Tribology in Manufacturing Engineering

A special issue of Lubricants (ISSN 2075-4442).

Deadline for manuscript submissions: 31 January 2026 | Viewed by 7817

Special Issue Editors


E-Mail Website
Guest Editor
School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
Interests: numerical simulation of metal forming; tribology in metal forming; multi-scale materials processing; advanced rolling technology; microforming; manufacturing of composites; contact mechanics; friction and wear in manufacturing; lubrication technology; development of novel lubricants
Special Issues, Collections and Topics in MDPI journals
School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
Interests: tribology; nanolubrication; material characterisation; metal forming; micro manufacturing; composite materials; phase transformation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Tribology is the science and technology of interacting surfaces in relative motion regarding friction, wear, and lubrication, involving interdisciplinary fields such as mechanical engineering, materials science and engineering, chemistry and chemical engineering, and manufacturing engineering. In particular, tribology plays a prominent role in traditional and advanced manufacturing technologies, especially those including metal working, metal forming, metal machining, and micro/nano manufacturing. The study of tribology is significant in manufacturing processes since it is instrumental in cost-effectiveness, quality control, process optimisation, and performance enhancement of products. As green manufacturing and its sustainable development are garnering increased attention and interest at present, tribology-related research in manufacturing engineering needs to provide new possibilities to meet future demands for resource-saving and net-zero emissions.

The current Special Issue focuses on the latest developments and advancement of tribology in manufacturing technologies in terms of experimental and simulation research concerning tribology in advanced manufacturing and the associated manufacturing processes of metal products.

Prof. Dr. Zhengyi Jiang
Dr. Hui Wu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Lubricants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • tribology
  • friction
  • wear
  • lubrication
  • eco-friendly lubricants
  • green manufacturing
  • contact mechanics
  • computational mechanics
  • modelling and simulation
  • metal working
  • metal forming
  • metal machining
  • metal fabrication
  • composite materials
  • micro/nano manufacturing
  • computer-aided design
  • computer-aided manufacturing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4464 KiB  
Article
Effects of Graphene Nanoplatelets and Nanosized Al4C3 Formation on the Wear Properties of Hot Extruded Al-Based Nanocomposites
by Mihail Kolev, Rumyana Lazarova, Veselin Petkov and Rositza Dimitrova
Lubricants 2025, 13(2), 67; https://doi.org/10.3390/lubricants13020067 - 4 Feb 2025
Viewed by 765
Abstract
This study investigates the influence of graphene nanoplatelets (GNPs) and the formation of nanosized Al4C3 on the tribological performance of hot extruded aluminum-based nanocomposites. Al/GNP nanocomposites with varying GNP contents (0, 0.1, 0.5, and 1.1 wt.%) were fabricated through powder [...] Read more.
This study investigates the influence of graphene nanoplatelets (GNPs) and the formation of nanosized Al4C3 on the tribological performance of hot extruded aluminum-based nanocomposites. Al/GNP nanocomposites with varying GNP contents (0, 0.1, 0.5, and 1.1 wt.%) were fabricated through powder metallurgy, including ball milling, compaction, and hot extrusion at 500 °C, which was designed to facilitate the formation of nanosized carbides during the extrusion process. The effect of GNPs and nanosized carbides on the tribological properties of the composites was evaluated using dry friction pin-on-disk tests to assess wear resistance and the coefficient of friction (COF). Microstructural analyses using scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed the uniform distribution of GNPs and the formation of nanosized Al4C3 in the samples. Incorporating 0.1 wt.% GNPs resulted in the lowest wear mass loss (1.40 mg) while maintaining a stable COF (0.52), attributed to enhanced lubrication and load transfer. Although a higher GNP content (1.1 wt.%) resulted in increased wear due to agglomeration, the nanocomposite still demonstrated superior wear resistance compared to the unreinforced aluminum matrix. These findings underscore the potential of combining nanotechnology with precise processing techniques to enhance the wear and friction properties of aluminum-based composites. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

19 pages, 9952 KiB  
Article
Multiple Regression Analysis and Non-Dominated Sorting Genetic Algorithm II Optimization of Machining Carbon-Fiber-Reinforced Polyethylene Terephthalate Glycol Parts Fabricated via Additive Manufacturing Under Dry and Lubricated Conditions
by Anastasios Tzotzis, Nikolaos Efkolidis, Kai Cheng and Panagiotis Kyratsis
Lubricants 2025, 13(2), 63; https://doi.org/10.3390/lubricants13020063 - 2 Feb 2025
Viewed by 1446
Abstract
The present research deals with the processing of the additively manufactured Carbon-Fiber-Reinforced Polymer (CFRP) under dry and lubricated cutting conditions, focusing on the generated surface roughness. The cutting speed, feed, and depth of cut were selected as the continuous variables. A comparison between [...] Read more.
The present research deals with the processing of the additively manufactured Carbon-Fiber-Reinforced Polymer (CFRP) under dry and lubricated cutting conditions, focusing on the generated surface roughness. The cutting speed, feed, and depth of cut were selected as the continuous variables. A comparison between the generated surface roughness of the dry and the lubricated cuts revealed that the presence of coolant contributed towards reducing surface roughness by more than 20% in most cases. Next, a regression analysis was performed with the obtained measurements, yielding a robust prediction model, with the determination coefficient R2 being equal to 94.65%. It was determined that feed and the corresponding interactions contributed more than 45% to the model’s R2, followed by the depth of cut and the machining condition. In addition, the cutting speed was the variable with the least effect on the response. The Non-Dominated Sorting Genetic Algorithm 2 (NSGA-II) was employed to identify the front of optimal solutions that consider both minimizing surface roughness and maximizing Material Removal Rate (MRR). Finally, a set of extra experiments proved the validity of the model by exhibiting relative error values, between the measured and predicted roughness, below 10%. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

14 pages, 49185 KiB  
Article
Investigating Influence of Mo Elements on Friction and Wear Performance of Nickel Alloy Matrix Composites in Air from 25 to 800 °C
by Jinming Zhen, Yunxiang Han, Lin Yuan, Zhengfeng Jia and Ran Zhang
Lubricants 2024, 12(11), 396; https://doi.org/10.3390/lubricants12110396 - 18 Nov 2024
Viewed by 1105
Abstract
Rapid developments in aerospace and nuclear industries pushed forward the search for high-performance self-lubricating materials with low friction and wear characteristics under severe environment. In this paper, we investigated the influence of the Mo element on the tribological performance of nickel alloy matrix [...] Read more.
Rapid developments in aerospace and nuclear industries pushed forward the search for high-performance self-lubricating materials with low friction and wear characteristics under severe environment. In this paper, we investigated the influence of the Mo element on the tribological performance of nickel alloy matrix composites from room temperature to 800 °C under atmospheric conditions. The results demonstrated that composites exhibited excellent lubricating (with low friction coefficients of 0.19–0.37) and wear resistance properties (with low wear rates of 2.5–28.1 × 10−5 mm3/Nm), especially at a content of elemental Mo of 8 wt. % and 12 wt. %. The presence of soft metal Ag on the sliding surface as solid lubricant resulted in low friction and wear rate in a temperature range from 25 to 400 °C, while at elevated temperatures (600 and 800 °C), the effective lubricant contributed to the formation of a glazed layer rich in NiCr2O4, BaF2/CaF2, and Ag2MoO4. SEM, EDS, and the Raman spectrum indicated that abrasive and fatigue wear were the main wear mechanisms for the studied composites during sliding against the Si3N4 ceramic ball. The obtained results provide an insightful suggestion for future designing and fabricating solid lubricant composites with low friction and wear properties. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

20 pages, 6774 KiB  
Article
Sheet Forming via Limiting Dome Height (LDH) Test: Influence of the Application of Lubricants, Location and Sheet Thickness on the Micro-Mechanical Properties of X8CrMnNi19-6-3
by Martin Ovsik, Martin Bednarik, Martin Reznicek and Michal Stanek
Lubricants 2024, 12(7), 260; https://doi.org/10.3390/lubricants12070260 - 21 Jul 2024
Viewed by 1335
Abstract
This work is concerned with forming, specifically deep drawing, and its influence on the micro-mechanical properties of sheet metal. In practice, there are several applications in which fractions can occur due to weak spots in the deep-drawn sheet metal, especially after long-term use. [...] Read more.
This work is concerned with forming, specifically deep drawing, and its influence on the micro-mechanical properties of sheet metal. In practice, there are several applications in which fractions can occur due to weak spots in the deep-drawn sheet metal, especially after long-term use. The deep drawing process was carried out on BUP–600 machines using the LHD (Limiting Dome Height) method, which uses a forming tool with a diameter of 100 mm and bead groove. Sheet metals X8CrMnNi19-6-3 (1.4376) with thicknesses of 1, 1.5, and 3 mm were selected for this process. To study the effect of a lubricant on the formability of the sheet metal, deep drawing without and with a lubricant was compared. An FEM analysis was conducted to identify critical points in the deep drawing process, and the results were later compared with real results. The analysis was conducted using the AutoForm program. The micro-mechanical properties of these points were subsequently examined. The specified points on the formed part showed significant differences in their micro-mechanical properties, suggesting a higher strength but also less resistance to fractures. The difference in micro-mechanical properties (indentation and Vickers hardness) in points that were not deep-drawn and points located in critical areas was up to 86%. Significant changes in behavior were found in the indentation modulus and plastic/elastic deformation work as well. This study demonstrates the significant effect of the use of a lubricant in achieving the deep drawing of the sheet metal. The application of a lubricant resulted in a 33% increase in drawing range compared to drawing without lubrication. This study has a significant influence on the deep drawing of sheet metals in practice, showing the fundamental influence of the lubricant on the drawing process and also showing the problem of critical points that need to be eliminated. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Graphical abstract

17 pages, 23827 KiB  
Article
A Study of Water-Based Nanolubricants Using Hexagonal Boron Nitride (hBN)-Based Nanocomposites as Lubricant Additives
by Afshana Morshed, Hui Wu, Mengyuan Ren, Zhao Xing, Sihai Jiao and Zhengyi Jiang
Lubricants 2024, 12(4), 123; https://doi.org/10.3390/lubricants12040123 - 6 Apr 2024
Cited by 4 | Viewed by 2285
Abstract
An Rtec ball-on-disk tribometer was used to investigate the tribological performance of the synthesised water-based nanolubricants containing hBN/TiO2 nanocomposite at room temperature. The water-based nanolubricants with different concentrations were prepared by adding glycerol and sodium dodecyl benzene sulfonate (SDBS) under ultrasonication. These [...] Read more.
An Rtec ball-on-disk tribometer was used to investigate the tribological performance of the synthesised water-based nanolubricants containing hBN/TiO2 nanocomposite at room temperature. The water-based nanolubricants with different concentrations were prepared by adding glycerol and sodium dodecyl benzene sulfonate (SDBS) under ultrasonication. These as-prepared nanolubricants demonstrated exceptional dispersion stability for 7 days without distinct sedimentation. The results indicate that the water-based nanolubricants with an overall concentration of 1.0 wt% at different ratios (hBN: TiO2 = (1:0), (0.7:0.3), (0.5:0.5), (0.3:0.7), (0:1)) can effectively reduce the coefficient of friction (COF) and the wear of the ball and disk. In particular, the water-based nanolubricant containing 0.5 wt% hBN and 0.5 wt% TiO2 exhibited the best tribological performance, leading to a significant reduction in COF up to 70%, and decreased the wear area of the ball and disk by up to 79.57% and 60.40%, respectively, compared to those obtained using distilled water. The lubrication mechanisms were mainly attributed to the formation of a protective film, and the mending, polishing, rolling, and synergistic effects of the hBN nanosheets and TiO2 nanoparticles. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

Back to TopTop