Next Issue
Volume 15, September-2
Previous Issue
Volume 15, August-2
 
 

Nanomaterials, Volume 15, Issue 17 (September-1 2025) – 90 articles

Cover Story (view full-size image): Alkylammonium-functionalized hollow mesoporous silica as a nanocarrier of drugs was synthesized to realize enhanced cancer therapy by pH stimuli for sustained drug release. The nanoparticle had a surface area of 408 m2g−1, pore volume of 0.8 cm3g−1, and a uniform pore diameter of 45.9 Å, with a particle size of about 450 nm and a shell thickness of about 60 nm. In the cancer cell viability test with an MCF-7 cell, fludarabine-incorporated and alkylammonium-functionalized hollow mesoporous silica nanoparticles (Flu/Hollow MSN-N+CH3) showed excellent cancer cell death comparable with pure fludarabine drug, with the controlled drug release by pH stimuli. It is suggested that our current materials have potential applicability as pH-responsive nanocarriers in the field of cancer therapy. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 2336 KB  
Article
Synthesis of MnFe2O4 Nanoparticles and Subsequent Prussian Blue Functionalization for a Novel Composite Photothermal Material
by Mengyu Wang, Ming Zhang, Zhihan Liang and Min Su
Nanomaterials 2025, 15(17), 1382; https://doi.org/10.3390/nano15171382 - 8 Sep 2025
Viewed by 340
Abstract
MnFe2O4 magnetic nanoparticles have shown broad application prospects in the field of tumor diagnosis and treatment; however, precise particle size regulation within the 100–200 nm range, as well as the synergistic integration of physical and medical functionalities, remains challenging. As [...] Read more.
MnFe2O4 magnetic nanoparticles have shown broad application prospects in the field of tumor diagnosis and treatment; however, precise particle size regulation within the 100–200 nm range, as well as the synergistic integration of physical and medical functionalities, remains challenging. As a commonly used method for synthesizing MnFe2O4 nanoparticles, the solvothermal method has been proven to enable the regulation of the particle size of products, particularly its ability to utilize the viscosity of solvents as a method for particle size regulation. Therefore, this work investigates the influence of the diethylene glycol (DEG) to ethylene glycol (EG) ratio on particle size regulation in solvothermal synthesis of MnFe2O4 nanoparticles, and constructs MnFe2O4@PB nanocomposite materials. The results demonstrate that with the DEG ratio increasing from 0 to 80% in a DEG:EG mixed solvent system, the average particle size of MnFe2O4 nanoparticles can be reduced from 266 nm to 105 nm. The MPB4.5 sample (MnFe2O4:PB molar ratio = 5:4.5 in the MnFe2O4@PB nanostructure) exhibits an optimal photothermal heating effect and good photothermal stability, demonstrating potential as a photothermal therapeutic agent. The resultant MnFe2O4@PB system provides a strategy for precise particle size regulation and functional integration for photothermal therapy of tumors with magnetic targeting potential. Full article
Show Figures

Graphical abstract

29 pages, 6045 KB  
Review
Advancements and Strategies for Selectivity Enhancement in Chemiresistive Gas Sensors
by Jianwei Liu, Jingyun Sun, Lei Zhu, Jiaxin Zhang, Xiaomeng Yang, Yating Zhang and Wei Yan
Nanomaterials 2025, 15(17), 1381; https://doi.org/10.3390/nano15171381 - 8 Sep 2025
Viewed by 225
Abstract
Chemiresistive gas sensors are extensively employed in environmental monitoring, disease diagnostics, and industrial safety due to their high sensitivity, low cost, and miniaturization. However, the high cross-sensitivity and poor selectivity of gas sensors limit their practical applications in complex environmental detection. In particular, [...] Read more.
Chemiresistive gas sensors are extensively employed in environmental monitoring, disease diagnostics, and industrial safety due to their high sensitivity, low cost, and miniaturization. However, the high cross-sensitivity and poor selectivity of gas sensors limit their practical applications in complex environmental detection. In particular, the mechanisms underlying the selective response of certain chemiresistive materials to specific gases are not yet fully understood. In this review, we systematically discuss material design strategies and system integration techniques for enhancing the selectivity and sensitivity of gas sensors. The focus of material design primarily on the modification and optimization of advanced functional materials, including semiconductor metal oxides (SMOs), metallic/alloy systems, conjugated polymers (CPs), and two-dimensional nanomaterials. This study offers a comprehensive investigation into the underlying mechanisms for enhancing the gas sensing performance through oxygen vacancy modulation, single-atom catalysis, and heterojunction engineering. Furthermore, we explore the potential of emerging technologies, such as bionics and artificial intelligence, to synergistically integrate with functional sensitive materials, thereby achieving a significant enhancement in the selectivity of gas sensors. This review concludes by offering recommendations aimed at improving the selectivity of gas sensors, along with suggesting potential avenues for future research and development. Full article
Show Figures

Graphical abstract

14 pages, 2797 KB  
Article
MoO3 Nanobelts Synthesized from Recycled Industrial Powder and Applied as Electrodes for Energy Storage Applications
by Angelo Di Mauro, Federico Ursino, Giacometta Mineo, Antonio Terrasi and Salvo Mirabella
Nanomaterials 2025, 15(17), 1380; https://doi.org/10.3390/nano15171380 - 8 Sep 2025
Viewed by 308
Abstract
The sustainable development of our society faces significant challenges, including the need for environmentally friendly energy storage devices. Our work is concerned with the conversion of Mo-based recycled industrial waste into active nanocatalysts for energy storage applications. To reach this goal, we employed [...] Read more.
The sustainable development of our society faces significant challenges, including the need for environmentally friendly energy storage devices. Our work is concerned with the conversion of Mo-based recycled industrial waste into active nanocatalysts for energy storage applications. To reach this goal, we employed hydrothermal synthesis, a low-cost and temperature-scalable method. The proposed synthesis produces MoO3 nanobelts (50–200 nm in width and 2–5 µm in length) with a high yield, about 74%. The synthesized nanostructures were characterized in 1 M KOH and 1 M NH4OH, as alkaline environments are a promising choice for the development of eco-friendly devices. To investigate the material’s behaviour cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements were carried out. From CV curves, it was possible to evaluate the specific capacitance values of 290 and 100 Fg−1 at 5 mVs−1 in 1 M KOH and 1 M NH4OH, respectively. Also, GCD was employed to evaluate the specific capacitance of the material, resulting in 75 and 60 Fg−1 in 1 M KOH and 1 M NH4OH, respectively. CV and GCD analyses revealed that MoO3 nanobelts act as two different types of energy storage devices: supercapacitors and pseudocapacitors. Additionally, EIS allowed us to distinguish between the resistive and capacitive behaviour contributions depending on the electrolyte. Furthermore, it provided a comprehensive electrochemical characterization in different alkaline electrolytes, with the intention of conjugating waste management and sustainable energy storage device production. Full article
Show Figures

Figure 1

30 pages, 19792 KB  
Article
The Solvothermal Method: An Efficient Tool for the Preparation of Ni-Based Catalysts with High Activity in CO2 Methanation
by Arkadii Bikbashev, Tomáš Stryšovský, Martina Kajabová, Zuzana Kovářová, Arati Prakash Tibe, Karolína Simkovičová, Robert Prucek, Aleš Panáček, Josef Kašlík, Patrizia Frontera, Kouřil Roman, Arian Grainca, Carlo Pirola, Libor Brabec, Zdeněk Bastl, Štefan Vajda and Libor Kvítek
Nanomaterials 2025, 15(17), 1379; https://doi.org/10.3390/nano15171379 - 6 Sep 2025
Viewed by 510
Abstract
Nickel and nickel oxide are widely used as heterogeneous catalysts in various processes involving the hydrogenation or reduction of organic compounds, and also as excellent methanation catalysts in the hydrogenation of CO2. As heterogeneous catalysis is a surface-dependent process, nickel compounds [...] Read more.
Nickel and nickel oxide are widely used as heterogeneous catalysts in various processes involving the hydrogenation or reduction of organic compounds, and also as excellent methanation catalysts in the hydrogenation of CO2. As heterogeneous catalysis is a surface-dependent process, nickel compounds in the form of microparticles (MPs), and particularly nanoparticles (NPs), improve the catalytic activity of Ni-based catalysts due to their high specific surface area. Solvothermal synthesis, which has so far been neglected for the synthesis of Ni-based methanation catalysts, was used in this study to synthesize nickel and nickel oxide MPs and NPs with a narrow size distribution. Solvothermal synthesis allows for the control of both the chemical composition of the resulting Ni catalysts and their physical structure by simply changing the reaction conditions (solvent, temperature, or concentration of reactants). Only non-toxic substances were used for synthesis in this study, meaning that the whole synthesis process can be described as environmentally friendly. Solvothermally prepared Ni compounds were subsequently transformed into nickel oxide by means of high-temperature decomposition, and all of the prepared Ni-based compounds were tested as catalysts for CO2 methanation. The best catalysts prepared in this study exhibited a CO2 conversion rate of nearly 95% and a selectivity for methane close to 100%, which represent thermodynamic limits for this reaction at the used temperature. These results are commonly achieved with much more complex catalytic composites containing precious metals, while here we worked with pure nickel and its oxides, in the form of micro- or nanoparticles, only. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

