Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters
Abstract
1. Introduction
2. Traction and Wear Modelling of Ball-Raceway Contacts
2.1. Solid Lubricated Traction Model with Varying Traction Parameters
2.2. Ball Bearing Wear Behavior
3. Dynamic Modelling of the Bearing
4. Solution Procedure and Model Validation
4.1. Model Solving
4.2. Traction Model Validation
4.3. Bearing Model Validation
4.3.1. Test Rig Description
4.3.2. Experimental Data Analysis
4.3.3. Model Validation
5. Numerical Results and Discussion
5.1. Steady-State Dynamic Characteristics of the Bearing
5.1.1. Contact Performance of the Ball
5.1.2. Tribology and Wear Performance
5.2. Transient Dynamic Characteristics of the Bearing
5.2.1. Effects of the Solid Lubricants
5.2.2. Effects of Axial Preloads
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miao, X.; Hu, M.; Li, A.; Wang, D.; Weng, L.; Li, X.; Zhang, G. Investigation on the lubricity of self-lubricating ball bearings for cryogenic turbine pump. Tribol. Int. 2018, 121, 45–53. [Google Scholar] [CrossRef]
- Choe, B.; Kwak, W.; Jeon, D.; Lee, Y. Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part II: Effects of cage mass imbalance. Mech. Syst. Signal Process. 2019, 116, 25–39. [Google Scholar] [CrossRef]
- Gupta, P.K. Minimum Energy Hypothesis in Quasi-Static Equilibrium Solutions for Angular Contact Ball Bearings. Tribol. Trans. 2020, 63, 1051–1066. [Google Scholar] [CrossRef]
- Gupta, P.K. Current Status of and Future Innovations in Rolling Bearing Modeling. Tribol. Trans. 2011, 54, 394–403. [Google Scholar] [CrossRef]
- Hong, S.-W.; Van-Canh, T. Rolling-Element Bearing Modeling: A Review. Int. J. Precis. Eng. Manuf. 2016, 17, 1729–1749. [Google Scholar] [CrossRef]
- Cao, H.; Niu, L.; Xi, S.; Chen, X. Mechanical model development of rolling bearing-rotor systems: A review. Mech. Syst. Signal Process. 2018, 102, 37–58. [Google Scholar] [CrossRef]
- Oktaviana, L.; Van-Canh, T.; Hong, S.-W. Skidding analysis of angular contact ball bearing subjected to radial load and angular misalignment. J. Mech. Sci. Technol. 2019, 33, 837–845. [Google Scholar] [CrossRef]
- Wen, C.; Meng, X.; Lyu, B.; Gu, J.; Xiao, L. Influence of angular misalignment on the tribological performance of high-speed micro ball bearings considering full multibody interactions. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol. 2020, 235, 1168–1189. [Google Scholar] [CrossRef]
- Gao, S.; Han, Q.; Zhou, N.; Pennacchi, P.; Chatterton, S.; Qing, T.; Zhang, J.; Chu, F. Experimental and theoretical approaches for determining cage motion dynamic characteristics of angular contact ball bearings considering whirling and overall skidding behaviors. Mech. Syst. Signal Process. 2022, 168, 108704. [Google Scholar] [CrossRef]
- Deng, S.; Zhu, X.; Qian, D.; Wang, F.; Hua, L. Nonlinear dynamic correlation between balls, cage and bearing rings of angular contact ball bearings at different number of balls and groove curvature radii. Nonlinear Dyn. 2023, 111, 3207–3237. [Google Scholar] [CrossRef]
- Han, Q.; Chu, F. Nonlinear dynamic model for skidding behavior of angular contact ball bearings. J. Sound Vib. 2015, 354, 219–235. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Z.; Zi, Y. Skidding and Spinning Investigation for Dry-lubricated Angular Contact Ball Bearing under Combined Loads. Friction 2023, 11, 1987–2007. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Gu, J.; Wang, Z. Influences of preload on the friction and wear properties of high-speed instrument angular contact ball bearings. Chin. J. Aeronaut. 2018, 31, 597–607. [Google Scholar] [CrossRef]
