Particulate Matter Pollution in an Agricultural Setting: A Community-Engaged Research Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Visits
2.2. Personal and Indoor Air Quality Measurements
2.3. Other Variables
2.4. Data Management and Statistical Analysis
2.5. Community Engagement and Results Report Back to Participants
3. Results
3.1. Descriptive Summary
3.2. 24-h Personal and Indoor Air Quality Measurements
3.3. Adjusted Model Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCEJN | Central California Environmental Justice Network |
CI | Confidence interval |
CSU | Colorado State University |
GSD | Geometric standard deviation |
PM2.5 | fine particulate matter with an aerodynamic diameter of 2.5 μm of less |
PM10 | particulate matter with an aerodynamic diameter of 10 μm or less |
SD | Standard deviation |
SJV APCD | San Joaquin Valley Air Pollution Control District |
UPAS | Ultrasonic Personal Aerosol Sampler |
WHO | World Health Organization |
References
- Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease 2021: Findings from the GBD 2021 Study; IHME: Seattle, WA, USA, 2024. [Google Scholar]
- Mao, Q.; Zhu, X.; Zhang, X.; Kong, Y. Effect of Air Pollution on the Global Burden of Cardiovascular Diseases and Forecasting Future Trends of the Related Metrics: A Systematic Analysis from the Global Burden of Disease Study 2021. Front. Med. 2024, 11, 1472996. [Google Scholar] [CrossRef] [PubMed]
- Khoshakhlagh, A.H.; Mohammadzadeh, M.; Gruszecka-Kosowska, A.; Oikonomou, E. Burden of Cardiovascular Disease Attributed to Air Pollution: A Systematic Review. Glob. Health 2024, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Krismanuel, H. Air Pollution and Cardiovascular Diseases: Mechanisms, Evidence, and Mitigation Strategies. J. Med. Life 2025, 18, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Talbott, E.O.; Arena, V.C.; Rager, J.R.; Clougherty, J.E.; Michanowicz, D.R.; Sharma, R.K.; Stacy, S.L. Fine Particulate Matter and the Risk of Autism Spectrum Disorder. Environ. Res. 2015, 140, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kwong, J.C.; Copes, R.; Hystad, P.; van Donkelaar, A.; Tu, K.; Brook, J.R.; Goldberg, M.S.; Martin, R.V.; Murray, B.J.; et al. Exposure to Ambient Air Pollution and the Incidence of Dementia: A Population-Based Cohort Study. Environ. Int. 2017, 108, 271–277. [Google Scholar] [CrossRef]
- Block, M.L.; Calderón-Garcidueñas, L. Air Pollution: Mechanisms of Neuroinflammation and CNS Disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef]
- Burkart, K.; Causey, K.; Cohen, A.J.; Wozniak, S.S.; Salvi, D.D.; Abbafati, C.; Adekanmbi, V.; Adsuar, J.C.; Ahmadi, K.; Alahdab, F.; et al. Estimates, Trends, and Drivers of the Global Burden of Type 2 Diabetes Attributable to PM2.5 Air Pollution, 1990–2019: An Analysis of Data from the Global Burden of Disease Study 2019. Lancet Planet. Health 2022, 6, e586–e600. [Google Scholar] [CrossRef]
- Wu, Z.; Xia, F.; Lin, R. Global Burden of Cancer and Associated Risk Factors in 204 Countries and Territories, 1980–2021: A Systematic Analysis for the GBD 2021. J. Hematol. Oncol. 2024, 17, 119. [Google Scholar] [CrossRef]
- Liu, X.-X.; Fan, S.-J.; Luo, Y.-N.; Hu, L.-X.; Li, C.-C.; Zhang, Y.-D.; Li, J.-X.; Qiu, H.-L.; Dong, G.-H.; Yang, B.-Y. Global, Regional, and National Burden of Preterm Birth Attributable to Ambient and Household PM2.5 from 1990 to 2019: Worsening or Improving? Sci. Total Environ. 2023, 871, 161975. [Google Scholar] [CrossRef]
