Role of Interdiffusion and Segregation during the Life of Indium Gallium Arsenide Quantum Dots, from Cradle to Grave
Abstract
:1. Introduction
2. The Life Stages of an InGaAs Quantum Dot during Epitaxy
2.1. Prologue: Wetting Layer Formation (and Interdiffusion)
2.2. Conception: Surface Corrugations (and Lateral Segregation due to Strain Build-Up)
2.3. Birth: Formation of Small Quantum Dots (by Lateral Segregation due to Strain)
2.4. Growth: Expansion of Quantum Dots (by Lateral and Vertical Segregation)
- a.
- that the indium content near the centre of the quantum dot is more than twice as high as the deposited flux of 25% indium, due to vertical indium segregation,
- b.
- that the wetting layer is about 2–3 nm wide and has a lower indium content of only x ≈ 0.15 due to vertical Ga/In interdiffusion, and
- c.
- that the wetting layer has a further decreased indium content near the quantum dot (x ≈ 0.1) where the indium has been sucked up by the quantum dot. This lateral indium segregation correlates well with the darker rims observed around the larger quantum dots in Figure 3b.
2.5. Demise: Trough Formation around Quantum Dots during GaAs Overgrowth
2.6. Burial: Flattening of the Surface
3. Summary and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mabbitt, A.W.; Goodfellow, R.C. High-radiance small-area gallium-indium-arsenide 1.06 µm light-emitting diodes. Electron. Lett. 1975, 11, 274–275. [Google Scholar] [CrossRef]
- Kawamura, Y.; Asahi, H.; Wakita, K. InGaAs/InGaAlAs/InAlAs/InP SCH-MQW laser diodes grown by molecular-beam epitaxy. Electron. Lett. 1984, 20, 459–460. [Google Scholar] [CrossRef]
- Maurel, P.; Garcia, J.C.; Regreny, P.; Hirtz, J.P.; Vassilakis, E.; Parent, A.; Baldy, M.; Carriere, C. Room temperature 600 mW CW output power per facet from single GaInAs/GaAs/GaInP large area laser diode grown by CBE. Electron. Lett. 1993, 29, 91–92. [Google Scholar] [CrossRef]
- Schimpe, R.; Bowers, J.E.; Koch, T.L. Characterisation of frequency response of 1.5 µm InGaAsP DFB laser diode and InGaAs PIN photodiode by heterodyne measurement technique. Electron. Lett. 1986, 22, 453–454. [Google Scholar] [CrossRef]
- Brandt, O.; Tapfer, L.; Ploog, K.; Bierwolf, R.; Hohenstein, M.; Philipp, F.; Lage, H.; Heberle, A. InAs quantum dots in a single-crystal GaAs matrix. Phys. Rev. B 1991, 44, 8043–8053. [Google Scholar] [CrossRef]
- Leonard, D.; Fafard, S.; Pond, K.; Zhang, Y.H.; Merz, J.L.; Petroff, P.M. Structural and optical properties of self-assembled InGaAs quantum dots. J. Vac. Sci. Technol. B 1994, 12, 2516–2520. [Google Scholar] [CrossRef]
- Yoffe, A.D. Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 2001, 50, 1–208. [Google Scholar] [CrossRef]
- Joyce, P.B.; Krzyzewski, T.J.; Bell, G.R.; Jones, T.S.; Malik, S.; Childs, D.; Murray, R. Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular beam epitaxy. Phys. Rev. B 2000, 62, 10891–10895. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Ustinov, V.M.; Egorov, A.Y.; Zhukov, A.E.; Maksimov, M.V.; Tabatadze, I.G.; Kopev, P.S. Optical properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors 1994, 28, 832–834. [Google Scholar]
- Gerard, J.M.; Genin, J.B.; Lefebvre, J.; Moison, J.M.; Lebouche, N.; Berthe, F. Optical investigation of the self-organised growth of InAs/GaAs quantum boxes. J. Cryst. Growth 1995, 150, 351–356. [Google Scholar] [CrossRef]
- Walther, T.; Cullis, A.G.; Norris, D.J.; Hopkinson, M. The nature of islanding in the InGaAs/GaAs epitaxial system. Mat. Res. Soc. Symp. Proc. 2001, 648, 126. [Google Scholar] [CrossRef]
- Walther, T.; Cullis, A.G.; Norris, D.J.; Hopkinson, M. How InGaAs islands form on GaAs substrates: The missing link in et explanation of the Stranski-Krastanow transition. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2001; Volume 169, pp. 85–88. [Google Scholar]
- Walther, T.; Cullis, A.G.; Norris, D.J.; Hopkinson, M. Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs. Phys. Rev. Lett. 2001, 86, 2381–2384. [Google Scholar] [CrossRef]
- Adachi, S. Physical Properties of III-V Semiconductor Compounds; John Wiley & Sons: New York, NY, USA, 1992. [Google Scholar]
- Walter, G.; Chung, T.; Holonyak, N., Jr. High-gain coupled InGaAs quantum well InAs quantum dot AlGaAs–GaAs–InGaAs–InAs heterorstructure diode laser operation. Appl. Phys. Lett. 2002, 80, 1126–1128. [Google Scholar] [CrossRef]
- Maximov, M.V.; Shernyakov, Y.M.; Tsatsul’nikov, A.F.; Lunev, A.V.; Sakharov, A.V.; Ustinov, V.M.; Egorov, A.Y.; Zhukov, A.E.; Kovsh, A.R.; Kop’ev, P.S.; et al. High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser. J. Appl. Phys. 1998, 83, 5561–5563. [Google Scholar] [CrossRef]
