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Abstract: In this work, we investigate theoretically the reflective polarization rotator in a silicon
waveguide formed by periodically arranged rectangular air holes. The etched air holes generate the
large birefringence for the waveguide. The effective refractive index of the non-etched waveguide is
isotropic. The structure can be regarded as a stack of alternating birefringent waveplates and isotropic
material similar to the folded Šolc filter. The band structure of the stack of birefringent waveplates
with isotropic background is calculated to confirm the fact that high reflection peaks in the reflection
spectra of the waveguide result from the photonic bandgap. The polarization extinction ratio for
the reflected light is 15.8 dB. The highest reflectivity of the device is 93.1%, and the device length is
9.21 µm. An ultra-wide operation bandwidth from 1450.3 to 1621.8 nm can be achieved.

Keywords: polarization rotator; birefringent; photonic crystals; waveguide

1. Introduction

Polarization rotators [1–5] are an essential component in optical fiber communi-
cation systems for applications such as the circulator [6,7]. The polarization rotators
formed by metasurfaces or metamaterials have also been studied [8–13]. Free-space
metasurface polarization rotators have also been developed for microwaves [14,15]. The
phase of the rotated waveform can be shifted with the help of the PIN diode, which
provides the ability to modify the scattering properties of the metasurface [8]. For the
integrated optical polarization rotators, asymmetric cross-sections of the waveguide
produce the horizontal and vertical polarization modes. The birefringence of the two
eigenmodes of the waveguide, which are oriented at 45◦ with respect to the wafer axis,
results in the coupling between two eigenmodes and the polarization rotation [1–5]. In
high-power, short-pulse laser systems, high-precision reflective polarization rotators are
required to provide a higher accuracy and a higher damage threshold [16]. A reflective
polarization rotator in a silicon waveguide with a non-vertical waveguide sidewall and
anti-symmetric grating structure has been developed [17]. The polarization extinction
ratio of the device at 15 dB could be attained for the grating length of 50 µm. The
corrugation period was 354 nm. The corresponding period number was 141. The 3
dB bandwidth in the reflection spectra was around 18 nm at the center wavelength of
1460 nm. The maximum reflectivity is around −2.5 dB (56%). We recently reported two
novel transmission-type polarization rotators based on shifted circular and rectangular
air holes in a silicon waveguide [18,19], which could be used in quantum computing
as the logic gates. The device length can be shorter than the L-shaped or trench waveg-
uides [20–23] due to the higher birefringent effect formed by photonic crystals. In the
present work, we propose a reflective polarization rotator in a silicon waveguide formed
by periodically arranged L-shaped silicon waveguides. The etched air holes induce the
large birefringence for the waveguide. The non-etched waveguide can be regarded as an
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isotropic material. The structure is similar to a folded Šolc filter with an anisotropic peri-
odic dielectric stack [24]. In the literature, Abdulhalim reported a reflective polarization
rotator for the first time by using a folded Šolc structure with a 45-degree twist and high
birefringence [25,26]. In Ref. [25], the reflective polarization rotator of Abdulhalim was
demonstrated near the photonic bandgap where the omnidirectional reflection [27–30]
occurs. Additionally, in Ref. [26], it was demonstrated as resonant reflective peaks of
a Fabry–Pérot structure. While the reflective polarization rotator of Abdulhalim was
the first reported using a folded Šolc structure, ours is the first for an integrated optical
waveguide form utilizing properties of photonic crystal structures. The layer thicknesses,
high birefringence, and 45-degree twist were the conditions postulated by Abdulhalim
to observe the reflective polarization rotator. Here, our photonic crystal structure follows
Abdulhalim’s design with the twist angle determined by the waveguide mode. In the
present study, by calculating the band structure, the high reflection wavelength range
in the reflection spectra of the waveguide is confirmed to originate from the photonic
bandgap of the structure. The 3 dB bandwidth of the high reflection wavelength range
can be as large as 171.5 nm at the central wavelength of 1550 nm, which covers the
wavelength range from 1450.3 to 1621.8 nm.

