A Review of Persistent Soil Contaminants: Assessment and Remediation Strategies
Abstract
1. Introduction
2. Literature Review Methodology
3. Persistent Soil Contaminants and Effects
3.1. Heavy Metals as Soil Contaminants
3.2. Petroleum Hydrocarbons as Soil Contaminants
3.3. Nano- and Microplastics as Soil Contaminants
3.4. Persistent Organic Soil Contaminants
4. Remediation Strategies for Contaminated Soils
4.1. Physicochemical Technologies
4.1.1. Excavation and Landfilling
4.1.2. Soil Washing or Soil Flushing
4.1.3. Soil Vapour Extraction and Air Sparging
4.1.4. Physical Barriers, Hydraulic Control/Containment and Permeable Reactive Barrier
4.1.5. Solidification/Stabilisation and Immobilisation
4.1.6. Chemical Oxidation–Reduction
4.1.7. Thermal/Heat Treatment and Vitrification
4.1.8. Electrokinetic Remediation
4.2. Biological Technologies
- Complete degradation of pollutants;
- Prevent the transfer of pollutants from one matrix to another;
- Safety and minimum health risks;
- Easy to apply and low installation and operation costs;
- Flexible and easy to adapt to different environments;
- Possibility of in situ application.
4.2.1. Natural Attenuation
4.2.2. Biostimulation
4.2.3. Bioaugmentation
4.2.4. Vermiremediation
4.2.5. Phytoremediation
- Phytovolatilisation: plants are used to transform contaminants into volatile molecules moving them, through the leaves, and together with vapour to the atmosphere [29].
- Phytostabilisation: this process leads to the mobilisation of contaminants through adsorption by roots, absorption and accumulation in the plant root zone, reducing the mobility and bioavailability of the contaminants. It does not generate secondary contaminated wastes and is particularly suited for removing heavy metals from soil, even if it can also be used to remove some organic contaminants [162].
- Phytodegradation: the degradation of organic pollutants, such as PAHs and pesticides, through the enzymatic activity of plants released by the roots, producing simple non-toxic or less toxic molecules, which are incorporated into the plant tissue [162].
4.3. Mixed Remediation Technologies
Remediation Technique | Brief Description | Main Advantages | Main Limitations | Applications (Contaminant Type) | Refs. |
---|---|---|---|---|---|
Excavation and Landfilling | Physical removal of contaminated soil and its disposal in a waste landfill. | Rapid removal of contaminants; effective and simple to implement. | Expensive; risk of secondary contamination at the landfill. | Broad range of contaminants: petroleum hydrocarbons, heavy metals, POPs. | [137,138] |
Soil Washing and Flushing | Use of aqueous solutions (possibly with surfactants or chelating agents) to wash out contaminants. | Effective for a wide range of contaminants; applicable in situ or ex situ; relatively fast. | May generate secondary waste; less effective for fine-grained soils; may alter soil structure. | Heavy metals, petroleum hydrocarbons, nano- and microplastics. | [138,139,140,141,142] |
Soil Vapour Extraction and Air Sparging | Removes volatile contaminants from unsaturated soils using vacuum extraction and air injection. | Effective in soils with porosity; in situ application; minimise soil disturbance. | Not effective for non-volatile contaminants; requires soil permeability; requires off-gas treatment. | Volatile organic compounds (VOCs), such as BTEX and PAHs, POPs. | [138,143,144] |
Physical Barriers and Hydraulic Control/Permeable Reactive Barriers | In situ construction of impermeable or reactive barriers to contain or treat groundwater contaminants. | Minimises contaminant migration; PRBs can treat water passively; can be a long-term solution. | High installation cost; effectiveness depends on subsurface conditions; does not remove contaminants; potential of PRBs clogging. | Broad range of contaminants: heavy metals, petroleum hydrocarbons, POPs. | [139,145,146] |
Solidification/ Stabilisation and Immobilisation | Addition of binders to soil to reduce contaminant mobility by altering physical/chemical properties. | Reduces contaminant mobility and bioavailability; can improve soil geotechnical properties. | Does not remove contaminants; long-term monitoring needed; require maintenance costs; limits the use of soil. | Heavy metals, POPs, nano- and microplastics, radionuclides. | [139,147,148,149,150,151] |
Chemical Oxidation–reduction | In situ injection of oxidants or reduction agents to chemically transform contaminants into less harmful compounds. | Rapid degradation of contaminants; adaptable to site needs; minimises excavation and off-site disposal. | Ineffective in heterogeneous soils; potential for non-targeted reactions; cost of oxidants or reduction agents. | Petroleum hydrocarbons, POPs, PFAS. | [139,150,152] |