16 pages, 10602 KB  
Article
Effect of Ultra-Small Platinum Single-Atom Additives on Photocatalytic Activity of the CuOx-Dark TiO2 System in HER
by Elena D. Fakhrutdinova, Olesia A. Gorbina, Olga V. Vodyankina, Sergei A. Kulinich and Valery A. Svetlichnyi
Nanomaterials 2025, 15(17), 1378; https://doi.org/10.3390/nano15171378 - 6 Sep 2025
Viewed by 459
Abstract
Improving the efficiency of photocatalysts for hydrogen production while minimizing the amount of noble metals used is a pressing issue in modern green energy. This study examines the effect of ultra-small Pt additives on increasing the efficiency of the CuOx-dark TiO [...] Read more.
Improving the efficiency of photocatalysts for hydrogen production while minimizing the amount of noble metals used is a pressing issue in modern green energy. This study examines the effect of ultra-small Pt additives on increasing the efficiency of the CuOx-dark TiO2 photocatalyst used in the hydrogen evolution reaction (HER). Initially, Pt was photoreduced from the hydroxonitrate complex (Me4N)2[Pt2(OH)2(NO3)8] onto the surface of nanodispersed CuOx powder obtained by pulsed laser ablation. Then, the obtained Pt-CuOx particles were dispersed on the surface of highly defective dark TiO2, so that the mass content of Pt in the samples varied in the range from 1.25 × 10−5 to 10−4. The prepared samples were examined using HRTEM, XRD, XPS, and UV-Vis DRS methods. It has been established that in the Pt-CuOx particles, platinum is mainly present in the form of single atoms (SAs), both as Pt2+ (predominantly) and Pt4+ species, which should facilitate electron transfer and contribute to the manifestation of the strong metal–support interaction (SMSI) effect between SA Ptn+ and CuOx. In turn, in the Pt-CuOx-dark TiO2 samples, surface defects (Ov) and surface OH groups on dark TiO2 particles act as “anchors”, promoting the spontaneous dispersion of CuOx in the form of sub-nanometer clusters with the reduction of Cu2+ to Cu1+ when localized near such Ov defects. During photocatalytic HER in aqueous glycerol solutions, irradiation was found to initiate a large number of catalytically active Pt0-CuOx-Ov-dark TiO2 centers, where the SMSI effect causes electron transfer from titania to SA Pt, thus promoting better separation of photogenerated charges. As a result, ultra-small additives of Pt led to up to a 1.34-fold increase in the amount of released hydrogen, while the maximum apparent quantum yield (AQY) reached 65%. Full article
Show Figures

Figure 1

47 pages, 4070 KB  
Review
Nanomaterial Solutions for Environmental Applications and Bacteriological Threats: The Role of Laser-Induced Graphene
by Mario Alejandro Vallejo Pat, Harriet Ezekiel-Hart and Camilah D. Powell
Nanomaterials 2025, 15(17), 1377; https://doi.org/10.3390/nano15171377 - 6 Sep 2025
Viewed by 324
Abstract
Laser-induced graphene (LIG) is a high-quality graphene material produced by laser scribing. It has garnered significant attention as a solution to various growing global concerns, such as biological threats, energy scarcity, and environmental contamination due to its high conductivity, tunable surface chemistry, and [...] Read more.
Laser-induced graphene (LIG) is a high-quality graphene material produced by laser scribing. It has garnered significant attention as a solution to various growing global concerns, such as biological threats, energy scarcity, and environmental contamination due to its high conductivity, tunable surface chemistry, and ease of synthesis from a variety of carbonaceous substrates. This review provides a survey of recent advances in LIG applications for energy storage, heavy metal adsorption, water purification, and antimicrobial materials. As a part of this, we discuss the most recent research efforts to develop LIG as (1) sensors to detect heavy metals at ultralow detection limits, (2) as membranes capable of salt and bacteria rejection, and (3) antimicrobial materials capable of bacterial inactivation efficiencies of up to 99.998%. Additionally, due to its wide surface area, electrochemical stability, and rapid charge conduction, we report on the current body of literature that showcases the potential of LIG within energy storage applications (e.g., batteries and supercapacitors). All in all, this critical review highlights the findings and promise of LIG as an emerging next-generation material for integrated biomedical, energy, and environmental technologies and identifies the key knowledge gaps and technological obstacles that currently hinder the full-scale implementation of LIG in each field. Full article
Show Figures

Figure 1

16 pages, 1266 KB  
Article
Albumin-Coated Copper Oxide Nanoparticles for Radiosensitization of Human Glioblastoma Cells Under Clinically Relevant X-Ray Irradiation
by Chanyatip Suwannasing, Nittiya Suwannasom, Pattawat Iamcharoen, Rachan Dokkham, Panupong Maun, Pitchayuth Srisai, Hans Bäumler and Ausanai Prapan
Nanomaterials 2025, 15(17), 1376; https://doi.org/10.3390/nano15171376 - 5 Sep 2025
Viewed by 514
Abstract
Glioblastoma (GBM) is the most aggressive and treatment-resistant primary brain tumor in adults. Despite current multimodal therapies, including surgery, radiation, and temozolomide chemotherapy, patient outcomes remain poor. Enhancing tumor radiosensitivity through biocompatible nanomaterials could provide a promising integrative strategy for improving therapeutic effectiveness. [...] Read more.
Glioblastoma (GBM) is the most aggressive and treatment-resistant primary brain tumor in adults. Despite current multimodal therapies, including surgery, radiation, and temozolomide chemotherapy, patient outcomes remain poor. Enhancing tumor radiosensitivity through biocompatible nanomaterials could provide a promising integrative strategy for improving therapeutic effectiveness. This study aims to evaluate the potential of bovine serum albumin-coated copper oxide nanoparticles (BSA@CuO-NPs) to enhance radiosensitivity in U87-MG cells under clinically relevant X-ray irradiation. In brief, BSA@CuO-NPs were synthesized via carbodiimide crosslinking and characterized by DLS, SEM, and zeta potential analysis. U87-MG cells were treated with BSA@CuO-NPs alone or in combination with X-ray irradiation (2 Gy). Cytotoxicity was assessed using the MTT assay, while radiosensitization was evaluated through clonogenic survival analysis. Apoptosis induction and DNA damage were analyzed via Annexin V staining and γ-H2AX immunofluorescence, respectively. The results revealed that BSA@CuO-NPs showed good colloidal stability and biocompatibility compared with uncoated CuO-NPs. When combined with irradiation, BSA@CuO-NPs significantly decreased clonogenic survival (p < 0.05) and increased apoptotic cell death compared to irradiation alone. Immunofluorescence demonstrated increased γ-H2AX focus formation, indicating higher DNA double-strand breaks in the combination group. In conclusion, BSA@CuO-NPs enhance the effects of ionizing radiation by increasing DNA damage and apoptosis in U87-MG cells, indicating their potential as combined radiosensitizers. These results support further research into albumin-coated metal oxide nanoparticles as adjuncts to standard radiotherapy for the management of GBM. One challenge in this context is the effective delivery of nanoparticles to GBM. However, the stability of BSA@CuO-NPs in physiological solutions could help overcome this obstacle. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

