Hydrogenated Boron Phosphide THz-Metamaterial-Based Biosensor for Diagnosing COVID-19: A DFT Coupled FEM Study
Abstract
:1. Introduction
2. Theoretical Model and Computational Methodologies
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coronavirus Disease (COVID-19) Situation Dashboard. Available online: https://who.sprinklr.com/ (accessed on 1 October 2022).
- Ma, Q.; Liu, J.; Liu, Q.; Kang, L.; Liu, R.; Jing, W.; Wu, Y.; Liu, M. Global percentage of asymptomatic SARS-CoV-2 infections among the tested population and individuals with confirmed COVID-19 diagnosis: A systematic review and meta-analysis. JAMA Netw. Open 2021, 4, e2137257. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, R.; Khand, H.; Sarusi, G. Terahertz Impedance Spectroscopy of Biological Nanoparticles by a Resonant Metamaterial Chip for Breathalyzer-Based COVID-19 Prompt Tests. ACS Appl. Nano Mater. 2022, 5, 5803–5812. [Google Scholar] [CrossRef]
- Tahamtan, A.; Ardebili, A. Real-time RT-PCR in COVID-19 detection: Issues affecting the results. Expert Rev. Mol. Diagn. 2020, 20, 453–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetti, N.P.; Mishra, A.; Bukkitgar, S.D.; Basu, S.; Narang, J.; Raghava Reddy, K.; Aminabhavi, T.M. Conventional and nanotechnology-based sensing methods for SARS coronavirus (2019-nCoV). ACS Appl. Bio Mater. 2021, 4, 1178–1190. [Google Scholar] [CrossRef] [PubMed]
- Oyewole, A.O.; Barrass, L.; Robertson, E.G.; Woltmann, J.; O’Keefe, H.; Sarpal, H.; Dangova, K.; Richmond, C.; Craig, D. COVID-19 impact on diagnostic innovations: Emerging trends and implications. Diagnostics 2021, 11, 182. [Google Scholar] [CrossRef]
- Abumeeiz, M.; Elliott, L.; Olla, P. Use of Breath Analysis for Diagnosing COVID-19: Opportunities, Challenges, and Considerations for Future Pandemic Responses. Disaster Med. Public Health Prep. 2021, 16, 2137–2140. [Google Scholar] [CrossRef]
- Baxter, J.B.; Guglietta, G.W. Terahertz spectroscopy. Anal. Chem. 2011, 83, 4342–4368. [Google Scholar] [CrossRef]
- Cui, N.; Guan, M.; Xu, M.; Zhao, C.; Shao, H.; Zhang, Y.; Zeng, Y. High Electric Field-Enhanced Terahertz Metamaterials with Bowtie Triangle Rings: Modeling, Mechanism, and Carbohydrate Antigen 125 Detection. J. Phys. Chem. C 2021, 125, 19374–19381. [Google Scholar] [CrossRef]
- Akter, N.; Hasan, M.M.; Pala, N. A review of THz technologies for rapid sensing and detection of viruses including SARS-CoV-2. Biosensors 2021, 11, 349. [Google Scholar] [CrossRef]
- Yang, X.; Yang, K.; Luo, Y.; Fu, W. Terahertz spectroscopy for bacterial detection: Opportunities and challenges. Appl. Microbiol. Biotechnol. 2016, 100, 5289–5299. [Google Scholar] [CrossRef]
- Beruete, M.; Jáuregui-López, I. Terahertz sensing based on metasurfaces. Adv. Opt. Mater. 2020, 8, 1900721. [Google Scholar] [CrossRef] [Green Version]
- Geng, Z.; Zhang, X.; Fan, Z.; Lv, X.; Chen, H. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci. Rep. 2017, 7, 16378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Xu, D.; Zhang, W. High-sensitivity and label-free identification of a transgenic genome using a terahertz meta-biosensor. Optics Express 2018, 26, 31589–31598. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Jia, Y.; Fan, C. Investigation on Tunable and Enhanced Optical Properties with Graphene Metamaterials. J. Phys. Chem. C 2020, 124, 21075–21081. [Google Scholar] [CrossRef]