Thermal/Heat Treatment and Vitrification | Application of heat to volatilise, destroy, or vitrify contaminants, often in situ. | Destroys contaminants; highly effective for organic contaminants; effective for inorganic contaminants. | High energy costs; may damage soil structure; normally combined with other remediation techniques. | Persistent organics (e.g., PCBs), petroleum hydrocarbons. | [139,153,154] |
Electrokinetic | In situ application of low-intensity electric current to mobilise and remove contaminants. | Suitable for low-permeability soils; relatively low energy consumption. | Low efficiency in heterogeneous soils; applicable in soils with water content > 10%. | Effective for heavy metals and POPs. | [155,156,157,158,159] |
Natural attenuation | In situ technique that uses natural processes to reduce concentration of contaminants. Relies on the use of indigenous microorganisms. | Use of indigenous microorganisms. Low cost. In situ technique. | Requires long term treatment. Adequate only for low levels of contaminants. | Petroleum contaminated soils; degradation of organic contaminants. | [74,131,161,164,165] |
Biostimulation | Involves adjusting environmental parameters to stimulate the growth of microorganisms enhancing contaminant degradation. | Natural technique more efficient than natural attenuation. Can be used for POPs. Low cost. In situ technique. | Influenced by soil properties. More efficient in mineral than organic soils. | PAHs and oil contaminate soils. Degradation of pesticides in soils. | [131,167,168,169,170] |
Bioaugmentation | Involves enhancing the performance of microorganisms by inoculating specific microbial strains to degrade targeted contaminants. | Can be used for high contaminant concentrations. Soil is made available for further use without limitations. In situ technique. | Higher cost. | High concentration of oil-contaminated soils; high molecular weight PAHs. | [161,172,173,174] |
Vermiremediation | Uses earthworms for on-site removal of contaminants. Earthworms increase interactions between soil and microorganisms. | Natural technique. Low cost. | Soil characteristics and presence of earthworm nutrients. Only efficient in low or moderate contaminated soils. | Removal of metal and organic contaminants including hydrocarbons | [131,172,176,177,178] |
Phytoremediation | In situ remediation strategy using plants to remove or degrade soil contaminants. | In situ green technique. Delivers a biologically active soil to environment. Low cost. Treatment of large areas. | Long time required for the remediation; dependence on soil characteristics. | Hydrocarbon or heavy metal contaminated soils. POCs removal. Used to treat large areas. | [131,161,179,180] |
5. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cachada, A.; Rocha-Santos, T.; Duarte, A.C. (Eds.) Soil and pollution: An introduction to the main issues, chapter 1. In Soil Pollution from Monitoring to Remediation; Academic Press: Cambridge, MA, USA, 2018; pp. 1–28. [Google Scholar]
- Muhlbachova, G.; Sagova-Mareckova, M.; Omelka, M. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long term contaminated site. Sci. Total Environ. 2015, 502, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Maddela, R.M.; Ramakrishnan, B.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M. Major contaminants of emerging concern in soils: A perspective on potential health risks. RSC Adv. 2022, 12, 12396–12415. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, G.; Murtaza, B.; Niazi, N.K.; Sabir, M. Soil contaminants: Sources, effects and approaches for remediation, Chapter 7. In Improvement of Crops in the Era of Climate Changes; Ahmad, P., Vani, M.R., Azooz, M.M., Tran, L.P., Eds.; Springer: New York, NY, USA, 2014; Volume 2, pp. 171–196. [Google Scholar]
- Rajabi, H.; Sharifipour, M. Geotechnical properties of hydrocarbon-contaminated soils: A comprehensive review. Bull. Eng. Geol. Environ. 2019, 78, 3685–3717. [Google Scholar] [CrossRef]
- Osia, S.; VandenBerge, D. Effects of Pollutants on Soil Shear Strength Parameters and Slope Stability. In Geotechnical Frontiers; ASCE 2025; pp. 28–37. [CrossRef]
- Azoury, S.; Tronczynski, J.; Chiffoleau, J.F. Historical records of mercury, lead and polycyclic aromatic hydrocarbons deposition in a dated sediment from the eastern Mediteraanean. Environ. Sci. Technol. 2013, 47, 7101–7109. [Google Scholar] [CrossRef]
- Sethi, S.; Gupta, P. Soil contamination: A menace to life, chapter 15, In Soil Contamination: Threats and Sustainable Solutions; Larramendy, M.L., Soloneski, S., Eds.; Intechopen: London, UK, 2021; pp. 1–23. [Google Scholar]
- Batterman, S. Findings on Assessment of Small Scale Incinerators for Health-Care Waste, Wastewater, Sanitation and Health Protection of the Human Environment; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- National Environmental and Health Action Plan. EP Soil and Sediment Activity Report 2009/2011. 2012. Available online: https://www.insa.min-saude.pt/wp-content/uploads/2017/10/RelatorioActividadesEPSoloSedimentos.pdf (accessed on 19 May 2025). (In Portuguese).
