Theoretical and Experimental Investigation of Dynamic Characteristics in Propulsion Shafting Support System with Integrated Squeeze Film Damper
Abstract
1. Introduction
2. Structure and Static Stiffness Simulation of ISFD–PSSS
2.1. Structure Scheme
2.2. Static Stiffness Simulation
3. Dynamic Characteristics of ISFD–PSSS
3.1. Modeling Method
3.1.1. Comprehensive Dynamic Characteristics of ISFD–PSSS
3.1.2. Dynamic Characteristics of Lubricant Film
3.1.3. Dynamic Characteristics of ISFD Structure
3.2. Dynamic Characteristics Simulation Analysis of ISFD–PSSS
4. Vibration Characteristics Test of ISFD–PSSS
4.1. Test Rig and Bearings
4.2. Results and Discussion
4.2.1. The Effect of Damping Structure on Vibration
4.2.2. The Effect of Damping Fluid Viscosity on Vibration
5. Conclusions
- (1)
- The ISFD structures exhibit a relatively small impact on static stiffness, with 1S-JB and 3S-JB demonstrating similar load-bearing capacities. The comprehensive stiffness coefficient increases proportionally with rising excitation frequencies, while the comprehensive damping coefficient exhibits an inverse correlation.
- (2)
- The ISFD structure effectively suppresses lateral vibrations induced by rotor imbalance, exhibiting superior attenuation in the vertical direction. Comparative analysis reveals that the 3S-JB achieves better vibration reduction in spectral amplitude and axis orbits compared to the 1S-JB.
- (3)
- Damping fluid viscosity significantly influences the vibration characteristics of the 1S-JB and 3S-JB through nonlinear damping–viscosity interactions. Therefore, it is suggested that the damping fluid viscosity should be reasonably selected considering the operating conditions of the ISFD–PSSS.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ISFD | Integral squeeze film damping |
PSSS | propulsion shafting support system |
SFD | Squeeze film damper |
ERSFD | Elastic ring squeeze film damper |
FRSFD | Floating ring squeeze film damper |
EDM | Electrical Discharge Machining |
CJB | Conventional journal bearing |
1S-JB | One S-type structure journal bearing |
3S-JB | Three S-type structure journal bearing |
References
- Duan, N.; Wu, C.; Huang, Y.; Zhang, Z.; Hua, H. Lateral vibration analysis and active control of the propeller-shafting system using a scaled experimental model. Ocean Eng. 2023, 267, 113285. [Google Scholar] [CrossRef]
- Tuninetti, V.; Martínez, D.; Narayan, S.; Menacer, B.; Oñate, A. Design Optimization of a Marine Propeller Shaft for Enhanced Fatigue Life: An Integrated Computational Approach. J. Mar. Sci. Eng. 2024, 12, 2227. [Google Scholar] [CrossRef]
- Jiao, C.; Yang, Y.; Zhang, X.; Xue, L.; Zou, D.; Xu, J.; Ta, N.; Rao, Z. Mixed lubrication characteristics of multi-layer composite structure water-lubricated stern bearing considering fluid–structure interaction and journal misalignment effects. Phys. Fluids 2025, 37, 053601. [Google Scholar] [CrossRef]
- Gu, Z.; Liu, J. Multidisciplinary Design Optimization of Alignment and Whirling Vibration Characteristics of a Submarine Propulsion Shafting Using Kriging Surrogate Model. J. Mar. Sci. Eng. 2024, 12, 1812. [Google Scholar] [CrossRef]
- Zou, D.; Liu, G.; Rao, Z.; Tan, T.; Zhang, W.; Liao, W.-H. A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink. Mech. Syst. Signal Process. 2021, 147, 107101. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, R.C.; Upadhyay, R.K.; Lee, J. Coupled torsional–transverse vibration reduction in marine propulsion dynamics with novel approach using magnetorheological damping and adaptive control system. J. Vib. Eng. Technol. 2024, 12, 6089–6099. [Google Scholar] [CrossRef]