2. Reflective Polarization Rotator in a Silicon Waveguide

The reflective polarization rotator is formed by etched rectangular air holes periodically
arranged in a silicon waveguide on SiO2 substrate. The schematic drawing of the device is
illustrated in Figure 1. The cross-section of the L-shaped waveguide formed by the etched
rectangular air hole is also illustrated. The refractive indices of the silicon and SiO2 are 3.46
and 1.46, respectively. Both the width and height of the silicon waveguide are 350 nm to
provide two waveguide modes (the fundamental mode and the first-order mode). Both
the depth and the width of the etched rectangular air holes are defined to be half of the
waveguide height and width, i.e., 175 nm. The etched rectangular air holes forming the
L-shaped waveguide provide the birefringent effect [20]. The duty cycle (DC = the length
of the etched waveguide/period = d/Λ) is 50%. The corrugation rectangular air holes
form the stack of birefringent waveplates with isotropic background similar to the folded
Šolc filter structure. The slow and fast axes of the birefringent waveplates are illustrated
schematically in Figure 1.

The mode profile of the non-etched waveguide at wavelength 1550 nm (λ) in the TM
mode (EY) is calculated by the beam propagation method [31]. The polarization direction
of the electric field of the TE and TM modes is parallel and perpendicular to the sample top
surface, respectively. The mode profile in the TM mode (EY) is launched into the reflective
polarization rotator. The propagation of light in the silicon waveguide together with the
light transmission and reflection from the corrugation rectangular air holes are analyzed
for the TE (EX) and the TM (EY) modes using the three-dimensional eigenmode expansion
method [32]. The period Λ is scanned from 0.1 to 1.2 µm. For the period between 0.1 and
0.5 µm, the scanning step and the spatial grid size are 0.002 and 0.002 µm, respectively.
For the period between 0.5 and 1.2 µm, the scanning step and the spatial grid size are
0.0035 and 0.007538 µm, respectively. The corresponding normalized frequency Λ/λ is
from 0.0645 to 0.7742. The duty cycle of the corrugation rectangular air holes is varied
from 0.1 to 0.9. The number of periods is 30. The normalized reflection spectra of the TE
mode (RX) are shown in Figure 2a. Figure 2b shows the reflection spectra for the peaks at
the normalized frequency around 0.12. We can observe that for DC = 0.5 and Λ/λ = 0.119,
the reflection for the TE mode (RX) is as high as 85.29%. The transmission for the total
energy of both the TE and TM modes is also characterized to be 8.70%. The reflection for
the TM mode (RY) is 2.3%. The corresponding round-trip propagation loss is 3.71%. The
polarization extinction ratio, which is defined as

10 × log10

(
RX

RX + RY

)
(1)



Nanomaterials 2022, 12, 3694 3 of 9

is −15.8 dB. The total length of the etched zone, consisting of 30 periods of air holes, is 5.53
µm. If the wavelength of the peak maximum is 1550 nm for Λ/λ = 0.119 and DC = 0.5,
then the corresponding period Λ is 184.45 nm. The wavelength range at half maximum is
from 1450.3 to 1621.8 nm, showing an ultra-wide operation bandwidth of 171.5 nm for the
reflective polarization rotator in the silicon waveguide.
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Figure 1. Reflective polarization rotator in the silicon waveguide with corrugation rectangular air
holes. The cross-section of the L-shaped waveguide formed by the etched rectangular air hole is
presented. The S-axis and F-axis are the slow and fast axes, respectively.
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In Figure 2a, for Λ/λ around 0.34 and 0.57, we can also observe the reflection peaks.
In our structure, the etched air holes induce the large birefringence for the waveguide. The
effective refractive index of the non-etched waveguide is isotropic for different polarizations
in the propagation direction. The structure can be regarded as a stack of alternating
birefringent waveplates and the isotropic material, which is similar to the folded Šolc filter.
To understand the origin of the peaks in the reflection spectra of the birefringent photonic
crystal structure formed by the corrugation rectangular air holes in the silicon waveguide,
we carried out the 4 × 4 matrix method [24,33] for the stack of birefringent waveplates with
isotropic background.

