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Abstract: Element doping is a universal way to improve the electronic and optical properties of
two-dimensional (2D) materials. Here, we investigate the influence of group−IVA element (C, Si, Ge,
Sn, and Pb) doping on the electronic and optical properties of the ZnS monolayer with a tetragonal
phase by using first-principles calculations. The results indicate that the doping atoms tend to form
tetrahedral structures with neighboring S atoms. In these doped models, the formation energies are
all negative, indicating that the formation processes of the doped models will release energy. The
formation energy is smallest for C−doped ZnS and gradually increases with the metallicity of the
doping element. The doped ZnS monolayer retains a direct band gap, with this band gap changing
little in other element doping cases. Moreover, intermediate states are observed that are induced
by the sp3 hybridization from the doping atoms and S atoms. Such intermediate states expand the
optical absorption range into the visible spectrum. Our findings provide an in-depth understanding
of the electronic and optical properties of the ZnS monolayer and the associated doping structures,
which is helpful for application in optoelectronic devices.

Keywords: the ZnS monolayer; doping; electronic property; first-principles

1. Introduction

Since the discovery of graphene [1], more and more two-dimensional (2D) layered
materials have been discovered [2–6]. Owing to their distinct electronic, optical, and
thermoelectric performance, many studies have been devoted to boosting the practical
applications of 2D materials [7–9]. Among these 2D materials, binary II-VI zinc chalco-
genides exhibit the potential for broad applications in optoelectronic and thermoelectric
devices [10–13].

Bulk ZnS presents a cubic zinc-blende (ZB) structure at low temperatures, with a
band gap of 3.77 eV [14]. The stable 2D phase of ZnS is a honeycomb structure, analogous
to graphene [15–17]. Previous investigations have revealed that graphene-like 2D ZnS
possesses an ultrawide band gap of 4.3 eV [18] and transparency larger than the bulk
phase in the visible range [19]. To make the most of the ZnS monolayer, it was rolled
into a single-walled nanotube to improve its electronic performance [20]. Moreover, strain
modulation and element doping in the ZnS monolayer were also carried out [18,21,22].
Similar to many 2D materials with more than one allotrope [4,23,24], the graphene-like ZnS
monolayer also has an allotrope [25], which exhibits a tetragonal phase just like monolayer
CdTe [26], CdSe [27], CdS [27], and ZnSe [28]. In our previous study, we have explored the
influence of strain on the electronic and optical properties of the tetragonal ZnS [29], but a
more complete understanding of monolayer tetragonal ZnS is still insufficient [30].

Zn atoms form tetrahedrons with neighboring S atoms in tetragonal ZnS, and group−IVA
elements also tend to form tetrahedrons when connecting with the chalcogens. Therefore,
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when one Zn atom in the ZnS monolayer is substituted with group−IVA elements, the
doped ZnS will retain its stable structure but exhibit some distinct electronic and optical
properties. For this purpose, in this work, we have substituted one Zn atom in the ZnS
monolayer supercell with group−IVA elements and then studied the electronic and optical
properties of the doped monolayer tetragonal ZnS using ab initio calculations. The results
indicate that the doping elements also form tetrahedral structures resembling the Zn atom
in the doped ZnS, which could ensure the structural stability of the doped models. The
formation energies are negative, indicating that these doping models will release energy
during the formation processes, with formation energy decreasing with the increasing
metallicity of the doping element. The doped ZnS monolayer retains the direct band gap,
and the values of the band gaps change little, except for C−ZnS. Moreover, intermediate
states are found in the band gap, which leads to better optical absorption in the visible
spectrum. Our results reveal the influence of group−IVA element doping on the elec-
tronic and optical properties of the ZnS monolayer, which is helpful for its application in
optoelectronic devices.