- Yuan, X. Current Problems and Countermeasures of Soil Pollution Management. E3S Web Conf. 2023, 424, 04017. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Fetter, C.W. Applied Hydrogeology, 4th ed.; Prentice Hall: Denver, CO, USA, 2001. [Google Scholar]
- Askeland, M.; Clarke, B.O.; Cheema, S.A.; Mendez, A.; Gascó, G.; Paz-Ferreiro, J. Biochar sorption of PFOS, PFOA, PFHxS and PFHxA in two soils with contrasting texture. Sci. Total Environ. 2020, 718, 137341. [Google Scholar] [CrossRef]
- Rillig, M.C. Microplastic in terrestrial ecosystems and the soil. Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef]
- Sparks, D.L. Environmental Soil Chemistry, 2nd ed.; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Borch, T.; Kretzschmar, R.; Kappler, A.; Van Cappellen, P.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical Redox Processes and Their Impact on Contaminant Dynamics. Environ. Sci. Technol. 2010, 44, 15–23. [Google Scholar] [CrossRef]
- Schwertmann, U.; Cornell, R.M. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- McKenzie, R.M. The adsorption of lead and other heavy metals on oxides of manganese and iron. Soil Res. 1980, 18, 61–73. [Google Scholar] [CrossRef]
- Strawn, D.G. Sorption Mechanisms of Chemicals in Soils. Soils 2021, 5, 13. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption behavior of organic pollutants on microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. [Google Scholar] [CrossRef] [PubMed]
- Sauvé, S.; Hendershot, W.; Allen, H.E. Solid-Solution Partitioning of Metals in Contaminated Soils: Dependence on pH, Total Metal Burden, and Organic Matter. Environ. Sci. Technol. 2000, 34, 1125–1131. [Google Scholar] [CrossRef]
- Racke, K.D.; Steele, K.P.; Yoder, R.N.; Dick, W.A.; Avidov, E. Factors Affecting the Hydrolytic Degradation of Chlorpyrifos in Soil. J. Agric. Food Chem. 1996, 44, 1582–1592. [Google Scholar] [CrossRef]
- Wilk, C. Solidification/Stabilization Treatment: Principles and Practice; Air and Waste Management Association’s Magazine for Environmental Managers: Pittsburgh, PA, USA, 2003; pp. 31–37. [Google Scholar]
- Khan, F.I.; Husain, T.; Hejazi, R. An overview and analysis of site remediation technologies. J. Environ. Manag. 2004, 71, 95–122. [Google Scholar] [CrossRef]
- Lloyd, J.R. Bioremediation of metals: The application of microorganisms that make and brake minerals. Microbiol. Today 2002, 29, 67–69. [Google Scholar]
- Alkorta, I.; Hernandez-Allica, J.; Becerril, J.; Amezaga, I.; Albizu, I.; Onaindia, M.; Garbisu, C. Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev. Environ. Sci. Biotechnol. 2004, 3, 55–70. [Google Scholar] [CrossRef]
- Raskin, I.; Smith, R.D.; Salt, D.E. Phytoremediation of metals: Using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 1997, 8, 221–226. [Google Scholar] [CrossRef]
- Ramadass, K.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Bioavaliability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Sci. Total Environ. 2018, 636, 968–974. [Google Scholar] [CrossRef]
- Correia, A.A.S.; Rasteiro, M.G. Effect of multiwall carbon nanotubes and surfactants characteristics on immobilization of heavy metals in contaminated soils. Discov. Appl. Sci. 2024, 6, 205. [Google Scholar] [CrossRef]
- Shih, Y.H.; Tai, Y.T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere 2010, 78, 1200–1206. [Google Scholar] [CrossRef]
- Mauter, M.S.; Elimelech, M. Environmental application of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859. [Google Scholar] [CrossRef] [PubMed]
- EC. Directive 2004/35/EC. Environmental Liability Directive. 2004. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02004L0035-20130718 (accessed on 5 April 2025).
- EC. Directive 2024/1785/EU of the European Parliament and of the Council of 24 April 2024 “Industrial and Livestock Rearing Emissions Directive (IED 2.0)”, Off. J. Eur. Union, L 2024/1784 from 15/07/2024. 2024. Available online: https://environment.ec.europa.eu/topics/industrial-emissions-and-safety/industrial-and-livestock-rearing-emissions-directive-ied-20_en (accessed on 19 May 2025).