3. Polarization Rotator Formed by the Stack of Birefringent Waveplates with
Isotropic Background

In our design, the etched rectangular air holes in the silicon waveguide is also
called the L-shaped waveguide, in which the large birefringent property has been
found [23], as illustrated in Figure 1. The corrugation rectangular air holes and non-
etched waveguide can be regarded as alternating birefringent waveplates and isotropic
material, respectively. The structure is similar to the folded Šolc filter, which consists of
only a stack of alternating birefringent waveplates. The equivalent schematic drawing
of a stack of alternating birefringent waveplates and surrounding isotropic material
is illustrated in Figure 3. The effective indices of the silicon waveguide with etched
rectangular air hole for the first two modes are calculated by the beam propagation
method to be 2.1662 and 1.8971, respectively. These two values are used for the refractive
indexes of the slow and fast axes of the birefringent waveplates, respectively. The
effective index of the non-etched silicon waveguide is 2.2950. We use this value for the
isotropic material between the birefringent waveplates. Since the difference between
the effective refractive index of the waveguides with the etched holes and that without
etched air holes is in the order of magnitude of 10−1 [20]; the reflection between the
plates should be considered in this work. The EY-polarized light is launched into the
structure, as shown in Figure 3. The angle between the fast axis of the birefringent
waveplates and the X-axis is θ. The 4 × 4 matrix method [24] is adopted to calculate the
reflection spectra of the stack of birefringent waveplates with isotropic background. The
structure of birefringent waveplates with different duty cycles from 0.1 to 1 is analyzed.
The period number is 30. In the case of the silicon waveguide with 30 etched holes
(duty cycle = 0.5), the reflectivity ratio of the EX-polarized to EY-polarized light (RX/RY)
is 17.59 at the normalized frequency of Λ/λ = 0.119. In the case of the birefringent
waveplates, by scanning the angle θ between the fast axis and the X-axis, the reflectivity
ratio of the EX-polarized to EY-polarized light (RX/RY) is shown in Figure 4. As the
angle θ between the fast axis and the X-axis is 26.9◦ , the reflectivity ratio of the EX-
polarized to EY-polarized light (RX/RY) is identical to that calculated by the silicon
waveguide (17.59). With the optic axis θ at 26.9◦ , the reflection spectra of the EX for the
stack of birefringent waveplates with isotropic background are calculated as shown
in Figure 5. We can observe that at Λ/λ = 0.12, 0.34, and 0.57, the reflection peaks
appearing in Figure 2a can also be found in Figure 5.

Using the 4 × 4 matrix method, the band structure of the stack of birefringent wave-
plates with isotropic background is calculated by solving the eigenvalue of the Bloch
waves [24,33,34]. The precise band edge can be obtained. The duty cycle is 0.5. Figure 6a
illustrates the band structure. The red and the blue curves present the dispersion of the slow
and fast waves, respectively. The band edges of the first bandgap are at the normalized
frequencies of 0.1127 and 0.1177, respectively. At these frequencies, the slow and fast waves
meet the exchange Bragg condition [24], KsΛ + KfΛ = 2 mπ, where Ks and Kf are the Bloch
wave numbers for the slow and fast waves, respectively; m is an integer. The coupling
(exchange) of the slow and fast waves or the so-called rotation of the polarization occurs at
these band edges. The band edges of the second bandgap are at the normalized frequencies
of 0.2210 and 0.2337 for the slow axis. The band edges of the second bandgap are at the
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normalized frequencies of 0.2232 and 0.2466 for the fast axis. At these frequencies, the
polarization of the reflected light is identical to that of the incident light since KΛ is null
where K is the Bloch wave number. The band edges of the third bandgap are at the normal-
ized frequencies of 0.3430 and 0.3509, respectively. The band edges of the fifth bandgap are
at the normalized frequencies of 0.5771 and 0.5781, respectively. The first, third, and fifth
bandgaps correspond to the frequency ranges of the peaks in the reflection spectra shown
in Figures 2a and 5. This indicates the fact that the reflection of the polarization rotator
in the silicon waveguide originates from the photonic bandgap, and that the wavelength
range of the reflection peaks can be estimated by calculating the band structure of the stack
of birefringent waveplates with isotropic background.
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duty cycle of 0.5. (b) The band edges of the first bandgap for different duty cycles. The solid lines are
obtained from the band structure. The circles are acquired from the frequencies at half maximum of
the peak at around Λ/λ = 0.12, as shown in Figure 2b.
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4. Discussion