- Yu, H.; Ran, Y.; Zhang, G.; Li, X.; Li, B. A time-varying comprehensive dynamic model for the rotor system with multiple bearing faults. J. Sound Vib. 2020, 488, 115650. [Google Scholar] [CrossRef]
- Cao, H.; Su, S.; Jing, X.; Li, D. Vibration mechanism analysis for cylindrical roller bearings with single/multi defects and compound faults. Mech. Syst. Signal Process. 2020, 144, 106903. [Google Scholar] [CrossRef]
- Wen, C.; Meng, X.; Fang, C.; Gu, J.; Xiao, L.; Jiang, S. Dynamic behaviors of angular contact ball bearing with a localized surface defect considering the influence of cage and oil lubrication. Mech. Mach. Theory 2021, 162, 104352. [Google Scholar] [CrossRef]
- Gupta, P.K. Some Dynamic Effects in High-Speed Solid-Lubricated Ball Bearings. ASLE Trans. 1983, 26, 393–400. [Google Scholar] [CrossRef]
- Ma, S.; Yin, Y.; Zhu, L.; Yan, K.; Zhu, Y. Dimensional Discussion of Traction Force Vector on Ball/Raceway Interface and Study of Bearing Dynamic Behavior. J. Tribol. 2023, 145, 091108. [Google Scholar] [CrossRef]
- Kragelskii, I.V. Friction and Wear; Butterwonhs: London, UK, 1965. [Google Scholar]
- Gupta, P.K. Traction coefficients for some solid lubricants for rolling bearing dynamics modeling. Tribol. Trans. 2000, 43, 647–652. [Google Scholar] [CrossRef]
- Kwak, W.; Lee, J.; Lee, Y.B. Theoretical and experimental approach to ball bearing frictional characteristics compared with cryogenic friction model and dry friction model. Mech. Syst. Signal Process. 2019, 124, 424–438. [Google Scholar] [CrossRef]
- Liu, F.; Su, B.; Zhang, G.; Ren, J.; Zhang, W. Development of a Cryogenic Tester with Air Bearing to Test Sliding-Rolling Contact Friction. Lubricants 2022, 10, 119. [Google Scholar] [CrossRef]
- Chang, L.; Hall, P.; Thom, R. Scuffing Characteristics of High-Load Rolling/Sliding Contacts Operating in Liquid Oxygen–-Effects of Materials and Surface Roughness. Tribol. Trans. 1998, 41, 87–95. [Google Scholar] [CrossRef]
- Gupta, P.K.; Gibson, H.G. Real-Time Dynamics Modeling of Cryogenic Ball Bearings With Thermal Coupling. J. Tribol.-Trans. Asme 2021, 143, 13. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, C.; Miao, X.; Li, L.; Deng, S. Research on the Power Loss of High-Speed and High-Load Ball Bearing for Cryogenic Turbopump. Machines 2022, 10, 1080. [Google Scholar] [CrossRef]
- Kalker, J.J. A fast algorithm for the simplified theory of rolling contact. Veh. Syst. Dyn. 1982, 11, 1–13. [Google Scholar] [CrossRef]
- Vollebregt, E.A.H.; Wilders, P. FASTSIM2: A second-order accurate frictional rolling contact algorithm. Comput. Mech. 2011, 47, 105–116. [Google Scholar] [CrossRef]
- Liu, B.; Bruni, S.; Lewis, R. Numerical calculation of wear in rolling contact based on the Archard equation: Effect of contact parameters and consideration of uncertainties. Wear 2022, 490–491, 204188. [Google Scholar] [CrossRef]
- Chen, W.; Ma, Z.; Gao, L.; Li, X.; Pan, J. Quasi-static analysis of thrust-loaded angular contact ball bearings part I: Theoretical formulation. Chin. J. Mech. Eng. 2012, 25, 71–80. [Google Scholar] [CrossRef]
- Zhao, Y.; Zi, Y.; Chen, Z.; Zhang, M.; Zhu, Y.; Yin, J. Power loss investigation of ball bearings considering rolling-sliding contacts. Int. J. Mech. Sci. 2023, 250, 108318. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Fleischer, G.; Gröger, H.; Thum, H. Verschleiß und Zuverlässigkeit; Verlag Technik: Berlin, Germany, 1980. [Google Scholar]