16 pages, 5125 KB  
Article
One-Step Synthesis of Ultra-Small RhNPs in the Microreactor System and Their Deposition on ACF for Catalytic Conversion of 4–Nitrophenol to 4–Aminophenol
by Adrianna Pach, Konrad Wojtaszek, Ahmed Ibrahim Elhadad, Tomasz Michałek, Anna Kula and Magdalena Luty-Błocho
Nanomaterials 2025, 15(17), 1375; https://doi.org/10.3390/nano15171375 - 5 Sep 2025
Viewed by 497
Abstract
The rising demand for platinum-group metals, driven by their essential applications in catalysis, energy storage, and chemical conversion, underscores the need to identify new sources for their recovery. Waste solutions originating from industrial processes offer a promising alternative source of noble metals. However, [...] Read more.
The rising demand for platinum-group metals, driven by their essential applications in catalysis, energy storage, and chemical conversion, underscores the need to identify new sources for their recovery. Waste solutions originating from industrial processes offer a promising alternative source of noble metals. However, due to their typically low concentrations, effective recovery requires a highly targeted approach. In this study, we present a synthetic waste solution containing trace amount of Rh(III) ions as both a medium for metal ion recovery and a direct precursor for catalyst synthesis. Using a bimodal water–ethanol solvent system, ultra-small rhodium nanoparticles were synthesized and subsequently immobilized onto activated carbon fibers (ACFs) within a microreactor system. The resulting Rh@ACF catalyst demonstrated high efficiency in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), serving as a model catalytic reaction. The Rh@ACF catalyst, containing 4.24 µg Rh per milligram of sample, exhibited notable catalytic activity, achieving 75% conversion of 4-NP to 4-AP within 1 h. Full conversion to 4-AP was also reached within 5 min, but requires extra NaBH4 addition to the catalytic mixture. Full article
Show Figures

Figure 1

28 pages, 23013 KB  
Review
On-Chip OPA: Progress and Prospects in Liquid Crystal, Lithium Niobate, and Silicon Material Platforms
by Xiaobin Wang, Junliang Guo, Zixin Yang, Yuqiu Zhang, Jinyong Leng, Qiang Yu and Jian Wu
Nanomaterials 2025, 15(17), 1374; https://doi.org/10.3390/nano15171374 - 5 Sep 2025
Viewed by 576
Abstract
Non-mechanical beam steering is required for holographic displays, free-space optical communication, and chip-scale LiDAR. Optical phased arrays (OPAs), which allow for inertia-free, high-speed beam control via electronic phase control, are an important research topic. The present study investigates the primary material platform for [...] Read more.
Non-mechanical beam steering is required for holographic displays, free-space optical communication, and chip-scale LiDAR. Optical phased arrays (OPAs), which allow for inertia-free, high-speed beam control via electronic phase control, are an important research topic. The present study investigates the primary material platform for on-chip OPAs: Liquid crystal OPAs (LC-OPAs) employ electrically tunable refractive indices for low-voltage operation; lithium niobate OPAs (LN-OPAs) utilize high electro-optic coefficients for high-speed, low-power consumption, and large-bandwidth operation; and silicon-based OPAs (Si-OPAs) apply mature photonic integration to achieve high integration density and GHz-range steering. The paper thoroughly examines OPA basics, recent material-specific advancements, performance benchmarks, outstanding issues, and future prospects. Full article
Show Figures

Figure 1

19 pages, 5058 KB  
Article
Investigation of Viscoelastic Properties of Macrophage Membrane–Cytoskeleton Induced by Gold Nanorods in Leishmania Infection
by Maria L. B. Pertence, Marina V. Guedes, Rosimeire C. Barcelos, Jeronimo N. Rugani, Rodrigo P. Soares, Joyce L. V. Cruz, Alessandra M. de Sousa, Rubens L. do Monte-Neto, Livia G. Siman, Anna C. P. Lage and Ubirajara Agero
Nanomaterials 2025, 15(17), 1373; https://doi.org/10.3390/nano15171373 - 5 Sep 2025
Viewed by 486
Abstract
Cell membranes and the cytoskeleton play crucial roles in the regulation of cellular responses by mediating mechanical forces and physical stimuli from the microenvironment through their viscoelastic properties. Investigating these properties provides valuable insights into disease mechanisms and therapeutic strategies. Gold nanorods (GNRs), [...] Read more.
Cell membranes and the cytoskeleton play crucial roles in the regulation of cellular responses by mediating mechanical forces and physical stimuli from the microenvironment through their viscoelastic properties. Investigating these properties provides valuable insights into disease mechanisms and therapeutic strategies. Gold nanorods (GNRs), especially under irradiation, exhibit lethal effects against Leishmania parasites through plasmonic photothermal conversion. In this study, we focus on evaluating the effects of non-irradiated GNRs on macrophage properties to better understand their intrinsic interactions with cells and support the development of future phototherapy applications. Here, defocusing microscopy (DM), a quantitative phase microscopy technique, was used to analyze membrane fluctuations in macrophages (Ms) exposed to GNRs (average length of 43±8 nm and diameter of 20±4 nm) and infected with Leishmania amazonensis. By quantifying membrane–cytoskeleton fluctuation from defocused images, we extracted viscoelastic parameters, including bending modulus (kc) and viscosity (η), to characterize membrane behavior in detail. Our results show that infection increases both kc and η, while treatment at IC50 reduces infection and selectively increases kc without affecting η. In healthy macrophages, exposure to GNRs resulted in a reduction in both parameters, indicative of increased membrane fluidity and cytoskeletal rearrangement. These findings provide new insights into the biomechanical effects of GNRs on macrophages and may enlighten the design of future phototherapeutic approaches. Full article
(This article belongs to the Special Issue The Study of the Effects of Nanoparticles on Human Cells)
Show Figures

Graphical abstract

20 pages, 4902 KB  
Article
Comparative Evaluation of Antioxidant and Antidiabetic Activities of ZrO2 and MgO Nanoparticles Biosynthesized from Unripe Solanum trilobatum Fruits: Insights from In Vitro and In Silico Studies
by Kumaresan Rathika, Periyanayagam Arockia Doss, John Rose Arul Hency Sheela, Velayutham Gurunathan, K. J. Senthil Kumar, Chidambaram Sathishkumar, Vediyappan Thirumal and Jinho Kim
Nanomaterials 2025, 15(17), 1372; https://doi.org/10.3390/nano15171372 - 5 Sep 2025
Viewed by 470
Abstract
Herbs offer people not just sustenance and housing but also serve as a key supplier of pharmaceuticals. This research is designed to assess the antioxidant and antidiabetic properties of green-produced zirconium dioxide and magnesium oxide nanoparticles (ZrO2 and MgO NPs) utilizing extracts [...] Read more.
Herbs offer people not just sustenance and housing but also serve as a key supplier of pharmaceuticals. This research is designed to assess the antioxidant and antidiabetic properties of green-produced zirconium dioxide and magnesium oxide nanoparticles (ZrO2 and MgO NPs) utilizing extracts from unripe Solanum trilobatum fruit. ZrO2 and MgO NPs have garnered considerable interest owing to their superior bioavailability, lower toxicity, and many uses across the healthcare and commercial industries. Scientific approaches, such as diverse spectroscopic and microscopic approaches, validated the creation of agglomerated spherical ZrO2 and MgO NPs, measuring between 15 and 30 and 60 and 80 nm, with a mixed-phase composition consisting of monoclinic and tetragonal phases for ZrO2 and a face-centered cubic structure for MgO NPs. UV–vis studies revealed a distinct peak at 378 and 290 nm for ZrO2 and MgO NPs, suggesting efficient settling through the phytonutrients in S. trilobatum. The antioxidant capacity of ZrO2 and MgO NPs was evaluated utilizing DPPH and FRAP reducing power assays. The diabetic effectiveness of ZrO2 and MgO NPs was examined by alpha-amylase and alpha-glucosidase assays. The optimum doses of 500 and 1000 μg/mL were shown to be efficient in reducing radical species. Green-produced ZrO2 and MgO NPs exhibited a dose-dependent reaction, with greater amounts of ZrO2 and MgO NPs exerting a more pronounced inhibitory effect on the catalytic sites of enzymes. This work suggests that ZrO2 and MgO NPs may attach to charge-carrying entities and function as rival inhibitors, therefore decelerating the enzyme–substrate reaction and inhibiting enzymatic degradation. Molecular docking analysis of ZrO2 and MgO NPs with three proteins (2F6D, 2QV4, and 3MNG) implicated in antidiabetic and antioxidant studies demonstrated the interaction of ZrO2 and MgO NPs with the target proteins. The results indicated the in vitro effectiveness of phytosynthesized ZrO2 and MgO NPs as antidiabetic antioxidant agents, which may be used in the formulation of alternative treatment strategies against diabetes and oxidative stress. In summary, the green production of ZrO2 and MgO NPs with Solanum trilobatum unripe fruit extract is an efficient, environmentally sustainable process that yields nanomaterials with significant antioxidant and antidiabetic characteristics, underscoring their prospective uses in biomedical research. Full article
Show Figures