- Jain, S.C.; Willander, M.; Maes, H. Stresses and strains in epilayers, stripes and quantum structures of III-V compound semiconductors. Semicond. Sci. Technol. 1996, 11, 641–671. [Google Scholar] [CrossRef]
- Nötzel, R. Self-organized growth of quantum-dot structures. Semicond. Sci. Technol. 1996, 11, 1365–1379. [Google Scholar] [CrossRef]
- Bimberg, D.; Ledentsov, N. Quantum dots: Lasers and amplifiers. J. Phys. Condens. Matter 2003, 15, R1063–R1076. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Ghosh, S.; Stiff-Roberts, A.D. Quantum dot opto-electronic devices. Annu. Rev. Mater. Res. 2004, 34, 1–40. [Google Scholar] [CrossRef]
- Reitzenstein, S.; Forchel, A. Quantum dot micropillars. J. Phys. D Appl. Phys. 2010, 43, 033001. [Google Scholar] [CrossRef]
- Wu, J.; Chen, S.; Seeds, A.; Liu, H. Quantum dot optoelectronic devices: Lasers, photodetecors and solar cells. J. Phys. D Appl. Phys. 2015, 48, 363001. [Google Scholar] [CrossRef]
- Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, Y.; Holmes, M.J. Progress in quantum-dot single photon sources for quantum information technologies. A broad spectrum review. Appl. Phys. Rev. 2020, 7, 021309. [Google Scholar] [CrossRef]
- Seifert, W.; Carlsson, N.; Miller, M.; Pistol, M.-E.; Samuelson, L.; Wallenberg, L.R. In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode. Prog. Cryst. Growth Charact. 1996, 33, 423–471. [Google Scholar] [CrossRef]
- Stangl, J.; Holy, V.; Bcauer, G. Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 2004, 76, 725–783. [Google Scholar] [CrossRef]
- Joyce, B.A.; Vvedensky, D.D. Self-organized growth on GaAs surfaces. Mater. Sci. Eng. R 2004, 46, 127–176. [Google Scholar] [CrossRef]
- Kiravittaya, S.; Rastelli, A.; Schmidt, O.G. Advanced quantum dot configurations. Rep. Prog. Phys. 2009, 72, 046502. [Google Scholar] [CrossRef]
- Skolnick, M.S.; Mowbray, D.J. Self-assembled semiconductor quantum dots: Fundamental physics and device applications. Annu. Rev. Mater. Res. 2004, 34, 181–218. [Google Scholar] [CrossRef]
- Walther, T. Measuring non-destructively the total indium content and its lateral distribution in very thin layers or quantum dots deposited onto gallium arsenide substrates using energy-dispersive X-ray spectroscopy in a scanning electron microscope. Nanomaterials 2022, 12, 2220. [Google Scholar] [CrossRef]
- Walther, T.; Hopkinson, M. Quantitative investigation of the onset of islanding in strained layer epitaxy of InAs/GaAs by X-ray mapping in a transmission electron microscope. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2010; Volume 209, p. 012061. [Google Scholar]
- Walther, T. Transmission electron microscopy of nanostructures. In Microscopy Methods in Nanomaterials Characterization; Chapter 4; Thomas, S., Thomas, R., Zachariah, A.K., Mishra, R.K., Eds.; Elsevier Series on Micro- and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 105–134. [Google Scholar]
- Cullis, A.G.; Pidduck, A.J.; Emeny, M.T. Misfit dislocation sources at surface ripple troughs in continuous heteroepitaxial layers. Phys. Rev. Lett. 1995, 75, 2368–2371. [Google Scholar] [CrossRef]
- Liew, S.L.; Walther, T.; Irsen, S.; Hopkinson, M.; Skolnick, M.S.; Cullis, A.G. Investigating the capping of InAs quantum dots by InGaAs. Springer Procs. Phys. 2007, 120, 259–262. [Google Scholar]
- Qiu, Y.; Krysa, A.B.; Walther, T. STEM imaging of InP/AlGaInP quantum dots. J. Phys. Conf. Ser. 2010, 245, 012087. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, Z.Y.; Hogg, R.A.; Cullis, A.G.; Walther, T. Study of annealed InAs/GaAs quantum dot structures. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2010; Volume 209, p. 012036. [Google Scholar]
- Cullis, A.G.; Norris, D.J.; Walther, T.; Migliorato, M.A.; Hopkinson, M. Stranski-Krastanow transition and epitaxial island growth. Phys. Rev. B 2002, 66, 081305R. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walther, T. Role of Interdiffusion and Segregation during the Life of Indium Gallium Arsenide Quantum Dots, from Cradle to Grave. Nanomaterials 2022, 12, 3850. https://doi.org/10.3390/nano12213850
Walther T. Role of Interdiffusion and Segregation during the Life of Indium Gallium Arsenide Quantum Dots, from Cradle to Grave. Nanomaterials. 2022; 12(21):3850. https://doi.org/10.3390/nano12213850
Chicago/Turabian StyleWalther, Thomas. 2022. "Role of Interdiffusion and Segregation during the Life of Indium Gallium Arsenide Quantum Dots, from Cradle to Grave" Nanomaterials 12, no. 21: 3850. https://doi.org/10.3390/nano12213850
APA StyleWalther, T. (2022). Role of Interdiffusion and Segregation during the Life of Indium Gallium Arsenide Quantum Dots, from Cradle to Grave. Nanomaterials, 12(21), 3850. https://doi.org/10.3390/nano12213850