A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Gao, J.; Cheng, P.; He, J.; Yin, Y.; Hu, Y.; Chen, L.; Cheng, Y.; Zhao, J. 2D Boron Sheets: Structure, Growth, and Electronic and Thermal Transport Properties. Adv. Funct. Mater. 2020, 30, 1904349. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, J.; Zhang, Y.; Pan, C.; Dong, Y.; Zhu, Y. Metal-support interaction for heterogeneous catalysis: From nanoparticles to single atoms. Mater. Today Nano 2020, 12, 100093. [Google Scholar] [CrossRef]
- Stewart, S.; Wei, Q.; Sun, Y. Surface chemistry of quantum-sized metal nanoparticles under light illumination. Chem. Sci. 2021, 12, 1227–1239. [Google Scholar] [CrossRef]
- Tiwari, K.; Devi, M.M.; Biswas, K.; Chattopadhyay, K. Phase transformation behavior in nanoalloys. Prog. Mater. Sci. 2021, 121, 100794. [Google Scholar] [CrossRef]
- Gonzalez-Reyna, M.; Rodriguez-Lopez, A.; Pérez-Robles, J.F. One-step synthesis of carbon nanospheres with an encapsulated iron-nickel nanoalloy and its potential use as an electrocatalyst. Nanotechnology 2020, 32, 095706. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, R. Determining the equilibrium structures of nanoalloys by computational methods. J. Nanopart. Res. 2018, 20, 179. [Google Scholar] [CrossRef]
- Calvo, F. (Ed.) Nanoalloys: From Fundamentals to Emergent Applications; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Pandey, P.; Kunwar, S.; Sui, M.; Bastola, S.; Lee, J. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures. Nanoscale Res. Lett. 2018, 13, 151. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Rane, A.V.; Kanny, K.; Abitha, V.K.; Thomas, S. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In Synthesis of Inorganic Nanomaterials; Woodhead Publishing: Cambridge, UK, 2018; pp. 121–139. [Google Scholar] [CrossRef]
- Das, D.; Roy, A. Synthesis of diameter controlled multiwall carbon nanotubes by microwave plasma-CVD on low-temperature and chemically processed Fe nanoparticle catalysts. Appl. Surf. Sci. 2020, 515, 146043. [Google Scholar] [CrossRef]
- Woodard, A.; Xu, L.; Barragan, A.A.; Nava, G.; Wong, B.M.; Mangolini, L. On the non-thermal plasma synthesis of nickel nanoparticles. Plasma Process. Polym. 2018, 15, 1700104. [Google Scholar] [CrossRef]
- Klébert, S.; Keszler, A.M.; Sajó, I.; Drotár, E.; Bertóti, I.; Bódis, E.; Fazekas, P.; Károly, Z.; Szépvölgyi, J. Effect of the solid precursors on the formation of nanosized TiBx powders in RF thermal plasma. Ceram. Int. 2014, 40, 3925–3931. [Google Scholar] [CrossRef]
- Mohai, I.; Gál, L.; Szépvölgyi, J.; Gubicza, J.; Farkas, Z. Synthesis of nanosized zinc ferrites from liquid precursors in RF thermal plasma reactor. J. Eur. Ceram. Soc. 2007, 27, 941–945. [Google Scholar] [CrossRef]
- Mavier, F.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F. Suspension and precursor solution plasma spraying by means of synchronous injection in a pulsed arc plasma. Surf. Coat. Technol. 2017, 318, 18–27. [Google Scholar] [CrossRef]
- Schuffenhauer, C.; Parkinson, B.A.; Jin-Phillipp, N.Y.; Joly-Pottuz, L.; Martin, J.-M.; Popovitz-Biro, R.; Tenne, R. Synthesis of Fullerene-Like Tantalum Disulfide Nanoparticles by a Gas-Phase Reaction and Laser Ablation. Small 2005, 1, 1100–1109. [Google Scholar] [CrossRef]
- Hartanto, A.; Ning, X.; Nakata, Y.; Okada, T. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume. Appl. Phys. A 2004, 78, 299–301. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Li, Y. A review of plasma–liquid interactions for nanomaterial synthesis. J. Phys. D Appl. Phys. 2015, 48, 424005. [Google Scholar] [CrossRef]