2. Computational Details

The Vienna ab initio simulation package (VASP) based on the density functional the-
ory (DFT) was utilized to carry out the first-principles calculations [31,32]. The projector
augmented-wave (PAW) method [33] and Perdew–Burke–Ernzerhof generalized gradi-
ent approximation (GGA–PBE) were utilized to describe the exchange–correlation func-
tional [34]. The kinetic energy cutoff was set to 500 eV, and k-point meshes of 10 × 10 × 1
were chosen from the Brillouin zone with the Monkhorst–Pack method [35]. Based on the
primitive cell of the ZnS monolayer with the tetragonal phase in our previous study [29], a
3 × 3 supercell was built, composed of 18 Zn and 18 S atoms, with a vacuum thickness of
20 Å. By replacing one Zn atom in the supercell with the group-IVA element (C, Si, Ge, Sn,
and Pb), the doped ZnS models were obtained with a doping fraction of 2.8% (i.e., C−ZnS,
Si−ZnS, Ge−ZnS, Sn−ZnS, and Pb−ZnS). To further optimize the doped structure models,
the convergence values of 10−6 eV/atom for total energy and 0.01 eV/Å for atomic force
component were applied. Finally, the electronic and optical properties were calculated.

3. Results and Discussion

Figure 1 shows the supercell structure of the ZnS monolayer, and the doped models in
which the central Zn atom in the ZnS monolayer are substituted with C, Si, Ge, Sn, and
Pb atoms, respectively, in C−ZnS, Si−ZnS, Ge−ZnS, Sn−ZnS, and Pb−ZnS. In the ZnS
monolayer without doping, the atoms are uniformly distributed in the supercell. However,
the models become distorted after the element doping owing to the mismatch of the atomic
size. From Figure 1, the structure of doped ZnS is obviously different depending on the
doping atom. Notably, the C doping shrinks the local structure, whereas the Si, Ge, Sn, and
Pb doping expand the local structure. To evaluate the influence of the doping atom on the
monolayer structure, the interatomic distances in the models are studied. The central Zn
atom in the ZnS monolayer is represented as the O atom, with the A, B, C, and D atoms
corresponding to the first, second, third, and fourth nearest atoms to the O atom, as shown
in the ZnS monolayer in Figure 1. In the doped models, the O atom is replaced by the
doping atoms of C, Si, Ge, Sn, and Pb, respectively, and the interatomic distance between O
atom and the A, B, C, and D atoms can reflect the extent of structural variation.

Figure 2 shows the interatomic distance of OA, OB, OC, and OD varying with the
element doping. For the nearest neighboring A atom, the length of OA in C−ZnS becomes
shorter, while it gradually increases in Si−ZnS, Ge−ZnS, Sn−ZnS, and Pb−ZnS. For the
second, third, and fourth neighboring atoms, the lengths of OB, OC, and OD decrease
slightly in C−ZnS, while those in Si−ZnS, Ge−ZnS, Sn−ZnS, and Pb−ZnS are lengthen,
showing a similar trend to the first atomic shell. Compared to the variations in OB, OC, and
OD, the changes in OA are more significant; the changes in OB, OC, and OD are small and
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shrink as the atoms lie farther from the central O atom. This indicates that the influence of
elemental doping is mainly concentrated in the closest neighboring atoms.
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To identify the influence of doping on the structural stability, the formation energy,
denoted as Eform, is calculated by the following equation:

Eform = Edoped + EZn − EZnS − EIVA (1)

Edoped and EZnS are the total energies of the doped ZnS and pure ZnS without dop-
ing, respectively. The values of EZn and EIVA are energies of the isolated atoms (Zn and
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group−IVA: C, Si, Ge, Sn, and Pb) in the cubic cells with an edge length of 20 Å, respectively.
The computed Eform values of C−ZnS, Si−ZnS, Ge−ZnS, Sn−ZnS, and Pb−ZnS are −1.82,
−1.54, −1.27, −0.18, and −0.05 eV, respectively, as seen in Figure 3a. Note that the forma-
tion energies of the doped models are negative, suggesting that the doped models may
have a higher stability owing to their smaller energy. The formation energy of C−ZnS is the
smallest, indicating that the largest energy will be released when substituting the Zn atom
with the C atom in monolayer tetragonal ZnS. Notably, the formation energy decreases
gradually with the increase in the metallicity of doping atoms. The formation energy of
Pb−ZnS is largest, suggesting that Pb doping into the ZnS monolayer is relatively difficult.
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Figure 3. (a) Formation energies and (b) Bader charge of group−IVA element−doped the
ZnS monolayer.