- Reinhard, B.; Schmitt, K.M.; Wollrab, V.; Neu, J.; Beigang, R.; Rahm, M. Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range. Appl. Phys. Lett. 2012, 100, 221101. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Xu, W.; Chen, D.; Zhou, R.; Wang, Q.; Gao, W.; Kono, J.; Xie, L.; Ying, Y. Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials. ACS Appl. Mater. Interfaces 2020, 12, 40629–40634. [Google Scholar] [CrossRef]
- Duan, Z.; Xu, S.; Chen, H.; Chen, M. Metamaterials design and challenges for THz radiation. Terahertz Sci. Technol. 2013, 6, 113–124. [Google Scholar]
- Zhou, R.; Wang, C.; Xu, W.; Xie, L. Biological applications of terahertz technology based on nanomaterials and nanostructures. Nanoscale 2019, 11, 3445–3457. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, L.; Hu, F.; Xiang, Y.; Dai, X.; Li, G. Ultrasensitive and tunable sensor based on plasmon-induced transparency in a black phosphorus metasurface. Plasmonics 2021, 16, 1071–1077. [Google Scholar] [CrossRef]
- Arezoomandan, S.; Gopalan, P.; Tian, K.; Chanana, A.; Nahata, A.; Tiwari, A.; Sensale-Rodriguez, B. Tunable terahertz metamaterials employing layered 2-D materials beyond graphene. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 188–194. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, Q.; Liu, X.; Zhang, G.; Ye, H.; Wu, Q. Hydrogenated boron phosphide with the excellent tunability of electronic properties and Current-Voltage responses. Appl. Surf. Sci. 2022, 572, 151196. [Google Scholar] [CrossRef]
- Li, M.S.; Mo, D.C.; Lyu, S.S. Thermoelectric transports in pristine and functionalized boron phosphide monolayers. Sci. Rep. 2021, 11, 10030. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.V.; Kartamyshev, A.; Hieu, N.V.; Dang, T.D.; Nguyen, S.N.; Poklonski, N.; Nguyen, C.V.; Phuc, H.V.; Hieu, N.N. Structural, elastic, and electronic properties of chemically functionalized boron phosphide monolayer. RSC Adv. 2021, 11, 8552–8558. [Google Scholar] [CrossRef] [PubMed]
- Cadelano, E.; Palla, P.L.; Giordano, S.; Colombo, L. Elastic properties of hydrogenated graphene. Phys. Rev. B 2010, 82, 235414. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.F.; Gong, P.L.; Zeng, Z. Phonon properties, thermal expansion, and thermomechanics of silicene and germanene. Phys. Rev. B 2015, 91, 205433. [Google Scholar] [CrossRef] [Green Version]
- Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef]
- Michel, K.; Verberck, B. Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride. Phys. Rev. B 2009, 80, 224301. [Google Scholar] [CrossRef]
- Mostofi, A.A.; Yates, J.R.; Lee, Y.S.; Souza, I.; Vanderbilt, D.; Marzari, N. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Grosjean, B.; Pean, C.; Siria, A.; Bocquet, L.; Vuilleumier, R.; Bocquet, M.L. Chemisorption of hydroxide on 2D materials from DFT calculations: Graphene versus hexagonal boron nitride. J. Phys. Chem. Lett. 2016, 7, 4695–4700. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Cho, D.H.; Ryu, S.; Lee, C. Tuning doping and strain in graphene by microwave-induced annealing. Carbon 2014, 67, 673–679. [Google Scholar] [CrossRef]