Figure 1

15 pages, 3131 KB  
Article
Electrospun Polyimide Nanofibers Modified with Metal Oxide Nanowires and MXene for Photocatalytic Water Purification
by Andrii Lys, Valerii Myndrul, Mykola Pavlenko, Błażej Anastaziak, Pavel Holec, Kateřina Vodseďálková, Emerson Coy, Mikhael Bechelany and Igor Iatsunskyi
Nanomaterials 2025, 15(17), 1371; https://doi.org/10.3390/nano15171371 - 5 Sep 2025
Viewed by 480
Abstract
As the demand for clean water continues to rise, the development of reliable and environmentally sustainable purification methods has become increasingly important. In this study, we describe the production and characterization of electrospun polyimide (PID) nanofibers modified with MXene (Ti3C2 [...] Read more.
As the demand for clean water continues to rise, the development of reliable and environmentally sustainable purification methods has become increasingly important. In this study, we describe the production and characterization of electrospun polyimide (PID) nanofibers modified with MXene (Ti3C2Tx), tungsten trioxide (WO3), and titanium dioxide (TiO2) nanomaterials for improved photocatalytic degradation of rhodamine 6G (R6G), a model organic dye. Superior photocatalytic performance was achieved by suppressing electron–hole recombination, promoting efficient charge carrier separation, and the significant increase in light absorption through the addition of metal oxide nanowires and MXene to the PID matrix. Comprehensive characterization confirms a core–shell nanofiber architecture with TiO2, WO3, and MXene effectively integrated and electronically coupled, consistent with the observed photocatalytic response. The PID/TiO2/WO3/MXene composite exhibited the highest photocatalytic activity among the tested configurations, degrading R6G by 74% in 90 min of light exposure. This enhancement was ascribed to the synergistic interactions between MXene and the metal oxides, which reduced recombination losses and promoted effective charge transfer. The study confirms the suitability of PID-based hybrid nanofibers for wastewater treatment applications. It also points toward future directions focused on scalable production and deployment in the field of environmental remediation. Full article
Show Figures

Graphical abstract

15 pages, 1770 KB  
Article
A Peano-Gosper Fractal-Inspired Stretchable Electrode with Integrated Three-Directional Strain and Normal Pressure Sensing
by Chunge Wang, Yuanyuan Huang, Zixia Zhao, Haoyu Li, Chen Liu, Zhixin Jia, Yanping Wang, Qianqian Wang and Sheng Zhang
Nanomaterials 2025, 15(17), 1370; https://doi.org/10.3390/nano15171370 - 5 Sep 2025
Viewed by 540
Abstract
A novel stretchable flexible electrode capable of simultaneously detecting isotropic three-directional strain and normal pressure has been developed. Inspired by the recursive symmetry of the Peano-Gosper fractal, the electrode integrates liquid metal (EGaIn) microchannels within a PDMS matrix to achieve uniform strain distribution [...] Read more.
A novel stretchable flexible electrode capable of simultaneously detecting isotropic three-directional strain and normal pressure has been developed. Inspired by the recursive symmetry of the Peano-Gosper fractal, the electrode integrates liquid metal (EGaIn) microchannels within a PDMS matrix to achieve uniform strain distribution and mechanically robust conductive pathways under large deformation. Within a strain range of 0–60%, the electrode exhibits highly consistent three-directional responses, with resistance variation across axes kept below 4% and a gauge factor (GF) standard deviation of only 0.0252. The device demonstrates low hysteresis (minimum DH = 0.94%), good cyclic durability, and reliable electromechanical stability. For normal pressure sensing (0–20 kPa), it provides a linear response (R2 ≈ 0.99) with a moderate sensitivity of 0.198 kPa−1. Wearable tests on the wrist, finger, and fingertip confirm the electrode’s reliable operation in multidimensional mechanical monitoring. This integrated fractal–liquid metal design offers a promising route for multifunctional sensing in applications such as soft robotics, human–machine interaction, and wearable electronics. Full article
(This article belongs to the Special Issue Gas-Sensing Properties of Nanomaterials)
Show Figures

Figure 1

35 pages, 53404 KB  
Article
Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning–Calcination
by Marina Manica, Mirela Petruta Suchea, Dumitru Manica, Petronela Pascariu, Oana Brincoveanu, Cosmin Romanitan, Cristina Pachiu, Adrian Dinescu, Raluca Muller, Stefan Antohe, Daniel Marcel Manoli and Emmanuel Koudoumas
Nanomaterials 2025, 15(17), 1369; https://doi.org/10.3390/nano15171369 - 4 Sep 2025
Viewed by 458
Abstract
In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1–5 at.%) into [...] Read more.
In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1–5 at.%) into ZnO, and the resulting powders were drop-cast as thin films on glass substrates. This approach enables the transfer of pre-engineered nanoscale morphologies into the final thin-film architecture. The morphological analysis by scanning electron microscopy (SEM) revealed a predominance of spherical nanoparticles and nanorods, with distinct variations in size and aspect ratio depending on dopant type and concentration. X-ray diffraction (XRD) and Rietveld analysis confirmed the wurtzite ZnO structure with increasing evidence of secondary phase formation at high dopant levels (e.g., Er2O3, Sm2O3, and La(OH)3). Raman spectroscopy showed peak shifts, broadening, and defect-related vibrational modes induced by RE incorporation, in agreement with the lattice strain and crystallinity variations observed in XRD. Elemental mapping (EDX) confirmed uniform dopant distribution. Optical transmittance exceeded 70% for all films, with Tauc analysis revealing slight bandgap narrowing (Eg = 2.93–2.97 eV) compared to pure ZnO. This study demonstrates that rare-earth doping via electrospun nanocluster precursors is a viable route to engineer ZnO thin films with tunable structural and optical properties. Despite current limitations in film-substrate adhesion, the method offers a promising pathway for future transparent optoelectronic, sensing, or UV detection applications, where further interface engineering could unlock their full potential. Full article
Show Figures

Graphical abstract

23 pages, 7670 KB  
Article
Biogenic Synthesis of Gold Nanoparticles Using Scabiosa palaestina Extract: Characterization, Anticancer and Antioxidant Activities
by Heba Hellany, Adnan Badran, Ghosoon Albahri, Nadine Kafrouny, Riham El Kurdi, Marc Maresca, Digambara Patra and Elias Baydoun
Nanomaterials 2025, 15(17), 1368; https://doi.org/10.3390/nano15171368 - 4 Sep 2025
Viewed by 564
Abstract
Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of Scabiosa palaestina, characterize their physicochemical properties, [...] Read more.
Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of Scabiosa palaestina, characterize their physicochemical properties, and evaluate their anticancer properties and antioxidant potential. AuNPs were successfully synthesized and characterized using UV–visible spectroscopy, scanning electron microscopy (SEM), zeta potential analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The results indicated that the biosynthesized AuNPs were spherical and well-dispersed, exhibiting an absorption peak at 560 nm and an average size of 9.9 nm. Cytotoxicity assays demonstrated dose- and time-dependent inhibitory effects on MDA-MB-231, Capan-2, HCT116, and 22Rv1 cancer cell lines, with 22Rv1 and MDA-MB-231 cells showing the most potent responses. At the highest concentration tested (100 µg/mL), after 72 h, cell viability was reduced to 16.04  ±  1.8% for 22Rv1 and 17.48  ±  8.3% for MDA-MB-231 cells. Additionally, the AuNPs exhibited concentration-dependent antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) scavenging assays. In summary, the synthesized AuNPs demonstrated multifunctional properties that make them suitable for a wide range of biomedical and biotechnological applications. Full article
Show Figures