- Yan, W.; Lu, J.; Pan, J.; Liu, J.; Fuyang, C.; Ye, D. Research on dynamic characteristic coefficients of integral squeeze film damper. Machines 2024, 12, 274. [Google Scholar] [CrossRef]
- Dong, H.; He, L.; Jia, X. Using integral squeeze film damper to suppress vibration of gas turbine. J. Vib. Eng. Technol. 2023, 11, 3163–3176. [Google Scholar] [CrossRef]
- Gheller, E.; Chatterton, S.; Vania, A. Squeeze film damper modeling: A comprehensive approach. Machines 2022, 10, 781. [Google Scholar] [CrossRef]
- Zheng, W.; Pei, S.; Zhang, Q.; Hong, J. Experimental and theoretical results of the performance of controllable clearance squeeze film damper on reducing the critical amplitude. Tribol. Int. 2022, 166, 107155. [Google Scholar] [CrossRef]
- Zhou, H.; Cao, G.; Chen, X.; Zhang, Y.; Cang, Y. A study on the thermal properties of oil-film viscosity in squeeze film dampers. Lubricants 2023, 11, 163. [Google Scholar] [CrossRef]
- Shi, M.; Yang, Y.; Deng, W.; Wang, J.; Fu, C. Analysis of dynamic characteristics of small-scale and low-stiffness ring squeeze film damper-rotor system. Appl. Sci. 2022, 12, 7167. [Google Scholar] [CrossRef]
- Tian, Z.; Hu, Z.; Tang, J.; Chen, S.; Kong, X.; Wang, Z.; Zhang, J.; Ding, H. Dynamical modeling and experimental validation for squeeze film damper in bevel gears. Mech. Syst. Signal Process. 2023, 193, 110262. [Google Scholar] [CrossRef]
- Pan, W.; Hao, J.; Li, H.; Wang, J.; Bao, J.; Zeng, X.; Nie, P. Dynamic modeling and response analysis of misaligned rotor system with squeeze film dampers under maneuver loads. Nonlinear Dyn. 2025, 113, 189–233. [Google Scholar] [CrossRef]
- Gupta, R.K.; Singh, R.C. Development and experimental investigations of squeeze film damper setup for high rotational speeds and oil pressure. J. Vib. Eng. Technol. 2024, 12, 5475–5494. [Google Scholar] [CrossRef]
- Golek, M.; Gleichner, J.; Chatzisavvas, I.; Kohlmann, L.; Schmidt, M.; Reinke, P.; Rienäcker, A. Numerical Simulations and Experimental Validation of Squeeze Film Dampers for Aircraft Jet Engines. Lubricants 2024, 12, 253. [Google Scholar] [CrossRef]
- Han, Z.; Ding, Q.; Zhang, W. Dynamical analysis of an elastic ring squeeze film damper-rotor system. Mech. Mach. Theory 2019, 131, 406–419. [Google Scholar] [CrossRef]
- Zhou, H.-L.; Luo, G.-H.; Chen, G.; Wang, F. Analysis of the nonlinear dynamic response of a rotor supported on ball bearings with floating-ring squeeze film dampers. Mech. Mach. Theory 2013, 59, 65–77. [Google Scholar] [CrossRef]
- Hamzehlouia, S.; Behdinan, K. Squeeze film dampers supporting high-speed rotors: Rotor dynamics. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol. 2021, 235, 495–508. [Google Scholar] [CrossRef]
- Zhang, Y.; He, L.; Yang, J.; Zhu, G.; Jia, X.; Yan, W. Multi-objective optimization design of a novel integral squeeze film bearing damper. Machines 2021, 9, 206. [Google Scholar] [CrossRef]
- Lu, K.; He, L.; Zhang, Y. Experimental study on vibration reduction characteristics of gear shafts based on ISFD installation position. Shock. Vib. 2017, 2017, 7246356. [Google Scholar] [CrossRef]
- Santiago, O.; Andres, L.S.; Oliveras, J. Imbalance Response of a Rotor Supported on Open—Ends Integral Squeeze Film Dampers. J. Eng. Gas Turbines Power 1998, 121, 718–724. [Google Scholar] [CrossRef]
- Yan, W.; He, L.; Zhu, G.; Jia, X. Effect of G-type integral squeeze film damper on the dynamic characteristics in rotor system. Int. J. Turbo Jet-Engines 2024, 40, 195–205. [Google Scholar] [CrossRef]
- Kumar, A.; Das, B.; Singh, A.; Tiwari, M. A comprehensive methodology to estimate the fatigue life of S-shaped integral squeeze film damper. Eng. Fail. Anal. 2024, 161, 108316. [Google Scholar] [CrossRef]
- Yan, W.; He, L.; Deng, Z.; Jia, X. Experimental research on suppressing unbalanced vibration of rotor by integral squeeze film damper. Int. J. Turbo Jet. Engines. 2023, 40, 449–462. [Google Scholar] [CrossRef]
- Zhu, G.; He, L.; Jia, X.; Tan, Z.; Qin, Q. Experimental Study on Vibration and Noise Reduction of Gear Transmission System Based on ISFD. Machines 2024, 12, 531. [Google Scholar] [CrossRef]
- Ertas, B.; Cerny, V.; Kim, J.; Polreich, V. Stabilizing a 46 MW multistage utility steam turbine using integral squeeze film bearing support dampers. J. Eng. Gas Turbines Power 2015, 137, 052506. [Google Scholar] [CrossRef]
- Lv, M.; Wang, X.; Guo, J. Analysis and Optimization of Clamping Process for Thin-walled Components. Mach. Build. Autom. 2024, 53, 84–87. [Google Scholar]
- Adiletta, G.; Della Pietra, L. The squeeze film damper over four decades of investigations. Part II: Rotordynamic analyses with rigid and flexible rotors. Shock. Vib. Dig. 2002, 34, 97–126. [Google Scholar]
- Ouyang, W.; Yan, Q.; Kuang, J.; Jin, Y.; Peng, W. Simulation and experimental investigations on water-lubricated squeeze film damping stern bearing. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 54. [Google Scholar] [CrossRef]
- Gong, J.; Jin, Y.; Liu, Z.; Jiang, H.; Xiao, M. Study on influencing factors of lubrication performance of water-lubricated micro-groove bearing. Tribol. Int. 2019, 129, 390–397. [Google Scholar] [CrossRef]
- Li, Q.; Yu, Q.; Liu, W. Effect of supporting parameters on marine shaft vibration characteristics. Ship Sci. Technol. 2016, 38, 101–104. [Google Scholar]
- Liu, Q.; Ouyang, W.; Cheng, Q.; Li, J.; Cheng, Q.; Li, R. Influences of bidirectional shaft inclination on lubrication and dynamic characteristics of the water-lubricated stern bearing. Mech. Syst. Signal Process. 2022, 169, 108623. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Shaft diameter/mm | 10 |
Bearing length/mm | 25 |
Oil film clearance δ/mm | 0.4 |
Height of inward flange h/mm | 2 |
Distribution angle θ/° | 50 |
Structural angle α/° | 16 |
Parameter | Operating Condition |
---|---|
Test bearing structure | CJB, 1S-JB, 3S-JB |
Damping fluid viscosity/cst | 0, 500, 1000 |
Rotational speed/(r/min) | 500, 1000, 1500, 2000, 2500, 3000 |
Unbalanced mass/g | 0, 3, 9, 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Ouyang, W.; Wan, G.; Xiao, G. Theoretical and Experimental Investigation of Dynamic Characteristics in Propulsion Shafting Support System with Integrated Squeeze Film Damper. Lubricants 2025, 13, 335. https://doi.org/10.3390/lubricants13080335
Liu Q, Ouyang W, Wan G, Xiao G. Theoretical and Experimental Investigation of Dynamic Characteristics in Propulsion Shafting Support System with Integrated Squeeze Film Damper. Lubricants. 2025; 13(8):335. https://doi.org/10.3390/lubricants13080335
Chicago/Turabian StyleLiu, Qilin, Wu Ouyang, Gao Wan, and Gaohui Xiao. 2025. "Theoretical and Experimental Investigation of Dynamic Characteristics in Propulsion Shafting Support System with Integrated Squeeze Film Damper" Lubricants 13, no. 8: 335. https://doi.org/10.3390/lubricants13080335
APA StyleLiu, Q., Ouyang, W., Wan, G., & Xiao, G. (2025). Theoretical and Experimental Investigation of Dynamic Characteristics in Propulsion Shafting Support System with Integrated Squeeze Film Damper. Lubricants, 13(8), 335. https://doi.org/10.3390/lubricants13080335