Figure 3b shows the Bader charge of the doped atoms and the associated first nearest
neighbor atoms in the doping models, which can be used to evaluate the charge transfer in
the doping structures. Usually, there are four and six electrons in the outermost shell of the
group-IVA elements and the S atom, respectively. From Figure 3b, the Bader charge of the
C atom is 4.1, while each S atom in C−ZnS is 6.6. This suggests that the C atom obtains its
charge from the bonding S atoms and the S atoms obtain their charge from the bonding
Zn atoms. However, the Bader charges of Si, Ge, Sn, and Pb are ~3.2 for Si−ZnS, Ge−ZnS,
Sn−ZnS, and Pb−ZnS, and those of S atoms are ~6.8. This indicates that the Si, Ge, Sn, and
Pb atoms will lose charge to the bonding S atoms.

To explore the influence of element doping on the electronic structure of the ZnS mono-
layer, the band structures of the ZnS monolayer, C−ZnS, Si−ZnS, Ge−ZnS, Sn−ZnS, and
Pb−ZnS are calculated, as displayed in Figure 4. In line with the previous studies [29,30],
the ZnS monolayer has a direct band gap of 2.91 eV, in which both the valence band maxi-
mum (VBM) and conduction band minimum (CBM) are located at the Γ point. When one
Zn atom is replaced by C, Si, Ge, Sn, and Pb atoms, respectively, both the VBM and CBM of
these doped models are still located at the Γ point, demonstrating that the doped models
retain the direct band gaps. Furthermore, due to the structural distortion induced by the
doping atom, as shown in Figures 1 and 2, the corresponding band gap also changes. The
calculated band gaps of C−ZnS, Si−ZnS, Ge−ZnS, Sn−ZnS, and Pb−ZnS are 2.51, 2.91,
2.95, 2.91, and 2.86 eV, respectively. It is clear that the band gaps of the doped structures
change little in comparison to the undoped ZnS, with the exception of C−ZnS. In addition,
the intermediate states located at the band gap are observed in all of the doped models [36],
which may prominently change the electronic and optical properties of the monolayer
tetragonal ZnS.
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Figure 5 shows the different charge densities for C−ZnS, Si−ZnS, Ge−ZnS, Sn−ZnS,
and Pb−ZnS from both the top and side views, respectively, to identify electron transfer in
the doped models. The yellow and blue areas correspond to the increasing and decreasing
electron density, respectively. For C−ZnS, the S atoms near the C atom lose charge while
the central C atom obtains charge, thus concentrating the charge on the C atom. In contrast
to the case in C−ZnS, the different charge densities show a similar distribution for Si−ZnS,
Ge−ZnS, Sn−ZnS, and Pb−ZnS. The charges on the central atoms (Si, Ge, Sn, and Pb) tend
to transfer to the S atoms, concentrating the charges between central atoms and neighboring
S atoms in the vicinity of the S atoms. Furthermore, the charge densities between the
neighboring S atoms and Zn atoms increase, and they are further enhanced with the
increasing metallicity of the doping atom. Interestingly, the doping atoms are always in a
tetragonal environment, similar to the Zn atom, despite the diversity in charge density.