- Institute for Health Metrics and Evaluation (IHME). GBD Compare Data Visualization; IHME, University of Washington: Seattle, WA, USA, 2024. [Google Scholar]
- Jerrett, M.; Burnett, R.T.; Ma, R.; Pope, C.A.; Krewski, D.; Newbold, K.B.; Thurston, G.; Shi, Y.; Finkelstein, N.; Calle, E.E.; et al. Spatial Analysis of Air Pollution and Mortality in Los Angeles. Epidemiology 2005, 16, 727–736. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef] [PubMed]
- Haskell-Craig, Z.; Josey, K.P.; Kinney, P.L.; deSouza, P. Equity in the Distribution of Regulatory PM2.5 Monitors. Environ. Sci. Technol. 2025, 59, 15843–15852. [Google Scholar] [CrossRef]
- Gochfeld, M.; Burger, J. Disproportionate Exposures in Environmental Justice and Other Populations: The Importance of Outliers. Am. J. Public Health 2011, 101, S53–S63. [Google Scholar] [CrossRef]
- Koehler, K.; Good, N.; Wilson, A.; Mölter, A.; Moore, B.F.; Carpenter, T.; Peel, J.L.; Volckens, J. The Fort Collins Commuter Study: Variability in Personal Exposure to Air Pollutants by Microenvironment. Indoor Air 2019, 29, 231–241. [Google Scholar] [CrossRef]
- Li, X.; Tryner, J.; Young, B.N.; Hernandez Ramirez, L.; Phillips, M.; WeMott, S.; Erlandson, G.; Kuiper, G.; Dean, D.; Martinez, N.; et al. Application and Validation of a Wearable Monitor for Assessing Time- and Location-Resolved Exposures to Particulate Matter in California’s Central Valley. Aerosol Sci. Technol. 2025, 59, 1272–1288. [Google Scholar] [CrossRef]
- Koehler, K.A.; Peters, T. New Methods for Personal Exposure Monitoring for Airborne Particles. Curr. Environ. Health Rep. 2015, 2, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Volckens, J.; Quinn, C.; Leith, D.; Mehaffy, J.; Henry, C.S.; Miller-Lionberg, D. Development and Evaluation of an Ultrasonic Personal Aerosol Sampler. Indoor Air 2017, 27, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Ivey, C.E.; Pruitt, J.; Garcia, J. Comment on “State-of-the-Science Data and Methods Need to Guide Place-Based Efforts to Reduce Air Pollution Inequity”. Environ. Health Perspect. 2024, 132, 038001. [Google Scholar] [CrossRef]
- Torres, I.; Do, K.; Delgado, A.; Mourad, C.; Yu, H.; Ivey, C.E. Indoor and Ambient Influences on PM2.5 Exposure and Well-Being for a Rail Impacted Community and Implications for Personal Protections. Environ. Res. Lett. 2024, 19, 124071. [Google Scholar] [CrossRef]
- Van Horne, Y.O.; Alcala, C.S.; Peltier, R.E.; Quintana, P.J.E.; Seto, E.; Gonzales, M.; Johnston, J.E.; Montoya, L.D.; Quirós-Alcalá, L.; Beamer, P.I. An Applied Environmental Justice Framework for Exposure Science. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 1–11. [Google Scholar] [CrossRef]
- Minkler, M.; Wallerstein, N. Community-Based Participatory Research for Health: From Process to Outcomes; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2008; ISBN 978-0-470-93249-0. [Google Scholar]
- Wallerstein, N. Community-Based Participatory Research for Health: Advancing Social and Health Equity, 3rd ed.; Jossey-Bass: San Francisco, CA, USA, 2018. [Google Scholar]
- Brody, J.G.; Morello-Frosch, R.; Zota, A.; Brown, P.; Pérez, C.; Rudel, R.A. Linking Exposure Assessment Science with Policy Objectives for Environmental Justice and Breast Cancer Advocacy: The Northern California Household Exposure Study. Am. J. Public Health 2009, 99, S600–S609. [Google Scholar] [CrossRef]