Graphical abstract

13 pages, 2265 KB  
Article
Enhancement of Spin Transport Properties in Angled-Channel Graphene Spin Valves via Hybrid Spin Drift-Diffusion
by Samuel Olson, Kaleb Hood, Otto Zietz and Jun Jiao
Nanomaterials 2025, 15(17), 1367; https://doi.org/10.3390/nano15171367 - 4 Sep 2025
Viewed by 461
Abstract
Graphene has promise as a channel connecting separate units of large-scale spintronic circuits owing to its outstanding theoretical spin transport properties. However, spin transport properties of experimental devices consistently fall short of theoretical estimates due to impacts from the substrate, electrodes, or defects [...] Read more.
Graphene has promise as a channel connecting separate units of large-scale spintronic circuits owing to its outstanding theoretical spin transport properties. However, spin transport properties of experimental devices consistently fall short of theoretical estimates due to impacts from the substrate, electrodes, or defects in the graphene itself. In this study, we fabricate both traditional non-local spin valves (NLSVs) and novel hybrid drift-diffusion spin valves (HDDSVs) to explore the impact of charge current and AC spin injection efficiency on spin transport. HDDSVs feature channel branches that allow investigation of charge-based spin drift enhancement compared to diffusion-only configurations. We investigate the modulation of spin transport through hybrid drift-diffusion, observing a decrease in spin signal by 11% for channels with a 45° branch angle, and a 21% increase in spin signal for 135° branch angle channels. We then fabricate symmetrical 90° channel branch angle devices, which do not produce consistent spin transport modulation in drift diffusion mode. These findings highlight the role of carrier drift in enhancing or suppressing spin transport, depending on channel geometry and injection configuration. Overall, our work demonstrates a promising approach to optimizing spin transport in graphene devices by leveraging hybrid drift-diffusion effects without requiring additional DC current sources. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

27 pages, 3605 KB  
Review
A Comprehensive Review of the Nano-Abrasives Key Parameters Influencing the Performance in Chemical Mechanical Polishing
by Houda Bellahsene, Saad Sene, Gautier Félix, Joulia Larionova, Marc Ferrari and Yannick Guari
Nanomaterials 2025, 15(17), 1366; https://doi.org/10.3390/nano15171366 - 4 Sep 2025
Cited by 1 | Viewed by 428
Abstract
Chemical Mechanical Polishing (CMP) is a critical process in many industries where achieving superior surface quality through controlled material removal rates by using nano-abrasives is essential. This review examines key parameters of abrasives at the nanoscale, such as size, shape, aspect ratio, hardness, [...] Read more.
Chemical Mechanical Polishing (CMP) is a critical process in many industries where achieving superior surface quality through controlled material removal rates by using nano-abrasives is essential. This review examines key parameters of abrasives at the nanoscale, such as size, shape, aspect ratio, hardness, and surface modifications, through inorganic doping or organic molecule grafting and their influence on CMP performance. By analyzing recent studies, we explore how these parameters affect the tribological and chemical interactions during CMP and link these effects to the fundamental polishing mechanisms. Highlighting emerging trends, this work offers a roadmap for designing next-generation nano-abrasives that boost removal efficiency, enhance surface finish, and ensure process stability. Ultimately, controlling abrasive properties at the nanoscale is vital for advancing CMP technology toward more efficient, consistent, and high-quality results. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

17 pages, 2234 KB  
Review
Gallium Oxide Memristors: A Review of Resistive Switching Devices and Emerging Applications
by Alfred Moore, Yaonan Hou and Lijie Li
Nanomaterials 2025, 15(17), 1365; https://doi.org/10.3390/nano15171365 - 4 Sep 2025
Viewed by 636
Abstract
Gallium oxide (Ga2O3)-based memristors are gaining traction as promising candidates for next-generation electronic devices toward in-memory computing, leveraging the unique properties of Ga2O3, such as its wide bandgap, high thermodynamic stability, and chemical stability. This [...] Read more.
Gallium oxide (Ga2O3)-based memristors are gaining traction as promising candidates for next-generation electronic devices toward in-memory computing, leveraging the unique properties of Ga2O3, such as its wide bandgap, high thermodynamic stability, and chemical stability. This review explores the evolution of memristor theory for Ga2O3-based materials, emphasising capacitive memristors and their ability to integrate resistive and capacitive switching mechanisms for multifunctional performance. We discussed the state-of-the-art fabrication methods, material engineering strategies, and the current challenges of Ga2O3-based memristors. The review also highlights the applications of these memristors in memory technologies, neuromorphic computing, and sensors, showcasing their potential to revolutionise emerging electronics. Special focus has been placed on the use of Ga2O3 in capacitive memristors, where their properties enable improved switching speed, endurance, and stability. In this paper we provide a comprehensive overview of the advancements in Ga2O3-based memristors and outline pathways for future research in this rapidly evolving field. Full article
Show Figures

Figure 1

23 pages, 2840 KB  
Article
Comparison of Lung Inflammatory and Transcriptional Responses in Mice and Rats Following Pulmonary Exposure to a Fiber Paradigm-Compatible and Non-Compatible MWCNT
by Laura Aliisa Saarimäki, Pernille Høgh Danielsen, Kristina Bram Knudsen, Sarah Søs Poulsen, Sabina Halappanavar, Henrik Wolff, Pia Anneli Sofia Kinaret, Dario Greco and Ulla Vogel
Nanomaterials 2025, 15(17), 1364; https://doi.org/10.3390/nano15171364 - 4 Sep 2025
Viewed by 515
Abstract
Inhalation of multi-walled carbon nanotubes (MWCNTs) poses potential health risks due to their structural similarity to asbestos and their ability to induce chronic lung inflammation, fibrosis, and lung cancer in animal models. This study investigated the pulmonary inflammatory and transcriptomic responses of two [...] Read more.
Inhalation of multi-walled carbon nanotubes (MWCNTs) poses potential health risks due to their structural similarity to asbestos and their ability to induce chronic lung inflammation, fibrosis, and lung cancer in animal models. This study investigated the pulmonary inflammatory and transcriptomic responses of two distinct MWCNTs—NM-401 (long, rigid) and NM-403 (short, thin)—in rats and mice using intratracheal instillation at matched dose levels at two post-exposure time points. Both MWCNTs induced acute neutrophilic inflammation and dose-dependent transcriptomic alterations in both species, with NM-403 eliciting a stronger response. Transcriptomic profiling revealed a substantial overlap in differentially expressed genes across materials and species, particularly at the early time point. Fibrosis-associated genes were upregulated in both species, with more persistent expression observed in rats. Acute phase response genes, including Orosomucoid 1 and Lipocalin 2 were commonly induced, while Serum Amyloid A3 and Orosomucoid 2 were selectively upregulated in mice. Functional enrichment analyses showed conserved activation of immune and inflammatory pathways. Our findings show that even short, non-fiber-like MWCNTs can provoke potent and persistent pulmonary effects, challenging assumptions based solely on MWCNT properties. Despite differences in long-term responses, the overall inflammatory and transcriptional profiles showed strong interspecies concordance, suggesting that both rats and mice are relevant models for assessing MWCNT-induced pulmonary toxicity. Full article
Show Figures

