N2 or Ar) have little effect on the η value. At room temperature, the SFRO powders crystallize in a tetragonal crystal structure (space group I4/m). They have a relatively uniform morphology and the molar ratios of Sr, Fe, and Re elements are close to 2:1:1. XPS spectra identified that Sr, Fe, and Re elements presented as Sr2+, Fe3+, and Re5+ ions, respectively, and the O element presented as O2-. The SFRO samples annealed at 1100 °C in N2, exhibiting the highest saturation magnetization (MS = 2.61 μB/f.u. at 2 K), which was ascribed to their smallest ASD content (7.45%) with an anti-phase boundary-like morphology compared to those annealed at 1000 °C (ASDs = 10.7%) or 1200 °C (ASDs = 10.95%). Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

13 pages, 3248 KB  
Article
Transfer Learning for Modeling Plasmonic Nanowire Waveguides
by Aoning Luo, Yuanjia Feng, Chunyan Zhu, Yipei Wang and Xiaoqin Wu
Nanomaterials 2022, 12(20), 3624; https://doi.org/10.3390/nano12203624 - 16 Oct 2022
Cited by 3 | Viewed by 1958
Abstract
Retrieving waveguiding properties of plasmonic metal nanowires (MNWs) through numerical simulations is time- and computational-resource-consuming, especially for those with abrupt geometric features and broken symmetries. Deep learning provides an alternative approach but is challenging to use due to inadequate generalization performance and the [...] Read more.
Retrieving waveguiding properties of plasmonic metal nanowires (MNWs) through numerical simulations is time- and computational-resource-consuming, especially for those with abrupt geometric features and broken symmetries. Deep learning provides an alternative approach but is challenging to use due to inadequate generalization performance and the requirement of large sets of training data. Here, we overcome these constraints by proposing a transfer learning approach for modeling MNWs under the guidance of physics. We show that the basic knowledge of plasmon modes can first be learned from free-standing circular MNWs with computationally inexpensive data, and then reused to significantly improve performance in predicting waveguiding properties of MNWs with various complex configurations, enabling much smaller errors (~23–61% reduction), less trainable parameters (~42% reduction), and smaller sets of training data (~50–80% reduction) than direct learning. Compared to numerical simulations, our model reduces the computational time by five orders of magnitude. Compared to other non-deep learning methods, such as the circular-area-equivalence approach and the diagonal-circle approximation, our approach enables not only much higher accuracies, but also more comprehensive characterizations, offering an effective and efficient framework to investigate MNWs that may greatly facilitate the design of polaritonic components and devices. Full article
Show Figures

Graphical abstract

19 pages, 4074 KB  
Article
The Complexity of Comparative Adsorption of C6 Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks
by Christian Jansen, Nabil Assahub, Alex Spieß, Jun Liang, Alexa Schmitz, Shanghua Xing, Serkan Gökpinar and Christoph Janiak
Nanomaterials 2022, 12(20), 3614; https://doi.org/10.3390/nano12203614 - 15 Oct 2022
Cited by 16 | Viewed by 3770
Abstract
The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH2, UiO-66(F)4, UiO-67, DUT-67, NH2-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C6 sorption properties. An understanding of the uptake of the [...] Read more.
The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH2, UiO-66(F)4, UiO-67, DUT-67, NH2-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C6 sorption properties. An understanding of the uptake of the larger C6 molecules cannot simply be achieved with surface area and pore volume (from N2 sorption) but involves the complex micropore structure of the MOF. The maximum adsorption capacity at p p0−1 = 0.9 was shown by DUT-4 for benzene, MIL-101(Cr) for cyclohexane and DUT-5 for n-hexane. In the low-pressure range from p p0−1 = 0.1 down to 0.05 the highest benzene uptake is given by DUT-5, DUT-67/UiO-67 and MIL-101(Cr), for cyclohexane and n-hexane by DUT-5, UiO-67 and MIL-101(Cr). The highest uptake capacity at p p0−1 = 0.02 was seen with MIL-53 for benzene, MIL-125 for cyclohexane and DUT-5 for n-hexane. DUT-5 and MIL-101(Cr) are the MOFs with the widest pore window openings/cross sections but the low-pressure uptake seems to be controlled by a complex combination of ligand and pore-size effect. IAST selectivities between the three binary mixtures show a finely tuned and difficult to predict interplay of pore window size with (critical) adsorptive size and possibly a role of electrostatics through functional groups such as NH2. Full article
(This article belongs to the Special Issue Advanced Porous Nanomaterials: Synthesis, Properties, and Application)
Show Figures