- Masri, S.; Cox, K.; Flores, L.; Rea, J.; Wu, J. Community-Engaged Use of Low-Cost Sensors to Assess the Spatial Distribution of PM2.5 Concentrations across Disadvantaged Communities: Results from a Pilot Study in Santa Ana, CA. Atmosphere 2022, 13, 304. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.E.; Juarez, Z.; Navarro, S.; Hernandez, A.; Gutschow, W. Youth Engaged Participatory Air Monitoring: A ‘Day in the Life’ in Urban Environmental Justice Communities. Int. J. Environ. Res. Public Health 2020, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Flores-Landeros, H.; Pells, C.; Campos-Martinez, M.S.; Fernandez-Bou, A.S.; Ortiz-Partida, J.P.; Medellín-Azuara, J. Community Perspectives and Environmental Justice in California’s San Joaquin Valley. Environ. Justice 2022, 15, 337–345. [Google Scholar] [CrossRef]
- Schwartz, N.A.; von Glascoe, C.A.; Torres, V.; Ramos, L.; Soria-Delgado, C. “Where They (Live, Work and) Spray”: Pesticide Exposure, Childhood Asthma and Environmental Justice among Mexican-American Farmworkers. Health Place 2015, 32, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.; Young, B.N.; WeMott, S.; Erlandson, G.; Martinez, N.; Mendoza, J.; Dooley, G.; Quinn, C.; Benka-Coker, W.O.; Magzamen, S. Factors Associated with Levels of Organophosphate Pesticides in Household Dust in Agricultural Communities. Int. J. Environ. Res. Public Health 2022, 19, 862. [Google Scholar] [CrossRef]
- U.S. Census Bureau. U.S. Department of Commerce American Community Survey, ACS 5-Year Estimates Detailed Tables. Tables B03003, B05001, B06012, B19013. Available online: https://data.census.gov/table?y=2023&d=ACS+5-Year+Estimates+Detailed+Tables (accessed on 21 July 2025).
- Leith, D.; L’Orange, C.; Mehaffy, J.; Volckens, J. Design and Performance of UPAS Inlets for Respirable and Thoracic Mass Sampling. J. Occup. Environ. Hyg. 2020, 17, 274–282. [Google Scholar] [CrossRef]
- L’Orange, C.; Neymark, G.; Carter, E.; Volckens, J. A High-Throughput, Robotic System for Analysis of Aerosol Sampling Filters. Aerosol Air Qual. Res. 2021, 21, 210037. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research Electronic Data Capture (REDCap)—A Metadata-Driven Methodology and Workflow Process for Providing Translational Research Informatics Support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Cisneros, R.; Schweizer, D.; Amiri, M.; Zarate-Gonzalez, G.; Gharibi, H. Long-Term Fine Particulate Matter (PM2.5) Trends and Exposure Patterns in the San Joaquin Valley of California. Atmosphere 2025, 16, 721. [Google Scholar] [CrossRef]
- San Joaquin Valley Air Pollution Control District. 2024 Air Monitoring Network Plan; San Joaquin Valley Air Pollution Control District: Fresno, CA, USA, 2024. [Google Scholar]
- California Air Resources Board (CARB) Air Quality Data (PST) Query Tool. Available online: https://www.arb.ca.gov/aqmis2/aqdselect.php?tab=hourly (accessed on 21 July 2025).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. Dplyr: A Grammar of Data Manipulation, R Package, Version 1.1.2, Posit Software; PBC: Boston, MA, USA, 2023.
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide: Executive Summary; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003443-3. [Google Scholar]
- Lim, S.; Bassey, E.; Bos, B.; Makacha, L.; Varaden, D.; Arku, R.E.; Baumgartner, J.; Brauer, M.; Ezzati, M.; Kelly, F.J.; et al. Comparing Human Exposure to Fine Particulate Matter in Low and High-Income Countries: A Systematic Review of Studies Measuring Personal PM2. 5 Exposure. Sci. Total Environ. 2022, 833, 155207. [Google Scholar] [CrossRef] [PubMed]
- US EPA Particulate Matter (PM2.5) Trends. Available online: https://www.epa.gov/air-trends/particulate-matter-pm25-trends (accessed on 11 August 2025).