- Yi, Z.; Huang, J.; Cen, C.; Chen, X.; Zhou, Z.; Tang, Y.; Wang, B.; Yi, Y.; Wang, J.; Wu, P. Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results Phys. 2019, 14, 102367. [Google Scholar] [CrossRef]
- Reshetnyak, V.Y.; Zadorozhnii, V.; Pinkevych, I.; Bunning, T.; Evans, D. Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate. AIP Adv. 2018, 8, 045024. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Huang, Y.; Zhong, S.; Lin, T.; Luo, M.; Shen, Y.; Ding, J. Tunable terahertz broadband absorber based on MoS2 ring-cross array structure. Opt. Mater. 2021, 114, 110996. [Google Scholar] [CrossRef]
- Qiao, J.; Kong, X.; Hu, Z.X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, B.; Li, M.; Zhang, X.; Yi, Y.; Fu, L.; Long, M. First-principles prediction of the electronic structure and carrier mobility in hexagonal boron phosphide sheet and nanoribbons. J. Phys. Chem. C 2016, 120, 25037–25042. [Google Scholar] [CrossRef]
- Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C. Diagnosing COVID-19: The disease and tools for detection. ACS Nano 2020, 14, 3822–3835. [Google Scholar] [CrossRef] [Green Version]
- Abdulkarim, Y.I.; Awl, H.N.; Muhammadsharif, F.F.; Sidiq, K.R.; Saeed, S.R.; Karaaslan, M.; Huang, S.; Luo, H.; Deng, L. Design and study of a coronavirus-shaped metamaterial sensor stimulated by electromagnetic waves for rapid diagnosis of covid-19. arXiv 2020, arXiv:2009.08862. [Google Scholar]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Henry, B.M.; De Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. (CCLM) 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, W.; Yang, T.; Zhou, W.; Fu, Y.; Feng, Q.; Ye, J. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19. Zhonghua Nei Ke Za Zhi 2020, 59, 372–374. [Google Scholar]
- Liu, M.; He, P.; Liu, H.; Wang, X.; Li, F.; Chen, S.; Lin, J.; Chen, P.; Liu, J.; Li, C. Clinical characteristics of 30 medical workers infected with new coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi/Zhonghua Jiehe He Huxi Zazhi/Chin. J. Tuberc. Respir. Dis. 2020, 43, E016. [Google Scholar]
- Fan, B.E. Hematologic parameters in patients with COVID-19 infection: A reply. Am. J. Hematol. 2020, 95, E215. [Google Scholar] [CrossRef] [PubMed]
- Dawsmith, W.; Ohtani, N.; Donnan, R.; Naftaly, M.; Dudley, R.A.; Chowdhury, T.T. Microwave frequency dependent dielectric properties of blood as a potential technique to measure hydration. IEEE Access 2020. [Google Scholar] [CrossRef]
- Ermolina, I.; Polevaya, Y.; Feldman, Y.; Ginzburg, B.Z.; Schlesinger, M. Study of normal and malignant white blood cells by time domain dielectric spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2001, 8, 253–261. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target. Ther. 2020, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Garyfallou, G.Z.; Ketebu, O.; Şahin, S.; Mukaetova-Ladinska, E.B.; Catt, M.; Yu, E.H. Electrochemical detection of plasma immunoglobulin as a biomarker for Alzheimer’s disease. Sensors 2017, 17, 2464. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.; Azim, M.M.A. The effect of RBCs concentration in blood on the wireless communication in Nano-networks in the THz band. Nano Commun. Netw. 2018, 18, 34–43. [Google Scholar] [CrossRef]