- Belmonte, T.; Hamdan, A.; Kosior, F.; Noël, C.; Henrion, G. Interaction of discharges with electrode surfaces in dielectric liquids: Application to nanoparticle synthesis. J. Phys. D Appl. Phys. 2014, 47, 224016. [Google Scholar] [CrossRef]
- Mariotti, D.; Patel, J.; Švrček, V.; Maguire, P. Plasma-Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering. Plasma Process. Polym. 2012, 9, 1074–1085. [Google Scholar] [CrossRef]
- Merciris, T.; Valensi, F.; Hamdan, A. Determination of the Electrical Circuit Equivalent to a Pulsed Discharge in Water: Assessment of the Temporal Evolution of Electron Density and Temperature. IEEE Trans. Plasma Sci. 2020, 48, 3193–3202. [Google Scholar] [CrossRef]
- Taylor, N.D.; Fridman, G.; Fridman, A.; Dobrynin, D. Non-equilibrium microsecond pulsed spark discharge in liquid as a source of pressure waves. Int. J. Heat Mass Transf. 2018, 126, 1104–1110. [Google Scholar] [CrossRef]
- Bian, D.C.; Yan, D.; Zhao, J.C.; Niu, S.Q. Experimental Study of Pulsed Discharge Underwater Shock-Related Properties in Pressurized Liquid Water. Adv. Mater. Sci. Eng. 2018, 2018, 8025708. [Google Scholar] [CrossRef]
- Descoeudres, A.; Hollenstein, C.; Wälder, G.; Demellayer, R.; Perez, R. Time- and spatially-resolved characterization of electrical discharge machining plasma. Plasma Sources Sci. Technol. 2008, 17, 024008. [Google Scholar] [CrossRef]
- Saito, G.; Akiyama, T. Nanomaterial Synthesis Using Plasma Generation in Liquid. J. Nanomater. 2015, 2015, 1–21. [Google Scholar] [CrossRef]
- Merciris, T.; Valensi, F.; Hamdan, A. Synthesis of nickel and cobalt oxide nanoparticles by pulsed underwater spark discharges. J. Appl. Phys. 2021, 129, 063303. [Google Scholar] [CrossRef]
- Hamdan, A.; Noël, C.; Ghanbaja, J.; Migot-Choux, S.; Belmonte, T. Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane. Mater. Chem. Phys. 2013, 142, 199–206. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Ullmann, M.; Vons, V.A.; Lafont, U.; Schmidt-Ott, A. Generation of nanoparticles by spark discharge. J. Nanopart. Res. 2009, 11, 315–332. [Google Scholar] [CrossRef]
- Glad, X.; Gorry, J.; Cha, M.S.; Hamdan, A. Synthesis of core–shell copper–graphite submicronic particles and carbon nano-onions by spark discharges in liquid hydrocarbons. Sci. Rep. 2021, 11, 7516. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, A.; Kabbara, H.; Noël, C.; Ghanbaja, J.; Redjaimia, A.; Belmonte, T. Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen. Particuology 2018, 40, 152–159. [Google Scholar] [CrossRef]
- Kabbara, H.; Ghanbaja, J.; Redjaïmia, A.; Belmonte, T. Crystal structure, morphology and formation mechanism of a novel polymorph of lead dioxide, γ-PbO2. J. Appl. Crystallogr. 2019, 52, 304–311. [Google Scholar] [CrossRef]
- Trad, M.; Nominé, A.; Noël, C.; Ghanbaja, J.; Tabbal, M.; Belmonte, T. Evidence of alloy formation in CoNi nanoparticles synthesized by nanosecond-pulsed discharges in liquid nitrogen. Plasma Process. Polym. 2020, 17, 1900255. [Google Scholar] [CrossRef]
- Saito, G.; Nakasugi, Y.; Yamashita, T.; Akiyama, T. Solution plasma synthesis of bimetallic nanoparticles. Nanotechnology 2014, 25, 135603. [Google Scholar] [CrossRef] [PubMed]
- Yatsu, S.; Takahashi, H.; Sasaki, H.; Sakaguchi, N.; Ohkubo, K.; Muramoto, T.; Watanabe, S. Fabrication of Nanoparticles by Electric Discharge Plasma in Liquid. Arch. Met. Mater. 2013, 58, 425–429. [Google Scholar] [CrossRef][Green Version]
- Velusamy, T.; Liguori, A.; Macias-Montero, M.; Padmanaban, D.B.; Carolan, D.; Gherardi, M.; Colombo, V.; Maguire, P.; Svrcek, V.; Mariotti, D. Ultra-small CuO nanoparticles with tailored energy-band diagram synthesized by a hybrid plasma-liquid process. Plasma Process. Polym. 2017, 14, 1600224. [Google Scholar] [CrossRef]