Figure 1

15 pages, 6260 KB  
Article
Synthesis and Characterization of EG/Au Composites via Thermal Exfoliation of Graphite Intercalation Compounds with Tetrachloroauric Acid
by Aleksandr D. Muravev, Andrei V. Ivanov, Vladimir A. Mukhanov, Boris A. Kulnitskiy, Natalia V. Maksimova and Victor V. Avdeev
Nanomaterials 2025, 15(17), 1363; https://doi.org/10.3390/nano15171363 - 4 Sep 2025
Viewed by 472
Abstract
This study demonstrates a novel route to synthesize gold-decorated exfoliated graphite (EG) through graphite intercalation compounds (GICs) with tetrachloroauric acid (HAuCl4). We aimed to develop a scalable method for producing EG/Au composites with controlled nanoparticle morphology by investigating the effects of [...] Read more.
This study demonstrates a novel route to synthesize gold-decorated exfoliated graphite (EG) through graphite intercalation compounds (GICs) with tetrachloroauric acid (HAuCl4). We aimed to develop a scalable method for producing EG/Au composites with controlled nanoparticle morphology by investigating the effects of precursor chemistry and thermal expansion conditions. II-stage GIC–HAuCl4 (average gross-composition: C23HAuCl4; intercalate layer thickness di = 6.85 Å) was prepared via an exchange reaction of HAuCl4 with graphite nitrate. Interaction of this GIC with liquid methylamine yielded an occlusive complex, where methylamine-bound HAuCl4 occupies both interlayer and intercrystalline spaces in the graphite matrix. Methylamine treatment of GIC reduces the onset temperature of exfoliation by ≈100 °C and enhances the expansion efficiency, yielding EG with a low bulk density range of 4–6 g/L when processed at 900 °C in air or nitrogen. Thermal exfoliation of these GICs yielded EG decorated with gold nanoparticles, exhibiting a broad size distribution from a few nanometers to several hundred nanometers, as confirmed by electron microscopy. An X-ray diffraction analysis identified the coexistence of crystalline gold and hexagonal graphite phases, with no detectable impurity phases. Full article
Show Figures

Figure 1

21 pages, 5984 KB  
Article
Chrysin-Loaded Micelles Regulate Cell Cycle and Induce Intrinsic and Extrinsic Apoptosis in Ovarian Cancer Cells
by Serife Cakir, Ummugulsum Yildiz, Turgay Yildirim and Omer Aydin
Nanomaterials 2025, 15(17), 1362; https://doi.org/10.3390/nano15171362 - 4 Sep 2025
Viewed by 549
Abstract
Effective intracellular delivery for ovarian cancer therapy remains a significant challenge. We present chrysin-loaded p(MMA-co-DMAEMA)-b-(OEGMA-co-DMA), PMOD-Chr, a nanoparticle platform precisely engineered via RAFT polymerization for advanced therapeutic delivery. This multi-functional platform features a hydrophobic p(MMA) core encapsulating chrysin (Chr), a pH-responsive p(DMAEMA) segment [...] Read more.
Effective intracellular delivery for ovarian cancer therapy remains a significant challenge. We present chrysin-loaded p(MMA-co-DMAEMA)-b-(OEGMA-co-DMA), PMOD-Chr, a nanoparticle platform precisely engineered via RAFT polymerization for advanced therapeutic delivery. This multi-functional platform features a hydrophobic p(MMA) core encapsulating chrysin (Chr), a pH-responsive p(DMAEMA) segment for endosomal escape, and a hydrophilic OEGMA (Oligo(ethylene glycol) methyl ether methacrylate) shell functionalized for enhanced cellular affinity and systemic stability. The combination of OEGMA and DMA (Dopamine methacrylamide) block facilitates passive targeting of ovarian cancer cells, enhancing internalization. Nanoparticles prepared via the nanoprecipitation method exhibited ~220 nm, demonstrating effective size modulation along with high homogeneity and spherical morphology. In A2780 and OVCAR3 ovarian cancer cells, PMOD-Chr demonstrated significantly enhanced cytotoxicity, substantially lowering the effective IC50 dose of Chr. Mechanistically, PMOD-Chr induced a potent G2/M cell cycle arrest, driven by the upregulation of the CDK1/Cyclin B1 complex. Furthermore, the formulation potently triggered programmed cell death by concurrently activating both the intrinsic apoptotic pathway, evidenced by the modulation of Bax, Bcl2, and caspase 9, and the extrinsic pathway involving caspase 8. These findings emphasize that precision engineering via RAFT polymerization enables the creation of sophisticated, multi-stage nanomedicines that effectively overcome key delivery barriers, offering a highly promising targeted strategy for ovarian cancer. Full article
Show Figures

Graphical abstract

24 pages, 20312 KB  
Review
Nano- and Microplastics in the Brain: An Emerging Threat to Neural Health
by Anna Baroni, Chantalle Moulton, Mario Cristina, Luigi Sansone, Manuel Belli and Ennio Tasciotti
Nanomaterials 2025, 15(17), 1361; https://doi.org/10.3390/nano15171361 - 4 Sep 2025
Viewed by 890
Abstract
Nano- and microplastics (NMPs), with nanoplastics posing higher risks due to their smaller size and greater capacity for cellular and subcellular penetration, are being referred to as ubiquitous environmental neurotoxicants, due to their ability to pass through biological barriers, including the blood–brain barrier [...] Read more.
Nano- and microplastics (NMPs), with nanoplastics posing higher risks due to their smaller size and greater capacity for cellular and subcellular penetration, are being referred to as ubiquitous environmental neurotoxicants, due to their ability to pass through biological barriers, including the blood–brain barrier (BBB) and nasal olfactory epithelium, and to remain lodged in neural tissue. Upon uptake, such particles disturb neuronal homeostasis by multiple converging pathways, including oxidative stress, mitochondrial dysfunction, pathological protein aggregation, and chronic neuroinflammation, all closely involved with the molecular signatures of neurodegenerative disorders (Alzheimer’s, Parkinson’s, Amyotrophic Lateral Sclerosis—ALS). In addition to their neurotoxicity, recent findings suggest that NMPs could disturb synaptic communication and neuroplasticity, thereby compromising the brain’s capacity to recover from an injury, a trauma, or neurodegeneration, thus impacting the progression of the disease, our ability to treat it and eventually the efficacy of rehabilitation approaches. Despite these findings, our understanding remains hampered by analytical issues, the scarcity of standard detection methods, and a total lack of longitudinal studies in humans. This review combines multidisciplinary evidence on brain–plastic interactions and calls for accelerated advances in our ability to monitor bioaccumulation in humans, and to integrate neurotoxicology paradigms in the assessment of this underappreciated but growing threat to brain health. Full article
Show Figures

Graphical abstract

17 pages, 3956 KB  
Article
Synergistic LPCVD and PECVD Growth of β-Ga2O3 Thin Films for High-Sensitivity and Low-Dose Direct X-Ray Detection
by Lan Yang, Dingyuan Niu, Yong Zhang, Xueping Zhao, Xinxin Li, Jun Zhu and Hai Zhang
Nanomaterials 2025, 15(17), 1360; https://doi.org/10.3390/nano15171360 - 3 Sep 2025
Viewed by 498
Abstract
Ultra-wide bandgap β-Ga2O3 is a promising low-cost alternative to conventional direct X-ray detector materials that are limited by fabrication complexity, instability, or slow temporal response. Here, we comparatively investigate β-Ga2O3 thin films grown on c-sapphire by low-pressure [...] Read more.
Ultra-wide bandgap β-Ga2O3 is a promising low-cost alternative to conventional direct X-ray detector materials that are limited by fabrication complexity, instability, or slow temporal response. Here, we comparatively investigate β-Ga2O3 thin films grown on c-sapphire by low-pressure chemical vapor deposition (LPCVD) and plasma-enhanced CVD (PECVD), establishing a quantitative linkage between growth kinetics, microstructure, defect landscape, and X-ray detection figures of merit. The LPCVD-grown film (thickness ≈ 0.289 μm) exhibits layered coalesced grains, a narrower rocking curve (FWHM = 1.840°), and deep-level oxygen-vacancy-assisted high photoconductive gain, yielding a high sensitivity of 1.02 × 105 μC Gyair−1 cm−2 at 20 V and a thickness-normalized sensitivity of 3.539 × 105 μCGyair−1 cm−2 μm−1. In contrast, the PECVD-grown film (≈1.57 μm) shows dense columnar growth, higher O/Ga stoichiometric proximity, and shallow-trap dominance, enabling a lower dark current, superior dose detection limit (30.13 vs. 57.07 nGyair s−1), faster recovery, and monotonic SNR improvement with bias. XPS and dual exponential transient analysis corroborate a deep-trap persistent photoconductivity mechanism in LPCVD versus moderated shallow trapping in PECVD. The resulting high-gain vs. low-noise complementary paradigm clarifies defect–gain trade spaces and provides a route to engineer β-Ga2O3 thin-film X-ray detectors that simultaneously target high sensitivity, low dose limit, and temporal stability through trap and electric field management. Full article
Show Figures

