Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Cai, X.; Yi, S.; Chen, J.; Dai, Y.; Niu, C.; Guo, Z.; Xie, M.; Liu, F.; Cho, J.-H.; et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett. 2017, 119, 106101. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Hennig, R.G. Computational prediction of two-dimensional group-IV mono-chalcogenides. Appl. Phys. Lett. 2014, 105, 042103. [Google Scholar] [CrossRef]
- Kamal, C.; Chakrabarti, A.; Ezawa, M. Direct band gaps in group IV-VI monolayer materials: Binary counterparts of phosphorene. Phys. Rev. B 2016, 93, 125428. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Li, Q.; Meng, J.; Li, Z. Recent progress on Schottky sensors based on two-dimensional transition metal dichalcogenides. J. Mater. Chem. A 2022, 10, 8107–8128. [Google Scholar] [CrossRef]
- Yu, S.; Tang, J.; Wang, Y.; Xu, F.; Li, X.; Wang, X. Recent advances in two-dimensional ferromagnetism: Strain-, doping-, structural- and electric field-engineering toward spintronic applications. Sci. Technol. Adv. Mater. 2022, 23, 140–160. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Z.; Gao, S.; Cheng, H.; Liu, Q.; Piao, J.; Yao, T.; Wu, C.; Hu, S.; Wei, S.; et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 2012, 3, 1057. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 2012, 6, 9777–9789. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhai, T.; Gautam, U.K.; Li, L.; Wu, L.; Bando, Y.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 2011, 56, 175–287. [Google Scholar] [CrossRef]
- Hinuma, Y.; Grüneis, A.; Kresse, G.; Oba, F. Band alignment of semiconductors from density-functional theory and many-body perturbation theory. Phys. Rev. B 2014, 90, 155405. [Google Scholar] [CrossRef]
- Ding, J.X.; Zapien, J.A.; Chen, W.W.; Lifshitz, Y.; Lee, S.T.; Meng, X.M. Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Appl. Phys. Lett. 2004, 85, 2361–2363. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.; Fu, H. The first covalent organic-inorganic networks of hybrid chalcogenides: Structures that may lead to a new type of quantum wells. J. Am. Chem. Soc. 2000, 122, 8789–8790. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.; Zhang, Y.; Mascarenhas, A. From 1D chain to 3D network: Tuning hybrid II-VI nanostructures and their optical properties. J. Am. Chem. Soc. 2003, 125, 7049–7055. [Google Scholar] [CrossRef]
- Huang, X.; Li, J. From single to multiple atomic layers: A unique approach to the systematic tuning of structures and properties of inorganic-organic hybrid nanostructured semiconductors. J. Am. Chem. Soc. 2007, 129, 3157–3162. [Google Scholar] [CrossRef]
- Es-Smairi, A.; Fazouan, N.; Atmani, E.H.; Khuili, M.; Maskar, E. Al doping effect on optoelectronic and thermoelectric properties of h-ZnS monolayer: A DFT approach. Appl. Phys. A 2021, 127, 698. [Google Scholar] [CrossRef]
- Lashgari, H.; Boochani, A.; Shekaari, A.; Solaymani, S.; Sartipi, E.; Mendi, R.T. Electronic and optical properties of 2D graphene-like ZnS: DFT calculations. Appl. Surf. Sci. 2016, 369, 76–81. [Google Scholar] [CrossRef]
- Krainara, N.; Limtrakul, J.; Illas, F.; Bromley, S.T. Structural and electronic bistability in ZnS single sheets and single-walled nanotubes. Phys. Rev. B 2011, 83, 233305. [Google Scholar] [CrossRef]
- Chaurasiya, R.; Dixit, A.; Pandey, R. Strain-driven thermodynamic stability and electronic transitions in ZnX (X = O, S, Se, and Te) monolayers. J. Appl. Phys. 2019, 125, 082540. [Google Scholar] [CrossRef]
- Jafari, M.; Alvani, K. Effect of doping chromium on electronic and magnetic properties of ZnS monolayer: A DFT study. Mater. Res. Express 2019, 6, 0850b5. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, L.; Xiao, B.; Cheng, Y.; Zhang, J. The structure and electronic properties of crimson phosphorus. Appl. Phys. Lett. 2019, 115, 163101. [Google Scholar] [CrossRef]
- Hogan, C.; Lechifflart, P.; Brozzesi, S.; Voronovich-Solonevich, S.; Melnikov, A.; Flammini, R.; Sanna, S.; Holtgrewe, K. Theoretical study of stability, epitaxial formation, and phase transformations of two-dimensional pnictogen allotropes. Phys. Rev. B 2021, 104, 245421. [Google Scholar] [CrossRef]
- Tong, C.-J.; Zhang, H.; Zhang, Y.-N.; Liu, H.; Liu, L.-M. New manifold two-dimensional single-layer structures of zinc-blende compounds. J. Mater. Chem. A 2014, 2, 17971–17978. [Google Scholar] [CrossRef]
- Unsal, E.; Senger, R.T.; Sahin, H. Stable monolayer α-phase of CdTe: Strain-dependent properties. J. Mater. Chem. C 2017, 5, 12249–12255. [Google Scholar] [CrossRef]
- Naseri, M.; Bafekry, A.; Faraji, M.; Hoat, D.M.; Fadlallah, M.M.; Ghergherehchi, M.; Sabbaghi, N.; Gogova, D. Two-dimensional buckled tetragonal cadmium chalcogenides including CdS, CdSe, and CdTe monolayers as photo-catalysts for water splitting. Phys. Chem. Chem. Phys. 2021, 23, 12226–12232. [Google Scholar] [CrossRef]
- Li, L.; Li, P.; Lu, N.; Dai, J.; Zeng, X.C. Simulation evidence of hexagonal-to-tetragonal ZnSe structure transition: A monolayer material with a wide-range tunable direct bandgap. Adv. Sci. 2015, 2, 1500290. [Google Scholar] [CrossRef]
- Liu, B.; Su, W.-S.; Wu, B.-R. A first-principles study of electronic and optical properties of the tetragonal phase of monolayer ZnS modulated by biaxial strain. RSC Adv. 2022, 12, 6166–6173. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, X. Alloy engineering of electronic and optical properties of tetragonal monolayer zinc chalcogenides. J. Alloys Compd. 2017, 695, 1392–1396. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple (vol 77, pg 3865, 1996). Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Patel, M.J.; Raval, D.; Gupta, S.K.; Gajjar, P.N. First-principles study of Mn-doped and Nb-doped CsPbCl3 monolayers as an absorber layer in solar cells. J. Phys. Chem. Lett. 2021, 12, 7319–7327. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Su, W.-S.; Wu, B.-R. Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study. Nanomaterials 2022, 12, 3898. https://doi.org/10.3390/nano12213898
Liu B, Su W-S, Wu B-R. Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study. Nanomaterials. 2022; 12(21):3898. https://doi.org/10.3390/nano12213898
Chicago/Turabian StyleLiu, Bin, Wan-Sheng Su, and Bi-Ru Wu. 2022. "Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study" Nanomaterials 12, no. 21: 3898. https://doi.org/10.3390/nano12213898
APA StyleLiu, B., Su, W.-S., & Wu, B.-R. (2022). Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study. Nanomaterials, 12(21), 3898. https://doi.org/10.3390/nano12213898