Graphical abstract

10 pages, 2196 KB  
Article
A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids
by Ahmad Hamdan and Luc Stafford
Nanomaterials 2022, 12(20), 3603; https://doi.org/10.3390/nano12203603 - 14 Oct 2022
Cited by 6 | Viewed by 1644
Abstract
Discharge in liquid is a promising technique to produce nanomaterials by electrode erosion. Although its feasibility was demonstrated in many conditions, the production of nanoalloys by in-liquid discharges remains a challenge. Here, we show that spark discharge in liquid cyclohexane that is in [...] Read more.
Discharge in liquid is a promising technique to produce nanomaterials by electrode erosion. Although its feasibility was demonstrated in many conditions, the production of nanoalloys by in-liquid discharges remains a challenge. Here, we show that spark discharge in liquid cyclohexane that is in contact with conductive solution, made of a combination of Ni-nitrate and/or Fe-nitrate and/or Co-nitrate, is suitable to produce nanoalloys (<10 nm) of Ni-Fe, Ni-Co, Co-Fe, and Ni-Co-Fe. The nanoparticles are synthesized by the reduction of metal ions during discharge, and they are individually embedded in C-matrix; this latter originates from the decomposition of cyclohexane. The results open novel ways to produce a wide spectrum of nanoalloys; they are needed for many applications, such as in catalysis, plasmonic, and energy conversion. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles)
Show Figures

Figure 1

15 pages, 3648 KB  
Article
Surface-Enhanced Raman Spectroscopy Chips Based on Silver Coated Gold Nanostars
by Miriam Parmigiani, Benedetta Albini, Giovanni Pellegrini, Marco Genovesi, Lorenzo De Vita, Piersandro Pallavicini, Giacomo Dacarro, Pietro Galinetto and Angelo Taglietti
Nanomaterials 2022, 12(20), 3609; https://doi.org/10.3390/nano12203609 - 14 Oct 2022
Cited by 15 | Viewed by 5006
Abstract
Surface-enhanced Raman scattering (SERS) is becoming widely used as an analytical tool, and the search for stable and highly responsive SERS substrates able to give ultralow detection of pollutants is a current challenge. In this paper we boosted the SERS response of Gold [...] Read more.
Surface-enhanced Raman scattering (SERS) is becoming widely used as an analytical tool, and the search for stable and highly responsive SERS substrates able to give ultralow detection of pollutants is a current challenge. In this paper we boosted the SERS response of Gold nanostars (GNS) demonstrating that their coating with a layer of silver having a proper thickness produces a 7-fold increase in SERS signals. Glass supported monolayers of these GNS@Ag were then prepared using simple alcoxyliane chemistry, yielding efficient and reproducible SERS chips, which were tested for the detection of molecules representative of different classes of pollutants. Among them, norfloxacin was detected down to 3 ppb, which is one of the lowest limits of detection obtained with this technique for the analyte. Full article
(This article belongs to the Special Issue SERS/SERRS-Active Nanostructures and Nanocomposites)
Show Figures