Figure 1

12 pages, 457 KB  
Article
Negative Differential Conductance Induced by Majorana Bound States Side-Coupled to T-Shaped Double Quantum Dots
by Yu-Mei Gao, Yi-Fei Huang, Feng Chi, Zi-Chuan Yi and Li-Ming Liu
Nanomaterials 2025, 15(17), 1359; https://doi.org/10.3390/nano15171359 - 3 Sep 2025
Viewed by 406
Abstract
Electronic transport through T-shaped double quantum dots (TDQDs) connected to normal metallic leads is studied theoretically by using a nonequilibrium Green’s function method. It is assumed that the Coulomb interaction exists only in the central QD (QD-1) sandwiched between the leads, and it [...] Read more.
Electronic transport through T-shaped double quantum dots (TDQDs) connected to normal metallic leads is studied theoretically by using a nonequilibrium Green’s function method. It is assumed that the Coulomb interaction exists only in the central QD (QD-1) sandwiched between the leads, and it is absent in the other reference QD (QD-2) side-coupled to QD-1. We also consider the impacts of Majorana bound states (MBSs), which are prepared at the opposite ends of a topological superconductor nanowire (hereafter called a Majorana nanowire) connected to QD-2, on the electrical current and differential conductance. Our results show that by the combined effects of the Coulomb interaction in QD-1 and the MBSs, a negative differential conductance (NDC) effect emerges near the zero-bias point, where MBSs play significant roles. Now, the electrical current decreases despite the increasing bias voltage. The NDC is prone to occur under conditions of low temperature, and both of the two QDs’ energy levels are resonant to the leads’ zero Fermi energy. Its magnitude, which is characterized by a peak-to-valley ratio, can be enhanced up to 3 by increasing the interdot coupling strength, and it depends on the dot-MBS hybridization strength nonlinearly. This prominent NDC combined with the previously found zero-bias anomaly (ZBA) of the differential conductance is useful in designing novel quantum electric devices, and it may also serve as an effective detection means for the existence of MBSs, which is still a challenge in solid-state physics. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Figure 1

20 pages, 2145 KB  
Article
Structural Design of High-Coercivity Nd-Ce-Fe-B Magnets with Easy Axis Perpendicular Orientation and High-Abundance Ce Content Based on Micromagnetic Simulations
by Qian Zhao, Ying Yu, Chenlin Tang, Qingkang Hu, Suo Bai, Puyu Wang, Zhubai Li and Guoping Zhao
Nanomaterials 2025, 15(17), 1358; https://doi.org/10.3390/nano15171358 - 3 Sep 2025
Viewed by 555
Abstract
In recent years, replacing the scarce and expensive rare earth element Nd with the more abundant and lower cost Ce in the production of Nd-Ce-Fe-B permanent magnets has become a focus of both industrial and academic research. A critical challenge is how to [...] Read more.
In recent years, replacing the scarce and expensive rare earth element Nd with the more abundant and lower cost Ce in the production of Nd-Ce-Fe-B permanent magnets has become a focus of both industrial and academic research. A critical challenge is how to design the crystal structure of Nd-Ce-Fe-B magnets to compensate for the decline in magnetic performance caused by the Ce substitution. In this study, based on micromagnetic theory, Nd-Ce-Fe-B magnets with perpendicularly oriented easy axes—in which the two main phases, Nd2Fe14B and Ce2Fe14B, have a volume ratio of 1:1 but different spatial arrangements—are modeled and simulated using the MuMax3.11 software. The model is either cubic or spherical. The results from the demagnetization curve analysis indicate that the coercivity mechanism of all magnets is pinning. When the magnet volume is constant but the phase distribution differs, the Nd2Fe14B/Ce2Fe14B structure exhibits a higher coercivity and maximum energy product than the Ce2Fe14B/Nd2Fe14B structure. Furthermore, for both structural models with the same phase distribution, the coercivity and the maximum energy product decrease with the increasing volume of the main phase. Notably, the coercivity is similar when the magnet volume is very small and stabilizes after reaching a certain threshold. This qualitative conclusion was also observed in Nd-Dy-Fe-B magnets with the same structure and equal volume ratio of the two main phases. This general finding indicates that, in biphasic magnets with equal phase volumes, the phase with the larger anisotropy field located at the grain periphery can achieve a higher coercivity and maximum magnetic energy product. The analysis of the angular distribution reveals that the number of magnetic domains remains fixed at six in the Nd2Fe14B/Ce2Fe14B structure and two in the Ce2Fe14B/Nd2Fe14B structure. The in-plane magnetic moment analysis of the Ce2Fe14B/Nd2Fe14B magnet shows that the magnetic moments at the edges of the Ce2Fe14B begin to deflect first. Even at the pinning stage, the magnetic moments within the Nd2Fe14B remain unrotated. Nevertheless, the surface magnetic moments of Ce2Fe14B, through exchange coupling, drive the deflection of the interfacial and interior moments, completing the entire demagnetization process. These computational results provide theoretical guidance for related experimental studies and industrial applications. Full article
(This article belongs to the Special Issue Study on Magnetic Properties of Nanostructured Materials)
Show Figures

Figure 1

13 pages, 3233 KB  
Article
Solanaceous Crops-Derived Nitrogen-Doped Biomass Carbon Material as Anode for Lithium-Ion Battery
by Hong Shang, Yougui Zhou, Huipeng Li, Jia Peng, Xinmeng Hao, Lihua Guo and Bing Sun
Nanomaterials 2025, 15(17), 1357; https://doi.org/10.3390/nano15171357 - 3 Sep 2025
Viewed by 498
Abstract
Biomass resources are excellent candidates for carbon electrode materials due to their abundance, renewability, and biodegradability. Herein, the solanaceous crop Tobacco Straw, a rich agricultural by-product, was utilized to prepare biomass-derived carbon material (TsC) and applied as an anode in lithium-ion batteries [...] Read more.
Biomass resources are excellent candidates for carbon electrode materials due to their abundance, renewability, and biodegradability. Herein, the solanaceous crop Tobacco Straw, a rich agricultural by-product, was utilized to prepare biomass-derived carbon material (TsC) and applied as an anode in lithium-ion batteries (LIBs). Doping or composite formation is considered to enhance the electrochemical performance. Doping extra nitrogen (N) atoms into the TsC (denoted as TsNC) demonstrated exceptional reversible specific capacity (475.9 mA h g−1 at the current density of 60 mA g−1 after 500 cycles) and remarkable long-term cycling stability (142.9 mA h g−1 even at a high current density of 1.5 A g−1 after 1000 cycles, much larger than that of TsC), attributed to the increased lithium-ion (Li-ion) adsorption sites including graphitic-N, pyrrolic-N, and pyridinic-N. Furthermore, kinetic analysis revealed that a prominent predominant surface capacitive-controlled behavior was responsible for the superior rate performance of TsNC, which could facilitate rapid charging and discharging at high rates. This work offers valuable insights into the application and modification of nitrogen-doped biomass-derived carbons with outstanding electrochemical properties for LIBs. The strategy also sheds light on enabling waste recycling and generating economic benefits. Full article
Show Figures