- El-Thalji, I.; Jantunen, E. Fault analysis of the wear fault development in rolling bearings. Eng. Fail. Anal. 2015, 57, 470–482. [Google Scholar] [CrossRef]
- Goryacheva, I.G.; Zobova, A.A. Dynamics of deformable contacting bodies with sliding, rolling, and spinning. Int. J. Mech. Sci. 2022, 216, 106981. [Google Scholar] [CrossRef]
- Rovira, A.; Roda, A.; Lewis, R.; Marshall, M.B. Application of Fastsim with variable coefficient of friction using twin disc experimental measurements. Wear 2012, 274–275, 109–126. [Google Scholar] [CrossRef]
- Dowson, D. History of Tribology, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998; Volume 50. [Google Scholar]
- Marian, M.; Berman, D.; Rota, A.; Jackson, R.L.; Rosenkranz, A. Layered 2D nanomaterials to tailor friction and wear in machine elements—A review. Adv. Mater. Interfaces 2022, 9, 2101622. [Google Scholar] [CrossRef]
- Gao, W.J.; Nelias, D.; Boisson, N.; Lyu, Y.G. Model formulation of churning losses in cylindrical roller bearings based on numerical simulation. Tribol. Int. 2018, 121, 420–434. [Google Scholar] [CrossRef]
- Liu, J.; Shao, Y. Overview of dynamic modelling and analysis of rolling element bearings with localized and distributed faults. Nonlinear Dyn. 2018, 93, 1765–1798. [Google Scholar] [CrossRef]
- Mao, K.; Miao, X.; Chen, H.; Niu, X. Experimental research on bearing life of turbopump in liquid rocket engine. J. Rocket Propuls. 2016, 42, 24–27. [Google Scholar]
Parameters | Values |
---|---|
Ball diameter, rb, mm | 10 |
Normal contact force, F, N | 200 |
Hertz contact stress, P, GPa | 2.5/3.0/3.5 |
Solid lubrication type | Ag coating/PTFE coating |
Radial slices of the contact patch, R | 10 |
Circumferential slices of the contact patch, N | 40 |
Parameters | Ag Coating | PTFE Coating | ||||
---|---|---|---|---|---|---|
Pressures | 2.5 GPa | 3.0 GPa | 3.5 GPa | 2.5 GPa | 3.0 GPa | 3.5 GPa |
A | −0.124 | −0.116 | −0.102 | −0.109 | −0.105 | −0.100 |
B | 0.079 | 0.066 | 0.062 | 0.103 | 0.096 | 0.086 |
C | 0.698 | 0.648 | 0.513 | 0.724 | 0.683 | 0.666 |
D | 0.124 | 0.116 | 0.102 | 0.109 | 0.105 | 0.100 |
Error (%) | 18.6001 | 7.2467 | 4.2325 | 1.3261 | 1.2481 | 1.8023 |
Parameters | Values |
---|---|
Bearing inner diameter, Di (mm) | 120 |
Bearing outer diameter, Do (mm) | 215 |
Ball diameter, Db (mm) | 30.16 |
Origin contact angle, α0 (degree) | 18 |
Fluid material | LN2 |
Fluid temperature, T (K) | 85~90 |
Fluid pressure, p (MPa) | 3~5 |
Models/Cases | Cage Speed ωc/r∙min−1 | Error/% |
---|---|---|
QSJH | 5855 | 1.16 |
case 1 | 5802 | 0.24 |
case 2 | 5802 | 0.24 |
case 3 | 5861 | 1.26 |
case 4 | 5860 | 1.25 |
Dynamic | 5799 | 0.20 |
φ/° | Pi/GPa | Po/GPa |
---|---|---|
0 | 2.46 | 2.30 |
60 | 2.28 | 2.17 |
120 | 1.94 | 1.94 |
180 | 1.79 | 1.85 |
240 | 1.94 | 1.94 |
300 | 2.28 | 2.17 |
360 | 2.46 | 2.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Jia, S.; Zhao, Y.; Wei, J.; Zi, Y. Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters. Lubricants 2025, 13, 352. https://doi.org/10.3390/lubricants13080352
Zhang S, Jia S, Zhao Y, Wei J, Zi Y. Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters. Lubricants. 2025; 13(8):352. https://doi.org/10.3390/lubricants13080352
Chicago/Turabian StyleZhang, Shijie, Shuangshuang Jia, Yuhao Zhao, Jing Wei, and Yanyang Zi. 2025. "Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters" Lubricants 13, no. 8: 352. https://doi.org/10.3390/lubricants13080352
APA StyleZhang, S., Jia, S., Zhao, Y., Wei, J., & Zi, Y. (2025). Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters. Lubricants, 13(8), 352. https://doi.org/10.3390/lubricants13080352