Graphical abstract

20 pages, 3275 KB  
Article
Multifunctional Loblolly Pine-Derived Superactivated Hydrochar: Effect of Hydrothermal Carbonization on Hydrogen and Electron Storage with Carbon Dioxide and Dye Removal
by Al Ibtida Sultana, Cadianne Chambers, Muzammil M. N. Ahmed, Pavithra Pathirathna and Toufiq Reza
Nanomaterials 2022, 12(20), 3575; https://doi.org/10.3390/nano12203575 - 12 Oct 2022
Cited by 13 | Viewed by 2841
Abstract
Pore modulation via hydrothermal carbonization (HTC) needs investigation due to its crucial effect on surface that influences its multirole utilization of such ultraporous sorbents in applications of energy storage- hydrogen and capacitive- as well as for pollutant abatement- carbon capture and dye removal. [...] Read more.
Pore modulation via hydrothermal carbonization (HTC) needs investigation due to its crucial effect on surface that influences its multirole utilization of such ultraporous sorbents in applications of energy storage- hydrogen and capacitive- as well as for pollutant abatement- carbon capture and dye removal. Hence, loblolly pine was hydrothermally carbonized followed by KOH activation to synthesize superactivated hydrochars (SAH). The resulting SAHs had specific surface area (SSA) 1462–1703 m2/g, total pore (TPV) and micropore volume (MPV) of 0.62–0.78 cm3/g and 0.33–0.49 cm3/g, respectively. The SAHs exhibit excellent multifunctional performance with remarkably high atmospheric CO2 capture of 145.2 mg/g and high pressure cryogenic H2 storage of 54.9 mg/g. The fabricated supercapacitor displayed substantial specific capacitance value of maximum 47.2 Fg−1 at 1 A g−1 in 6 M KOH and highest MB dye removal of 719.4 mg/g. Higher HTC temperature resulted in increased surface porosity as higher SSA, TPV benefitted H2 storage and MB dye removal while superior MPV favored CO2 capture. Moderate HTC temperature ensured higher mesopore-to-macropore volume ratio favoring electrochemical performance. Isotherm modelling of the adsorbates was compared using models: Langmuir, Freundlich, Langmuir- Freundlich and Temkin. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Storage)
Show Figures

Graphical abstract

13 pages, 2208 KB  
Article
Elucidation of Strain-Dependent, Zinc Oxide Nanorod Response for Nanorod-Guided Fluorescence Intensity
by Johnson Truong, Andrew Stoner, Marion Ryan C. Sytu, T Rizana Tatlock, David H. Cho and Jong-in Hahm
Nanomaterials 2022, 12(20), 3558; https://doi.org/10.3390/nano12203558 - 11 Oct 2022
Cited by 4 | Viewed by 1996
Abstract
In this work, we examine how strain exerted on individual ZnO nanorods (NRs) can influence the fluorescence signals that are emitted from fluorophore molecules and subsequently coupled into and guided along the NR. We elucidate the relationships between the incremental levels of compressive [...] Read more.
In this work, we examine how strain exerted on individual ZnO nanorods (NRs) can influence the fluorescence signals that are emitted from fluorophore molecules and subsequently coupled into and guided along the NR. We elucidate the relationships between the incremental levels of compressive and tensile strain on the NRs and measured fluorescence intensity of a model fluorophore, rhodamine 6G (R6G), as a function of the position on the NRs. We reveal that compressive strain on the NRs leads to a decrease in the guided fluorescence signal, while tensile strain leads to an increase in the fluorescence intensity. Compared to an unstrained state, approximately 35% decrease (increase) in R6G fluorescence intensity was observed from ZnO NRs when they were under compressive strain of −14% (tensile strain of +10%). Further, our systematic acquisition of the incremental addition of uniaxial strain result in a linear relationship of the coupled fluorescence signal and the amount of applied strain. The degree of fluorescence intensification on nanorod ends (DoF), which is a quantitative indicator for the amount of R6G signals coupled into and waveguided to the NR ends compared to those on the main body, also exhibits a linear relationship with strain. These outcomes, in turn, demonstrate that strain alters the waveguiding capabilities of ZnO NRs in a predictable manner, which can be exploited to modulate and optimize fluorescence and other light signals emitted by a nearby source. Considering the wide utility of ZnO NRs in photonics, optoelectronics, and sensors, insights from our study may be highly valuable to effectively controlling and enhancing optical signals from chemical and biological analytes through strain. Full article
Show Figures