Graphical abstract

16 pages, 6160 KB  
Article
Synthesis of RuO2-Co3O4 Composite for Efficient Electrocatalytic Oxygen Evolution Reaction
by Jingchao Zhang, Yingping Bu, Jia Hao, Wenjun Zhang, Yao Xiao, Naihui Zhao, Renchun Zhang and Daojun Zhang
Nanomaterials 2025, 15(17), 1356; https://doi.org/10.3390/nano15171356 - 3 Sep 2025
Viewed by 518
Abstract
Among various H2 production methods, splitting water using renewable electricity for H2 production is regarded as a promising approach due to its high efficiency and zero carbon emissions. The oxygen evolution reaction (OER) is an important part of splitting water, but [...] Read more.
Among various H2 production methods, splitting water using renewable electricity for H2 production is regarded as a promising approach due to its high efficiency and zero carbon emissions. The oxygen evolution reaction (OER) is an important part of splitting water, but also the main bottleneck. The anodic oxygen evolution reaction (OER) for water electrolysis technology involves multi-electron/proton transfer and has sluggish reaction kinetics, which is the key obstacle to the overall efficiency of electrolyzing water. Therefore, it is necessary to develop highly efficient and cheap OER electrocatalysts to drive overall water splitting. Herein, a series of efficient RuO2-Co3O4 composites were synthesized via a straightforward three-step process comprising solvothermal synthesis, ion exchange, and calcination. The results indicate that using 10 mg of RuCl3·xH2O and 15 mg of Co-MOF precursor in the second ion exchange step is the most effective way to acquire the Co3O4-RuO2-10 (RCO-10) composite with the largest specific area and the best electrocatalytic performance after the calcination process. The optimal Co3O4-RuO2-10 composite powder catalyst displays low overpotential (η10 = 272 mV), a small Tafel slope (64.64 mV dec−1), and good electrochemical stability in alkaline electrolyte; the overall performance of Co3O4-RuO2-10 surpasses that of many related cobalt-based oxide catalysts. Furthermore, through integration with a carbon cloth substrate, Co3O4-RuO2-10/CC can be directly used as a self-supporting electrode with high stability. This work presents a straightforward method to design Co3O4-RuO2 composite array catalysts for high-performance electrocatalytic OER performance. Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Green Energy)
Show Figures

Figure 1

11 pages, 2257 KB  
Article
Liquid-Exfoliated Antimony Nanosheets Hybridized with Reduced Graphene Oxide for Photoelectrochemical Photodetectors
by Gengcheng Liao, Sichao Yu, Jiebo Zeng, Zongyu Huang, Xiang Qi, Jianxin Zhong and Long Ren
Nanomaterials 2025, 15(17), 1355; https://doi.org/10.3390/nano15171355 - 3 Sep 2025
Viewed by 495
Abstract
In this paper, we design a self-powered photoelectrochemical (PEC)-type photodetector based on a hybridization of two-dimensional (2D) few-layer antimony (Sb) nanosheets (NSs) and reduced graphene oxide (rGO). The few-layer Sb NSs obtained by liquid-phase exfoliation can be anchored on the surface of rGO [...] Read more.
In this paper, we design a self-powered photoelectrochemical (PEC)-type photodetector based on a hybridization of two-dimensional (2D) few-layer antimony (Sb) nanosheets (NSs) and reduced graphene oxide (rGO). The few-layer Sb NSs obtained by liquid-phase exfoliation can be anchored on the surface of rGO through hydrothermal treatment. Specifically, during photoexcitation, the electron–hole pairs photogenerated on the surface of Sb NSs can be well stimulated and transferred by rGO, reducing the photogenerated carriers recombine on Sb NSs. The excellent electrochemical performance is confirmed by PEC tests. The photobehavior performance of the Sb NSs-rGO composite is significantly improved; its photocurrent density reaches 48.830 nA/cm2 at zero potential, approximately twice that of pure Sb NSs. The hybrid exhibits a faster photoresponse speed, with the response time and recovery time being 0.140 s and 0.163 s, respectively. This enhancement arises from the conductive role of rGO as a conductive channel, and as a result, the efficient separation of photoinduced electron–hole pairs is facilitated. This study is a further exploration of hybrid engineering of 2D materials in photochemical photodetectors and demonstrates significant progress in this field. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials: 3rd Edition)
Show Figures

Figure 1

20 pages, 2242 KB  
Review
The Use of Computational Approaches to Design Nanodelivery Systems
by Abedalrahman Abughalia, Mairead Flynn, Paul F. A. Clarke, Darren Fayne and Oliviero L. Gobbo
Nanomaterials 2025, 15(17), 1354; https://doi.org/10.3390/nano15171354 - 3 Sep 2025
Viewed by 611
Abstract
Nano-based drug delivery systems present a promising approach to improve the efficacy and safety of therapeutics by enabling targeted drug transport and controlled release. In parallel, computational approaches—particularly Molecular Dynamics (MD) simulations and Artificial Intelligence (AI)—have emerged as transformative tools to accelerate nanocarrier [...] Read more.
Nano-based drug delivery systems present a promising approach to improve the efficacy and safety of therapeutics by enabling targeted drug transport and controlled release. In parallel, computational approaches—particularly Molecular Dynamics (MD) simulations and Artificial Intelligence (AI)—have emerged as transformative tools to accelerate nanocarrier design and optimise their properties. MD simulations provide atomic-to-mesoscale insights into nanoparticle interactions with biological membranes, elucidating how factors such as surface charge density, ligand functionalisation and nanoparticle size affect cellular uptake and stability. Complementing MD simulations, AI-driven models accelerate the discovery of lipid-based nanoparticle formulations by analysing vast chemical datasets and predicting optimal structures for gene delivery and vaccine development. By harnessing these computational approaches, researchers can rapidly refine nanoparticle composition to improve biocompatibility, reduce toxicity and achieve more precise drug targeting. This review synthesises key advances in MD simulations and AI for two leading nanoparticle platforms (gold and lipid nanoparticles) and highlights their role in enhancing therapeutic performance. We evaluate how in silico models guide experimental validation, inform rational design strategies and ultimately streamline the transition from bench to bedside. Finally, we address key challenges such as data scarcity and complex in vivo dynamics and propose future directions for integrating computational insights into next generation nanodelivery systems. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

17 pages, 4214 KB  
Article
Resistive Switching Behavior of Sol–Gel-Processed ZnMgO/ZnO Bilayer in Optoelectronic Devices
by Hee Sung Shin, Dong Hyun Kim, Donggu Lee and Jaehoon Kim
Nanomaterials 2025, 15(17), 1353; https://doi.org/10.3390/nano15171353 - 3 Sep 2025
Viewed by 564
Abstract
Sol–gel-processed zinc oxide (ZnO) and magnesium-doped zinc oxide (ZnMgO) are widely used in quantum dot light-emitting diodes (QLEDs) due to their excellent charge transport properties, ease of fabrication, and tunable film characteristics. In particular, the ZnMgO/ZnO bilayer structure has attracted considerable attention for [...] Read more.
Sol–gel-processed zinc oxide (ZnO) and magnesium-doped zinc oxide (ZnMgO) are widely used in quantum dot light-emitting diodes (QLEDs) due to their excellent charge transport properties, ease of fabrication, and tunable film characteristics. In particular, the ZnMgO/ZnO bilayer structure has attracted considerable attention for its dual functionality: defect passivation by ZnMgO and efficient charge transport by ZnO. However, while the effects of resistive switching (RS) in individual ZnO and ZnMgO layers on the aging behavior of QLEDs have been studied, the RS characteristics of sol–gel-processed ZnMgO/ZnO bilayers remain largely unexplored. In this study, we systematically analyzed RS properties of an indium tin oxide (ITO)/ZnMgO/ZnO/aluminum (Al) device, demonstrating superior performance compared to devices with single layers of either ZnMgO or ZnO. We also investigated the shelf-aging characteristics of RS devices with single and bilayer structures, finding that the bilayer structure exhibited the least variation over time, thereby confirming its enhanced uniformity and reliability. Furthermore, based on basic current–voltage measurements, we estimated accuracy variations in MNIST pattern recognition using a two-layer perceptron model. These results not only identify a promising RS device architecture based on the sol–gel process but also offer valuable insights into the aging behavior of QLEDs incorporating ZnMgO/ZnO bilayers, ITO, and Al electrodes. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop