Tire/Road Interface and Road Surface Textures

A special issue of Lubricants (ISSN 2075-4442).

Deadline for manuscript submissions: 30 November 2025 | Viewed by 1985

Special Issue Editors


E-Mail Website
Guest Editor
School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
Interests: pavement skid resistance and road traffic safety; intelligent testing and evaluation of pavement service performance; intelligent operation and maintenance of road infrastructure; functional pavement

E-Mail Website
Guest Editor
School of Highway Engineering, Chang'an University, Xi'an 710064, China
Interests: pavement/road surface performance testing and evaluation; pavement maintenance material development and application technology

Special Issue Information

Dear Colleagues,

An effective transportation system should facilitate safe and efficient driving environments for vehicles. The interaction between tires and road surfaces plays a crucial role in the safety, performance, and sustainability of transportation systems. The tire/road interface is a complex system where friction, texture, deformation, and wear characteristics directly influence vehicle handling, fuel efficiency, and overall driving experience. The design and condition of road surface textures are key factors in determining these interactions, impacting aspects such as traction, noise, and durability.

This Special Issue on "Tire/Road Interface and Road Surface Textures" brings together recent advancements in the study of this dynamic relationship. It explores how road surface characteristics, such as roughness, texture, and material composition, affect tire performance, including grip, wear patterns, and rolling resistance. Thia Special Issue also highlights cutting-edge research on tire design and material innovations for optimizing performance across a variety of road conditions. By presenting both experimental and computational studies, this Special Issue provides valuable insights for engineers, vehicle manufacturers, and policymakers focused on enhancing road safety, environmental sustainability, and driving comfort. Ultimately, understanding and improving the tire/road interface remains fundamental to advancing modern transportation technologies.

Dr. You Zhan
Dr. Bing Hui
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Lubricants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pavement friction
  • skid resistance
  • pavement texture
  • tire/road interface
  • adhesion
  • wear
  • surface function
  • pavement detection

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 5548 KiB  
Article
Predicting Asphalt Pavement Friction by Using a Texture-Based Image Indicator
by Bingjie Lu, Zhengyang Lu, Yijiashun Qi, Hanzhe Guo, Tianyao Sun and Zunduo Zhao
Lubricants 2025, 13(8), 341; https://doi.org/10.3390/lubricants13080341 - 31 Jul 2025
Viewed by 112
Abstract
Pavement skid resistance is of vital importance for road safety. The objective of this study is to propose and validate a texture-based image indicator to predict pavement friction. This index enables pavement friction to be predicted easily and inexpensively using digital images, with [...] Read more.
Pavement skid resistance is of vital importance for road safety. The objective of this study is to propose and validate a texture-based image indicator to predict pavement friction. This index enables pavement friction to be predicted easily and inexpensively using digital images, with predictions correlated to Dynamic Friction Tester (DFT) measurements. Three different types of asphalt surfaces (Dense-Grade Asphalt Concrete, Open-Grade Friction Course, and Chip Seal) were evaluated subject to various tire polishing cycles. Images were taken with corresponding friction coefficients obtained using DFT in the laboratory. The aggregate protrusion area is proposed as the indicator. Statistical models are established for each asphalt surface type to correlate the proposed indicator with friction coefficients. The results show that the adjusted R-squared values of all relationships are above 0.90. Compared to other image-based indicators in the literature, the proposed image indicator more accurately reflects the changes in pavement friction with the number of polishing cycles, proving its cost-effective use for considering pavement friction in the mix design stage. Full article
(This article belongs to the Special Issue Tire/Road Interface and Road Surface Textures)
Show Figures