Figure 1

13 pages, 3286 KB  
Article
Significance of Hydroxyl Groups on the Optical Properties of ZnO Nanoparticles Combined with CNT and PEDOT:PSS
by Keshav Nagpal, Erwan Rauwel, Elias Estephan, Maria Rosario Soares and Protima Rauwel
Nanomaterials 2022, 12(19), 3546; https://doi.org/10.3390/nano12193546 - 10 Oct 2022
Cited by 16 | Viewed by 3634
Abstract
We report on the synthesis of ZnO nanoparticles and their hybrids consisting of carbon nanotubes (CNT) and polystyrene sulfonate (PEDOT:PSS). A non-aqueous sol–gel route along with hydrated and anhydrous acetate precursors were selected for their syntheses. Transmission electron microscopy (TEM) studies revealed their [...] Read more.
We report on the synthesis of ZnO nanoparticles and their hybrids consisting of carbon nanotubes (CNT) and polystyrene sulfonate (PEDOT:PSS). A non-aqueous sol–gel route along with hydrated and anhydrous acetate precursors were selected for their syntheses. Transmission electron microscopy (TEM) studies revealed their spherical shape with an average size of 5 nm. TEM also confirmed the successful synthesis of ZnO-CNT and ZnO-PEDOT:PSS hybrid nanocomposites. In fact, the choice of precursors has a direct influence on the chemical and optical properties of the ZnO-based nanomaterials. The ZnO nanoparticles prepared with anhydrous acetate precursor contained a high amount of oxygen vacancies, which tend to degrade the polymer macromolecule, as confirmed from X-ray photoelectron spectroscopy and Raman spectroscopy. Furthermore, a relative increase in hydroxyl functional groups in the ZnO-CNT samples was observed. These functional groups were instrumental in the successful decoration of CNT and in producing the defect-related photoluminescence emission in ZnO-CNT. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Optoelectronics and Photocatalysis)
Show Figures

Graphical abstract

13 pages, 2937 KB  
Article
High-Efficiency Ion Enrichment inside Ultra-Short Carbon Nanotubes
by Yu Qiang, Xueliang Wang, Zhemian Ying, Yuying Zhou, Renduo Liu, Siyan Gao and Long Yan
Nanomaterials 2022, 12(19), 3528; https://doi.org/10.3390/nano12193528 - 9 Oct 2022
Cited by 3 | Viewed by 2634
Abstract
The ion-enrichment inside carbon nanotubes (CNTs) offers the possibility of applications in water purification, ion batteries, memory devices, supercapacitors, field emission and functional hybrid nanostructures. However, the low filling capacity of CNTs in salt solutions due to end caps and blockages remains a [...] Read more.
The ion-enrichment inside carbon nanotubes (CNTs) offers the possibility of applications in water purification, ion batteries, memory devices, supercapacitors, field emission and functional hybrid nanostructures. However, the low filling capacity of CNTs in salt solutions due to end caps and blockages remains a barrier to the practical use of such applications. In this study, we fabricated ultra-short CNTs that were free from end caps and blockages using ball milling and acid pickling. We then compared their ion-enrichment capacity with that of long CNTs. The results showed that the ion-enrichment capacity of ultra-short CNTs was much higher than that of long CNTs. Furthermore, a broad range of ions could be enriched in the ultra-short CNTs including alkali-metal ions (e.g., K+), alkaline-earth-metal ions (e.g., Ca2+) and heavy-metal ions (e.g., Pb2+). The ultra-short CNTs were much more unobstructed than the raw long CNTs, which was due to the increased orifice number per unit mass of CNTs and the decreased difficulty in removing the blockages in the middle section inside the CNTs. Under the hydrated-cation–π interactions, the ultra-short CNTs with few end caps and blockages could highly efficiently enrich ions. Full article
Show Figures

Graphical abstract

16 pages, 4700 KB  
Article
Effect of Covalent Organic Frameworks Containing Different Groups on Properties of Sulfonated Poly(ether ether ketone) Matrix Proton Exchange Membranes
by Xiaoyu Meng, Yinan Lv, Lei Ding, Luman Peng, Qiwang Peng, Chuanbo Cong, Haimu Ye and Qiong Zhou
Nanomaterials 2022, 12(19), 3518; https://doi.org/10.3390/nano12193518 - 8 Oct 2022
Cited by 8 | Viewed by 2595
Abstract
The rich −SO3H groups enable sulfonated poly (ether ether ketone) (SPEEK) to possess excellent proton conductivities in proton exchange membrane (PEM), but cause excessive water absorption, resulting in the decline of dimensional stability. It is a challenge to resolve the conflict [...] Read more.
The rich −SO3H groups enable sulfonated poly (ether ether ketone) (SPEEK) to possess excellent proton conductivities in proton exchange membrane (PEM), but cause excessive water absorption, resulting in the decline of dimensional stability. It is a challenge to resolve the conflict between conductivity and stability. Owing to its unique structural designability, covalent organic frameworks (COFs) have been used to regulate the performances of PEMs. The authors propose the use of COFs with acidic and basic groups for meeting the requirements of proton conductivity and dimensional stability. Herein, COFs containing different groups (sulfoacid, pyridine, and both) were uniformly dispersed into the SPEEK matrix by in situ synthesis, and the effects on the properties of SPEEK matrix PEMs were revealed. The sulfoacid group significantly improves proton conductivities. At 60 °C, under 95% RH, the conductivity of the SPEEK/TpPa−SO3H-20 composite membrane was 443.6 mS·cm−1, which was 3.3 times that of the pristine SPEEK membrane. The pyridine group reduced the swelling ratio at 50 °C from 220.7% to 2.4%, indicating an enhancement in dimensional stability. Combining the benefits of sulfoacid and pyridine groups, SPEEK/TpPa−(SO3H-Py) composite membrane has a conductivity of 360.3 mS·cm−1 at 60 °C and 95% RH, which is 1.86 times that of SPEEK, and its swelling ratio is 11.8%, about 1/20 of that of SPEEK membrane. The method of in situ combination and regulation of groups open up a way for the development of SPEEK/COFs composite PEMs. Full article
Show Figures

Graphical abstract

17 pages, 4729 KB  
Article
One-Pot Synthesis of MnOx-SiO2 Porous Composites as Nanozymes with ROS-Scavenging Properties
by M. Dolores Garrido, Jamal El Haskouri, María D. Marcos, Francisco Pérez-Pla, José Vicente Ros-Lis and Pedro Amorós
Nanomaterials 2022, 12(19), 3503; https://doi.org/10.3390/nano12193503 - 7 Oct 2022
Cited by 5 | Viewed by 2455
Abstract
The development of nanomaterials that mimic the activity of enzymes is a topic of interest, for the decomposition of reactive oxygen species (ROS). We report the preparation of a novel nanocomposite of MnOx needles covered with SiO2 porous material. The material [...] Read more.
The development of nanomaterials that mimic the activity of enzymes is a topic of interest, for the decomposition of reactive oxygen species (ROS). We report the preparation of a novel nanocomposite of MnOx needles covered with SiO2 porous material. The material was prepared in one pot with a two-step procedure. The material was characterized by EDX, SEM, TEM, XRD, nitrogen adsorption–desorption isotherms, and XPS. The synthesis protocol took advantage of the atrane method, favoring the nucleation and initial growth of manganese oxide needles that remained embedded and homogeneously dispersed in a mesoporous silica matrix. The final composite had a high concentration of Mn (Si/Mn molar ratio of ca. 1). The nanozyme presented bimodal porosity: intraparticle and interparticle association with the surfactant micelles and the gaps between silica particles and MnOx needles, respectively. The porosity favored the migration of the reagent to the surface of the catalytic MnOx. The nanozyme showed very efficient SOD and catalase activities, thus improving other materials previously described. The kinetics were studied in detail, and the reaction mechanisms were proposed. It was shown that silica does not play an innocent role in the case of catalase activity, increasing the reaction rate. Full article
(This article belongs to the Special Issue Recent Advances in the Construction and Applications of Nanozymes)
Show Figures