- Patel, J.; Němcová, L.; Maguire, P.; Graham, W.G.; Mariotti, D. Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology 2013, 24, 245604. [Google Scholar] [CrossRef] [PubMed]
- Richmonds, C.; Sankaran, R.M. Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl. Phys. Lett. 2008, 93, 131501. [Google Scholar] [CrossRef]
- Lin, L.; Ma, X.; Li, S.; Wouters, M.; Hessel, V. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles. Front. Chem. Sci. Eng. 2019, 13, 501–510. [Google Scholar] [CrossRef]
- Mohammadi, K.; Hamdan, A. Spark discharges in liquid heptane in contact with silver nitrate solution: Investigation of the synthesized particles. Plasma Process. Polym. 2021, 18, e2100083. [Google Scholar] [CrossRef]
- Li, Y.; Wen, J.-Y.; Huang, Y.-F.; Zhang, G.-J. Streamer-to-spark transitions in deionized water: Unsymmetrical structure and two-stage model. Plasma Sources Sci. Technol. 2022, 31, 07LT02. [Google Scholar] [CrossRef]
- Belmonte, T.; Kabbara, H.; Noel, C.; Pflieger, R. Analysis of Zn I emission lines observed during a spark discharge in liquid nitrogen for zinc nanosheet synthesis. Plasma Sources Sci. Technol. 2018, 27, 074004. [Google Scholar] [CrossRef]
- Hamdan, A.; Noël, C.; Ghanbaja, J.; Belmonte, T. Comparison of Aluminium Nanostructures Created by Discharges in Various Dielectric Liquids. Plasma Chem. Plasma Process. 2014, 34, 1101–1114. [Google Scholar] [CrossRef]
- Lin, Z.; Shao, G.; Liu, W.; Wang, Y.; Wang, H.; Wang, H.; Fan, B.; Lu, H.; Xu, H.; Zhang, R. In-situ TEM observations of the structural stability in carbon nanotubes, nanodiamonds and carbon nano-onions under electron irradiation. Carbon 2022, 192, 356–365. [Google Scholar] [CrossRef]
- Kondeti, V.S.S.K.; Gangal, U.; Yatom, S.; Bruggeman, P.J. Ag+ reduction and silver nanoparticle synthesis at the plasma–liquid interface by an RF driven atmospheric pressure plasma jet: Mechanisms and the effect of surfactant. J. Vac. Sci. Technol. Vac. Surf. Films 2017, 35, 061302. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Lin, Q.; Cao, J.; Liu, F.; Kawi, S. Synthesis strategies of carbon nanotube supported and confined catalysts for thermal catalysis. Chem. Eng. J. 2022, 431, 133970. [Google Scholar] [CrossRef]
- Shoukat, R.; Khan, M.I. Carbon nanotubes/nanofibers (CNTs/CNFs): A review on state of the art synthesis methods. Microsyst. Technol. 2022, 28, 885–901. [Google Scholar] [CrossRef]
- Mitronika, M.; Profili, J.; Goullet, A.; Gautier, N.; Stephant, N.; Stafford, L.; Granier, A.; Richard-Plouet, M. TiO2–SiO2 nanocomposite thin films deposited by direct liquid injection of colloidal solution in an O2/HMDSO low-pressure plasma. J. Phys. D Appl. Phys. 2020, 54, 085206. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Guo, Z.; Miao, P.; Gong, X. Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators. Org. Electron. 2018, 62, 284–289. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdan, A.; Stafford, L. A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids. Nanomaterials 2022, 12, 3603. https://doi.org/10.3390/nano12203603
Hamdan A, Stafford L. A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids. Nanomaterials. 2022; 12(20):3603. https://doi.org/10.3390/nano12203603
Chicago/Turabian StyleHamdan, Ahmad, and Luc Stafford. 2022. "A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids" Nanomaterials 12, no. 20: 3603. https://doi.org/10.3390/nano12203603
APA StyleHamdan, A., & Stafford, L. (2022). A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids. Nanomaterials, 12(20), 3603. https://doi.org/10.3390/nano12203603