Figure 1

18 pages, 10294 KiB  
Article
High-Precision Normal Stress Measurement Methods for Tire–Road Contact and Its Spatial and Frequency Domain Distribution Characteristics
by Liang Song, Xixian Wu, Zijie Xie, Jie Gao, Di Yun and Zongjian Lei
Lubricants 2025, 13(7), 309; https://doi.org/10.3390/lubricants13070309 - 16 Jul 2025
Viewed by 335
Abstract
This study investigates measurement methods for and the distribution characteristics of normal stress within tire–road contact areas. A novel measurement method, integrating 3D scanning technology with bearing area curve (BAC) analysis, is proposed. This method quantifies the rubber penetration depth and calculates contact [...] Read more.
This study investigates measurement methods for and the distribution characteristics of normal stress within tire–road contact areas. A novel measurement method, integrating 3D scanning technology with bearing area curve (BAC) analysis, is proposed. This method quantifies the rubber penetration depth and calculates contact stress based on rubber deformation. The key innovation of this method lies in this integrated methodology for high-precision stress mapping. In the spatial domain, stress distribution is characterized by the percentage of area occupied by different stress intervals, while in the frequency domain, stress levels are analyzed at various frequencies. The results demonstrate that as the Mean Profile Depth (MPD) of the road texture increases, the areas under stress greater than 1.0 MPa increase, while the areas under stress less than 0.8 MPa decrease. However, when the MPD exceeds 0.7 mm, this effect becomes less pronounced. Higher loads and harder rubber reduce the proportion of areas under lower stress and increase the proportion under higher stress. Low-frequency (<800 1/m) stress components increase with an MPD up to 0.7 mm, beyond which they exhibit diminished sensitivity. Stress at the same frequency is not significantly affected by load variation but increases markedly with increasing rubber hardness. This research provides crucial insights into contact stress distribution, establishing a foundation for analyzing road friction and optimizing surface texture design oriented towards high-friction pavements. Full article
(This article belongs to the Special Issue Tire/Road Interface and Road Surface Textures)
Show Figures

Figure 1

17 pages, 2032 KiB  
Article
Intelligent Evaluation of Permeability Function of Porous Asphalt Pavement Based on 3D Laser Imaging and Deep Learning
by Rui Xiao, Jingwen Liu, Xin Li, You Zhan, Rong Chen and Wenjie Li
Lubricants 2025, 13(7), 291; https://doi.org/10.3390/lubricants13070291 - 29 Jun 2025
Viewed by 475
Abstract
The permeability of porous asphalt pavements is a critical skid resistance indicator that directly influences driving safety on wet roads. To ensure permeability (water infiltration capacity), it is necessary to assess the degree of clogging in the pavement. This study proposes a permeability [...] Read more.
The permeability of porous asphalt pavements is a critical skid resistance indicator that directly influences driving safety on wet roads. To ensure permeability (water infiltration capacity), it is necessary to assess the degree of clogging in the pavement. This study proposes a permeability evaluation model for porous asphalt pavements based on 3D laser imaging and deep learning. The model utilizes a 3D laser scanner to capture the surface texture of the pavement, a pavement infiltration tester to measure the permeability coefficient, and a deep residual network (ResNet) to train the collected data. The aim is to explore the relationship between the 3D surface texture of porous asphalt and its permeability performance. The results demonstrate that the proposed algorithm can quickly and accurately identify the permeability of the pavement without causing damage, achieving an accuracy and F1-score of up to 90.36% and 90.33%, respectively. This indicates a significant correlation between surface texture and permeability, which could promote advancements in pavement permeability technology. Full article
(This article belongs to the Special Issue Tire/Road Interface and Road Surface Textures)
Show Figures

Figure 1

19 pages, 3685 KiB  
Article
Extraction of Pavement Texture–Friction Surface Density Index Using High-Precision Three-Dimensional Images
by Niangzhi Mao, Shihai Ding, Xiaoping Chen, Changfa Ai, Huaping Yang and Jiayu Wang
Lubricants 2025, 13(7), 288; https://doi.org/10.3390/lubricants13070288 - 27 Jun 2025
Viewed by 433
Abstract
Pavement surface texture significantly affects its skid resistance. To characterize pavement surface texture and analyze its correlation with skid resistance, this paper proposes a novel three-dimensional (3D) texture evaluation index: mean texture surface area density (MTSAD). First, field tests were conducted on Chengdu [...] Read more.
Pavement surface texture significantly affects its skid resistance. To characterize pavement surface texture and analyze its correlation with skid resistance, this paper proposes a novel three-dimensional (3D) texture evaluation index: mean texture surface area density (MTSAD). First, field tests were conducted on Chengdu Greenway pavement using a portable laser scanner to collect high-precision texture data, while a pendulum friction tester was employed to measure the British Pendulum Number (BPN). Subsequently, digital image processing technology was employed for the 3D reconstruction of pavement texture. Leveraging the high-resolution data characteristics and incorporating the concept of infinite subdivision, an innovative method for calculating the pavement texture surface area was developed, ultimately yielding the MTSAD. Finally, polynomial regression analysis was performed to examine the correlation between MTSAD and BPN, revealing a coefficient of determination (R2) of 0.8302. The results demonstrate a close relationship between MTSAD and pavement friction, while proving that texture indices that are easy to promote can be obtained through high-precision 3D point cloud images, and validating the potential of non-contact texture measurement as a viable alternative to conventional contact-based friction testing methods. Full article
(This article belongs to the Special Issue Tire/Road Interface and Road Surface Textures)
Show Figures

Figure 1

Back to TopTop