- Kilpatrick, D.J.; Hung, P.; Crouch, E.; Self, S.; Cothran, J.; Porter, D.E.; Eberth, J.M. Geographic Variations in Urban-Rural Particulate Matter (PM2.5) Concentrations in the United States, 2010–2019. GeoHealth 2024, 8, e2023GH000920. [Google Scholar] [CrossRef]
- Tessum, C.W.; Paolella, D.A.; Chambliss, S.E.; Apte, J.S.; Hill, J.D.; Marshall, J.D. PM2.5 Polluters Disproportionately and Systemically Affect People of Color in the United States. Sci. Adv. 2021, 7, eabf4491. [Google Scholar] [CrossRef]
- Avery, C.L.; Mills, K.T.; Williams, R.; McGraw, K.A.; Poole, C.; Smith, R.L.; Whitsel, E.A. Estimating Error in Using Ambient PM2.5 Concentrations as Proxies for Personal Exposures: A Review. Epidemiology 2010, 21, 215. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.; Griffith, W.C.; Barr, D.B.; Coronado, G.D.; Vigoren, E.M.; Faustman, E.M. Variability in the Take-Home Pathway: Farmworkers and Non-Farmworkers and Their Children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 522–531. [Google Scholar] [CrossRef]
- Choe, Y.; Shin, J.; Park, J.; Kim, E.; Oh, N.; Min, K.; Kim, D.; Sung, K.; Cho, M.; Yang, W. Inadequacy of Air Purifier for Indoor Air Quality Improvement in Classrooms without External Ventilation. Build. Environ. 2022, 207, 108450. [Google Scholar] [CrossRef]
- Burke, R.D.; Todd, S.W.; Lumsden, E.; Mullins, R.J.; Mamczarz, J.; Fawcett, W.P.; Gullapalli, R.P.; Randall, W.R.; Pereira, E.F.R.; Albuquerque, E.X. Developmental Neurotoxicity of the Organophosphorus Insecticide Chlorpyrifos: From Clinical Findings to Preclinical Models and Potential Mechanisms. J. Neurochem. 2017, 142, 162–177. [Google Scholar] [CrossRef]
- Utami, I.I.; Baroto, W.A. The Perception of Air Purifiers on Indoor Air Quality: Effective or Human Herd Behavior? City Built Environ. 2025, 3, 6. [Google Scholar] [CrossRef]
- California Air Resources Board Inhalable Particulate Matter and Health (PM2.5 and PM10). Available online: https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health (accessed on 5 July 2025).
Sampling Campaign Dates | n = 35 Unique Participants n = 18 Unique Households |
---|---|
4–7 December 2023 (non-harvest season) 17–21 May 2024 (non-harvest season) 6–11 September 2024 (harvest season) | 22 participants, 13 HH 22 participants, 14 HH 22 participants, 12 HH |
Participant Characteristics | n = 35 unique participants |
Sex: Female, n (%) | 24 (69%) |
Ethnicity: Hispanic/Latino(a), n (%) | 35 (100%) |
Primary language spoken: Spanish, n (%) | 21 (60%) |
Participant Characteristics | n = 61 personal PM samples |
Works in agriculture and/or occupational dust exposure: Yes, n (%) | 22 (36%) |
Exposed to wildfire smoke in past 24 h: Yes, n (%) | 3 (5%) |
Household Characteristics | n = 18 unique households |
Household distance from processing facility silos (m): Median (Q1–Q3) | 630 (550–1300) |
Household cooling with central air: Yes, n (%) | 7 (39%) |
Household Characteristics | n = 39 unique home visits |
Any household member working in agriculture: Yes, n (%) | 22 (56%) |
Time spent cooking using stovetop or oven during 24-h sample, n (%) | |
Not at all or less than 30 min | 6 (15%) |
30 min to 2 h | 21 (54%) |
More than 2 h | 12 (31%) |
Vent used that exhausted outside when cooking: Most of the time or always when cooking during 24-h sample, n (%) | 23 (59%) |
Used household air cleaner during 24-h sample: Yes, n (%) | 13 (33%) |
Burned candles, incense, or scented oil in home during 24-h sample: Yes, 1 or more, n (%) | 6 (15%) |