The electron localization functions (ELF) of the ZnS monolayer and the associated
doping models are shown in Figure 6. Usually, ELF = 0.5 corresponds to the metallic bond
where electrons are totally delocalized, while ELF = 1 corresponds to the covalent bond
where the electron is perfectly localized. For the ZnS monolayer, the values of ELF between
the Zn and S atoms are relatively small, revealing that the Zn and S atoms tend to form
ionic bonds. For C−ZnS, the values of ELF between C and S atoms are notably enhanced,
and the ELF around the C atom is distributed uniformly, suggesting that C and S atoms
tend to form σ bonds. As for Si−, Ge−, Sn−, and Pb−ZnS, the charge around the Si, Ge,
Sn, and Pb atoms shows a prominent orientation deviating from the bonding direction,
illustrating that the π bonds are formed in these cases. This diversity between doping
elements is probably due to the difference in chemical bonds.
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Figure 7 plots the projected density of state (PDOS) of the ZnS monolayer, C−ZnS,
Si−ZnS, Ge−ZnS, Sn−ZnS, and Pb−ZnS. For the PDOS of the ZnS monolayer, the valence
bands near the VBM are predominantly composed of the p states of Zn and S, indicating
that Zn and S atoms tend to form p-p bonds despite their tetragonal structure. The CBM is
ascribed to the s states of Zn, which originate from the outer−shell electron due to the high
energies. When doping C into the ZnS monolayer, the s states of C and p states of S are
generated above the valence band of the ZnS monolayer, and the p states of C are observed
below the conduction band of the ZnS monolayer, resulting in a smaller band gap. The s
states of the C and p states of S near the VBM form an sp3 hybrid interaction, resulting
in the C−centered tetrahedron. The PDOS of monolayer Si−ZnS, Ge−ZnS, Sn−ZnS, and
Pb−ZnS present similar electronic structures. The valence band structure is composed of
two parts: one is the contribution from the Zn and S atoms resembling the ZnS monolayer,
and the other is ascribed to the contribution from S and the doping atoms (Si, Ge, Sn, and
Pb), in which the s states of the doping atoms and the p states of S atoms probably form the
sp3 hybrid bonds. The conduction band structures of these models are similar to that of the
ZnS monolayer, in which the CBM mainly comprises the s state of the Zn atom. Compared
to the PDOS of the ZnS monolayer, it is clear that the group−IVA elements doping to the
ZnS monolayer usually reduce the band structure by generating sp3 hybrid states in the
band structure with higher energies. The prominent variance is probably due to the two
extra valence electrons in the group−IVA elements, which vary the bonding nature in
doped the ZnS monolayer.
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Figure 8a,b shows the real (ε1) and imaginary (ε2) parts of the calculated dielectric
function for the ZnS monolayer and the doped models. The ε1 of the doped models is
larger than that of the ZnS monolayer when the energy is smaller than 2.1 eV, while they are
smaller than that of the ZnS monolayer in the energy range of 2.1−6.5 eV. Beyond the scale,
they are in good agreement. For the ε2, the values of doped models are larger than that
of the ZnS monolayer in 1.2−6.1 eV, while they are smaller than that of ZnS in 6.1−7.0 eV.
The values of these models are very consistent when the energy is above 7.0 eV. The optical
absorption α(ω) of the doped ZnS models are shown in Figure 8c, which are obtained from
ε1 and imaginary ε2 by the following formula:

α(ω) =

√
2ω
c

[√
ε2

1 + ε
2
2 − ε1

] 1
2

(2)

The absorption spectrum of the ZnS monolayer is predominantly above the 3.1 eV,
suggesting that the ZnS monolayer has good absorption ability in the ultraviolet (UV)
region. When doping group−IVA elements into the ZnS monolayer, the doped models
still possess excellent absorption ability in UV region. Furthermore, a small absorption
peak is observed in the vicinity of 2.0 eV for all of the doped models, suggesting that the
group−IVA element doping to the ZnS monolayer could improve the absorption ability in
the visible spectrum. In the doped models, the absorption peak of C−ZnS is largest in the
visible region, indicating that C doping into the ZnS monolayer can effectively enhance the
visible absorption of the ZnS monolayer.
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4. Conclusions

In summary, by using a first-principles calculation, we have studied the electronic
and optical properties of the ZnS monolayer after group−IVA element (C, Si, Ge, Sn, and
Pb) doping. The results reveal that the formation energy of C−ZnS is the smallest, while
those of Si−ZnS, Ge−ZnS, Sn−ZnS, and Pb−ZnS gradually decrease as the metallicities
of the doping atoms increase. The doping atoms tend to form the sp3 hybrid bonds with
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neighboring S atoms. The doped models also exhibit a direct band gap. Unlike those of
C−ZnS, the band gaps of the other doped models change little. Moreover, intermediate
states are observed in the band gap, which indicates that the doped structures can exhibit
an improved optical absorption ability in the visible spectrum. This finding provides us
with an effective way to enhance the electronic and optical properties of materials with a
tetragonal structure. Our research results enrich the understanding of the electronic and
optical properties in the group−IVA element-doped ZnS monolayer, which can contribute
to the development of applications in optoelectronic devices.
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