Figure 1

10 pages, 826 KB  
Article
Ordered Bose Glass of Vortices in Superconducting YBa2Cu3O7−δ Thin Films with a Periodic Pin Lattice Created by Focused Helium Ion Irradiation
by Lucas Backmeister, Bernd Aichner, Max Karrer, Katja Wurster, Reinhold Kleiner, Edward Goldobin, Dieter Koelle and Wolfgang Lang
Nanomaterials 2022, 12(19), 3491; https://doi.org/10.3390/nano12193491 - 6 Oct 2022
Cited by 9 | Viewed by 2438
Abstract
The defect-rich morphology of YBa2Cu3O7−δ (YBCO) thin films leads to a glass-like arrangement of Abrikosov vortices which causes the resistance to disappear in vanishing current densities. This vortex glass consists of entangled vortex lines and is identified [...] Read more.
The defect-rich morphology of YBa2Cu3O7−δ (YBCO) thin films leads to a glass-like arrangement of Abrikosov vortices which causes the resistance to disappear in vanishing current densities. This vortex glass consists of entangled vortex lines and is identified by a characteristic scaling of the voltage–current isotherms. Randomly distributed columnar defects stratify the vortex lines and lead to a Bose glass. Here, we report on the observation of an ordered Bose glass in a YBCO thin film with a hexagonal array of columnar defects with 30 nm spacings. The periodic pinning landscape was engineered by a focused beam of 30 keV He+ ions in a helium-ion microscope. Full article
(This article belongs to the Special Issue Superconductivity in Nanosystems)
Show Figures

Figure 1

9 pages, 2701 KB  
Article
Double Fano Resonance and Independent Regulation Characteristics in a Rectangular-like Nanotetramer Metasurface Structure
by Zhidong Zhang, Qingchao Zhang, Bo Li, Junbin Zang, Xiyuan Cao, Xiaolong Zhao and Chenyang Xue
Nanomaterials 2022, 12(19), 3479; https://doi.org/10.3390/nano12193479 - 5 Oct 2022
Cited by 3 | Viewed by 1857
Abstract
Fano resonance, which is based on a plasmonic metasurface, has many potential applications in various fields, such as biochemical sensors, slow light effect, and integrated optical circuits. In this study, a rectangular-like nanotetramer metasurface structure composed of four round-head nanorods was designed. The [...] Read more.
Fano resonance, which is based on a plasmonic metasurface, has many potential applications in various fields, such as biochemical sensors, slow light effect, and integrated optical circuits. In this study, a rectangular-like nanotetramer metasurface structure composed of four round-head nanorods was designed. The transmission spectrum, surface charge, and electrical field distributions of the proposed structure were simulated using the finite element method. A double Fano resonance profile was observed in the transmission spectrum. One of the Fano resonances was caused by the symmetry breaking and plasmon hybridization between the horizontal double rods, whereas the other resonance was due to the plasmonic modes’ hybridization among four nanorods. These resonances could be independently tuned because of different formation mechanisms. The number of Fano resonances could be adjusted by changing the coupling distance between the horizontal and vertical rods. The results contributed to designing the highly sensitive sensors based on the plasmonic metasurface. Full article
Show Figures

Figure 1

15 pages, 1299 KB  
Review
Upconversion Nanomaterials in Bioimaging and Biosensor Applications and Their Biological Response
by Zayakhuu Gerelkhuu, Yong-Ill Lee and Tae Hyun Yoon
Nanomaterials 2022, 12(19), 3470; https://doi.org/10.3390/nano12193470 - 4 Oct 2022
Cited by 13 | Viewed by 4356
Abstract
In recent decades, upconversion nanomaterials (UCNMs) have attracted considerable research interest because of their unique optical properties, such as large anti-Stokes shifts, sharp emissions, non-photobleaching, and long lifetime. These unique properties make them ideal candidates for unified applications in biomedical fields, including drug [...] Read more.
In recent decades, upconversion nanomaterials (UCNMs) have attracted considerable research interest because of their unique optical properties, such as large anti-Stokes shifts, sharp emissions, non-photobleaching, and long lifetime. These unique properties make them ideal candidates for unified applications in biomedical fields, including drug delivery, bioimaging, biosensing, and photodynamic therapy for specific cancers. This review describes the general mechanisms of upconversion, synthesis methods, and potential applications in biology and their biological responses. Additionally, the biological toxicity of UCNMs is explained and summarized with the associated intracellular association mechanisms. Finally, the prospects and future challenges of UCNMs at the clinical level in biological applications are described, along with a summary of opportunity for biological as well as clinical applications of UCNMs. Full article
Show Figures