Used a scented oil diffuser, spray air freshener, plug-in air freshener, swept, or vacuumed in home during 24-h sample: Yes, 1 or more, n (%) | 31 (79%) |
Measure | December 2023 (Non-Harvest) | May 2024 (Non-Harvest) | September 2024 (Harvest) | |||
---|---|---|---|---|---|---|
WHO AQG | SJV APCD | WHO AQG | SJV APCD | WHO AQG | SJV APCD | |
Personal PM2.5 | 5/11 (45%) | 7/11 (64%) | 1/10 (10%) | 8/10 (80%) | 2/10 (20%) | 4/10 (40%) |
Indoor PM2.5 | 6/11 (55%) | 8/11 (73%) | 1/10 (10%) | 5/10 (50%) | 3/10 (30%) | 8/10 (80%) |
Personal PM10 | 7/10 (70%) | 8/10 (80%) | 4/11 (36%) | 6/11 (55%) | 5/9 (56%) | 2/9 (22%) |
Indoor PM10 | 4/11 (36%) | 5/11 (45%) | 1/12 (8%) | 2/12 (17%) | 0/11 (0%) | 0/11 (0%) |
Term | Estimate | CI Lower | CI Upper | % Change 2 | % Change CI Lower | % Change CI Upper |
---|---|---|---|---|---|---|
Personal PM2.5 (n = 31) | ||||||
Ambient PM2.5 | 0.07 | −0.02 | 0.16 | 7.34 | −1.99 | 17.55 |
Harvest season (reference is “non-harvest”) | −0.02 | −0.60 | −0.55 | −2.30 | −45.01 | 73.61 |
Anyone in the home working in agriculture (reference is “none”) | 0.27 | −0.23 | 0.77 | 30.51 | −20.80 | 115.06 |
Household use of an air cleaner (reference is “none”) | 0.62 | 0.06 | 1.18 | 86.43 | 6.53 | 226.28 |
Indoor PM2.5 (n = 31) | ||||||
Ambient PM2.5 | 0.09 | 0.02 | 0.16 | 9.58 | 2.41 | 17.27 |
Harvest season (reference is “non-harvest”) | −0.07 | −0.47 | 0.32 | −7.02 | −37.37 | 38.05 |
Anyone in the home working in agriculture (reference is “none”) | 0.55 | 0.11 | 0.98 | 72.65 | 11.52 | 167.28 |
Personal PM10 (n = 30) | ||||||
Ambient PM10 | 0.00 | −0.02 | 0.03 | 0.39 | −2.28 | 3.13 |
Harvest season (reference is “non-harvest”) | −0.15 | −0.87 | 0.58 | −13.54 | −58.11 | 78.47 |
Anyone in the home working in agriculture (reference is “none”) | 0.49 | 0.02 | 0.95 | 62.54 | 1.69 | 159.80 |
Indoor PM10 (n = 34) | ||||||
Ambient PM10 | 0.001 | −0.01 | 0.02 | 0.11 | −1.28 | 1.52 |
Harvest season (reference is “non-harvest”) | −0.09 | −0.60 | 0.42 | −8.65 | −44.94 | 51.58 |
Anyone in the home working in agriculture (reference is “none”) | 0.65 | 0.28 | 1.02 | 91.27 | 32.13 | 176.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, B.N.; Tryner, J.; Hernandez Ramirez, L.; WeMott, S.; Erlandson, G.; Li, X.; Kuiper, G.; Dean, D.A.; Martinez, N.; Phillips, M.; et al. Particulate Matter Pollution in an Agricultural Setting: A Community-Engaged Research Study. Environments 2025, 12, 348. https://doi.org/10.3390/environments12100348
Young BN, Tryner J, Hernandez Ramirez L, WeMott S, Erlandson G, Li X, Kuiper G, Dean DA, Martinez N, Phillips M, et al. Particulate Matter Pollution in an Agricultural Setting: A Community-Engaged Research Study. Environments. 2025; 12(10):348. https://doi.org/10.3390/environments12100348
Chicago/Turabian StyleYoung, Bonnie N., Jessica Tryner, Luis Hernandez Ramirez, Sherry WeMott, Grant Erlandson, Xiaoying Li, Grace Kuiper, Daniel Alan Dean, Nayamin Martinez, Mollie Phillips, and et al. 2025. "Particulate Matter Pollution in an Agricultural Setting: A Community-Engaged Research Study" Environments 12, no. 10: 348. https://doi.org/10.3390/environments12100348
APA StyleYoung, B. N., Tryner, J., Hernandez Ramirez, L., WeMott, S., Erlandson, G., Li, X., Kuiper, G., Dean, D. A., Martinez, N., Phillips, M., Volckens, J., & Magzamen, S. (2025). Particulate Matter Pollution in an Agricultural Setting: A Community-Engaged Research Study. Environments, 12(10), 348. https://doi.org/10.3390/environments12100348