The band edges of the first bandgap are shown in Figure 6b for different duty circles.
The red and blue solid curves present the upper and lower band edges of the first band,
respectively, for different duty cycles. We can observe that the bandwidth increases with
increasing duty cycle. For the duty cycle of 100%, the bandwidth is 0.0089. The red and blue
circles present the frequencies at the half maximum for the peak at around Λ/λ = 0.11~0.13,
as shown in Figure 2b, which are calculated from the silicon waveguide with etched holes.
We can observe that the bandwidth is less sensible to the duty cycle. For the duty cycle of
50% and 100%, the bandwidth is 0.0134 and 0.012, respectively. All of the bandwidths for
different duty cycles obtained from the silicon waveguide (red and blue circles) are roughly
equal to those for the duty cycle of 100%, which was acquired from the band structure
(0.0089). This may originate from the fact that the conversion from the asymmetrical mode
of the etched waveguide into the symmetrical mode of the non-etched waveguide requires
a sufficient length for light propagation. This effect results in an asymmetrical mode profile
in the non-etched waveguide, inducing the birefringent effect in the non-etched waveguide.
This phenomenon is different from the stack of birefringent waveplates with isotropic
background in which the wave keeps the polarization state unchanged in the isotropic
material. Figure 7 illustrates the reflection of the EX-polarized light in the etched silicon
waveguide with a duty cycle of 50% for different numbers of periods from 20 to 50. The
reflection increases with the number of periods. With 50 periods, the reflectivity can be
as high as 93.1%, indicating that good polarization conversion efficiency can be achieved
by the reflective polarization rotator in the silicon waveguide. The corresponding device
length is 9.21 µm, which is much shorter than that reported in Ref. [17] (50 µm).
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The dimension (length, width, and depth) error of the etched rectangular trench
may induce the discrepancy between the device performance and the simulation re-
sults. The length error could result in a change in the duty cycle, leading to a change
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in the transmission, frequency, and bandwidth of the peak, which can be observed in
Figures 2b and 6b. The error of the width and depth of the etched trench could change the
eigenmode pattern and the effective index of the etched waveguide, leading to the change
in the peak frequency.

Corner rounding can also often occur for the rectangular trench during the etching
process during device fabrication. At the normalized frequency Λ/λ of 0.12, the wavelength
(λ) of the peaks is mainly influenced by the period of the pattern (Λ). The feature size of
corner rounding is relatively too small in comparison with the wavelength to influence
light propagation. For the higher normalized frequency, where the wavelength is shorter,
the feature size of corner rounding becomes significant to the wavelength. Corner rounding
can influence the normalized frequency of the peaks. In other words, the fact that corner
rounding changes the higher spatial frequency components of the rectangular trench pattern
leads to influencing the frequency of the peaks at higher normalized frequency range.

5. Conclusions

In this work, we propose the reflective polarization rotator in a silicon waveguide
formed by corrugation rectangular air holes. When the period number is 50, the reflection
of the etched silicon waveguide for the EX-polarized light can be as high as 93.1%. The
corresponding device length is 9.21 µm. The ultra-wide operation bandwidth can cover
from 1450.3 to 1621.8 nm. The bandgap of the periodically arranged etched air holes
forming the stack of birefringent waveplates with isotropic background is studied using
the 4 × 4 matrix method. We show that the reflection spectra and the photonic bandgap
can be obtained. This method can facilitate the device design for further applications. The
polarization rotator can served as a Pauli–Z gate in quantum computing.
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