- Reid, C.B.; Reese, G.; Gibson, A.P.; Wallace, V.P. Terahertz time-domain spectroscopy of human blood. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Topsakal, E.; Karacolak, T.; Moreland, E.C. Glucose-dependent dielectric properties of blood plasma. In Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011. [Google Scholar] [CrossRef]
- Li, X.; Zheng, G.; Zhang, G.; Yang, J.; Hu, M.; Li, J.; Li, Y.; Lu, H.; Yin, Z. Highly Sensitive Terahertz Dielectric Sensor for Liquid Crystal. Symmetry 2022, 14, 1820. [Google Scholar] [CrossRef]
- Lin, S.; Xu, X.; Hu, F.; Chen, Z.; Wang, Y.; Zhang, L.; Peng, Z.; Li, D.; Zeng, L.; Chen, Y.; et al. Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 1–7. [Google Scholar] [CrossRef]
- Fromm, D.P.; Sundaramurthy, A.; Kinkhabwala, A.; Schuck, P.J.; Kino, G.S.; Moerner, W. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J. Chem. Phys. 2006, 124, 061101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Liu, L.; Teng, F.; Wu, F.; Lu, N. Trapping analyte molecules in hotspots with modified free-standing silver bowtie nanostructures for SERS detection. RSC Adv. 2016, 6, 84480–84484. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, X.; Shi, H.; Wang, Y.; Chen, Z.; Duan, H. Notched terahertz Bowtie metamaterials with strongly enhanced near-field and narrowed resonance linewidth. Appl. Opt. 2019, 58, 6295–6299. [Google Scholar] [CrossRef] [PubMed]
Treatment | Carrier Type | Direction | ||||
---|---|---|---|---|---|---|
Without hydrogenation [36] | electron | zigzag | 2.288 | 147.3746 | 0.198 | 1.017 × 104 |
armchair | 2.223 | 147.3595 | 0.192 | 1.361 × 104 | ||
hole | zigzag | 3.762 | 147.3746 | 0.180 | 4.493 × 103 | |
armchair | 3.856 | 147.3595 | 0.186 | 5.045 × 103 | ||
With hydrogenation | electron | zigzag | 8.42 | 103.96 | 0.163 | 94.4 |
armchair | 9.14 | 103.85 | 25.355 | 0.51 | ||
hole | zigzag | 5.92 | 103.96 | 0.555 | 175.15 | |
armchair | 5.71 | 103.85 | 0.763 | 136.80 |
Component | (ps) | (ps) | |||
---|---|---|---|---|---|
Whole blood | 2.1 | 130 | 3.8 | 14.4 | 0.1 |
Thrombus | 2.2 | 130 | 3.7 | 16.1 | 0.1 |
Blood cells | 3.4 | 2.5 | 23.8 | 410.8 | 1.8 |
Blood plasma | 1.7 | 78.8 | 3.6 | 8.0 | 0.1 |
Water | 3.3 | 78.8 | 4.5 | 8.4 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.; Wang, S.; Yang, H.; Huang, Q.; Li, S.; Liu, X.; Ye, H.; Zhang, G. Hydrogenated Boron Phosphide THz-Metamaterial-Based Biosensor for Diagnosing COVID-19: A DFT Coupled FEM Study. Nanomaterials 2022, 12, 4024. https://doi.org/10.3390/nano12224024
Tan C, Wang S, Yang H, Huang Q, Li S, Liu X, Ye H, Zhang G. Hydrogenated Boron Phosphide THz-Metamaterial-Based Biosensor for Diagnosing COVID-19: A DFT Coupled FEM Study. Nanomaterials. 2022; 12(22):4024. https://doi.org/10.3390/nano12224024
Chicago/Turabian StyleTan, Chunjian, Shaogang Wang, Huiru Yang, Qianming Huang, Shizhen Li, Xu Liu, Huaiyu Ye, and Guoqi Zhang. 2022. "Hydrogenated Boron Phosphide THz-Metamaterial-Based Biosensor for Diagnosing COVID-19: A DFT Coupled FEM Study" Nanomaterials 12, no. 22: 4024. https://doi.org/10.3390/nano12224024
APA StyleTan, C., Wang, S., Yang, H., Huang, Q., Li, S., Liu, X., Ye, H., & Zhang, G. (2022). Hydrogenated Boron Phosphide THz-Metamaterial-Based Biosensor for Diagnosing COVID-19: A DFT Coupled FEM Study. Nanomaterials, 12(22), 4024. https://doi.org/10.3390/nano12224024