Figure 1

10 pages, 2543 KB  
Article
Single-Step Fabrication of Au-Fe-BaTiO3 Nanocomposite Thin Films Embedded with Non-Equilibrium Au-Fe Alloyed Nanostructures
by Bethany X. Rutherford, Hongyi Dou, Bruce Zhang, Zihao He, James P. Barnard, Robynne L. Paldi and Haiyan Wang
Nanomaterials 2022, 12(19), 3460; https://doi.org/10.3390/nano12193460 - 3 Oct 2022
Cited by 5 | Viewed by 2172
Abstract
Nanocomposite thin film materials present great opportunities in coupling materials and functionalities in unique nanostructures including nanoparticles-in-matrix, vertically aligned nanocomposites (VANs), and nanolayers. Interestingly the nanocomposites processed through a non-equilibrium processing method, e.g., pulsed laser deposition (PLD), often possess unique metastable phases and [...] Read more.
Nanocomposite thin film materials present great opportunities in coupling materials and functionalities in unique nanostructures including nanoparticles-in-matrix, vertically aligned nanocomposites (VANs), and nanolayers. Interestingly the nanocomposites processed through a non-equilibrium processing method, e.g., pulsed laser deposition (PLD), often possess unique metastable phases and microstructures that could not achieve using equilibrium techniques, and thus lead to novel physical properties. In this work, a unique three-phase system composed of BaTiO3 (BTO), with two immiscible metals, Au and Fe, is demonstrated. By adjusting the deposition laser frequency from 2 Hz to 10 Hz, the phase and morphology of Au and Fe nanoparticles in BTO matrix vary from separated Au and Fe nanoparticles to well-mixed Au-Fe alloy pillars. This is attributed to the non-equilibrium process of PLD and the limited diffusion under high laser frequency (e.g., 10 Hz). The magnetic and optical properties are effectively tuned based on the morphology variation. This work demonstrates the stabilization of non-equilibrium alloy structures in the VAN form and allows for the exploration of new non-equilibrium materials systems and their properties that could not be easily achieved through traditional equilibrium methods. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

11 pages, 1348 KB  
Article
Characteristics of Cellulose Nanofibrils from Transgenic Trees with Reduced Expression of Cellulose Synthase Interacting 1
by Simon Jonasson, Anne Bünder, Linn Berglund, Totte Niittylä and Kristiina Oksman
Nanomaterials 2022, 12(19), 3448; https://doi.org/10.3390/nano12193448 - 2 Oct 2022
Cited by 3 | Viewed by 2183
Abstract
Cellulose nanofibrils can be derived from the native load-bearing cellulose microfibrils in wood. These microfibrils are synthesized by a cellulose synthase enzyme complex that resides in the plasma membrane of developing wood cells. It was previously shown that transgenic hybrid aspen trees with [...] Read more.
Cellulose nanofibrils can be derived from the native load-bearing cellulose microfibrils in wood. These microfibrils are synthesized by a cellulose synthase enzyme complex that resides in the plasma membrane of developing wood cells. It was previously shown that transgenic hybrid aspen trees with reduced expression of CSI1 have different wood mechanics and cellulose microfibril properties. We hypothesized that these changes in the native cellulose may affect the quality of the corresponding nanofibrils. To test this hypothesis, wood from wild-type and transgenic trees with reduced expression of CSI1 was subjected to oxidative nanofibril isolation. The transgenic wood-extracted nanofibrils exhibited a significantly lower suspension viscosity and estimated surface area than the wild-type nanofibrils. Furthermore, the nanofibril networks manufactured from the transgenics exhibited high stiffness, as well as reduced water uptake, tensile strength, strain-to-break, and degree of polymerization. Presumably, the difference in wood properties caused by the decreased expression of CSI1 resulted in nanofibrils with distinctive qualities. The observed changes in the physicochemical properties suggest that the differences were caused by changes in the apparent nanofibril aspect ratio and surface accessibility. This study demonstrates the possibility of influencing wood-derived nanofibril quality through the genetic engineering of trees. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

Back to TopTop