- EC. Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Off. J. Eur. Union, L 181. 1986. Available online: https://eur-lex.europa.eu/eli/dir/1986/278/oj/eng (accessed on 19 May 2025).
- Communication from the Commission to the Council; the European Parliament; the European Economic and Social Committee; the Committee of the Regions. EU Soil Strategy for 2030 Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate; Farm Europe: Bruxelles, Belgium, 2021. [Google Scholar]
- EU. Soil Health Law: Legal Principles Underpinning the Framework. ClientEarth.org 2022. Available online: https://www.clientearth.org/media/uoenhrtn/eu-soil-health-law_legal-principles-underpinning-the-framework.pdf (accessed on 5 April 2025).
- USEPA—United States Environmental Protection Agency. Summary of the Comprehensive Environmental Response, Compensation, and Liability Act (Superfund). Available online: https://www.epa.gov/laws-regulations/summary-comprehensive-environmental-response-compensation-and-liability-act (accessed on 29 April 2025).
- Canadian Environmental Protection Act, 1999 (S.C. 1999, c. 33), Government of Canada. Available online: https://laws-lois.justice.gc.ca/eng/acts/c-15.31/ (accessed on 5 April 2025).
- Ministry of Environment. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. 2011. Available online: https://www.ontario.ca/page/soil-ground-water-and-sediment-standards-use-under-part-xv1-environmental-protection-act (accessed on 5 April 2025).
- Ministry of Ecology and Environment. Law of the People’s Republic of China on Prevention and Control of Soil Contamination. 2019. Available online: https://english.mee.gov.cn/Resources/laws/environmental_laws/202011/t20201113_807786.shtml (accessed on 5 April 2025).
- GB 15618-2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land. National Standard of the People’s Republic of China, Ministry of Ecology and Environment: Beijing, China, 2018.
- GB 36600-2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Development Land. National Standard of the People’s Republic of China, Ministry of Ecology and Environment: Beijing, China, 2018.
- Act No. 53, Soil Contamination Countermeasures Act. Act No. 53 of May 29, 2002. Ministry of the Environment of Japan. 2017. Available online: https://www.env.go.jp/en/laws/water/sccact.pdf (accessed on 5 April 2025).
- ASC NEPM, National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013). Department of Climate Change, Energy, the Environment and Water, Australia. 2013. Available online: https://faolex.fao.org/docs/pdf/aus197207.pdf (accessed on 5 April 2025).
- Odigie, K.O.; Flegal, A.R. Trace metal inventories and lead isotopic composition chronicle a forest fire’s remobilization of industrial contaminants deposited in the Angeles National Forest. PLoS ONE 2014, 9, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Witter, E.; McGrath, S.P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 1998, 30, 1389–1414. [Google Scholar] [CrossRef]
- Aponte, H.; Meli, P.; Butler, B.; Paolini, J.; Matus, F.; Merino, C.; Cornejo, P.; Kuzyakov, Y. Meta-analysis of heavy metal effects on soil enzyme activities. Sci. Total Environ. 2020, 737, 139744. [Google Scholar] [CrossRef]
- Hall, J.L. Cellular mechanisms for heavy metal detoxification and tolerance in plants. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef]
- Robert, N. Heavy Metal Accumulation in Food Chains: Ecological and Health Implications. J. Heavy Met. Toxic. Dis. 2024, 9. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Shetty, B.R.; Jagadeesha, P.B.; Salmataj, S.A. Heavy metal contamination and its impact on the food chain: Exposure, bioaccumulation, and risk assessment. CyTA—J. Food 2025, 23, 2438726. [Google Scholar] [CrossRef]
- Acharya, A.; Perez, E.; Maddox-Mandolini, M.; De La Fuente, H. The Status and Prospects of Phytoremediation of Heavy Metals, Quantitative Biology—Tissues and Organs. arXiv 2023, arXiv:2312.14288. [Google Scholar]
- Ihsanullah; Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2015, 157, 141–161. [Google Scholar] [CrossRef]
- Bourazanis, G.; Kallioras, A.; Pliakas, F. Assessment of Contamination Management Caused by Copper and Zinc Cations Leaching and Their Impact on the Hydraulic Properties of a Sandy and a Loamy Clay Soil. Land 2022, 11, 290. [Google Scholar] [CrossRef]
- Haghighizadeh, A.; Rajabi, O.; Nezarat, A.; Hajyani, Z.; Haghmohammadi, M.; Hedayatikhah, S.; Asl, S.D.; Beni, A.A. Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arab. J. Chem. 2024, 17, 105777. [Google Scholar] [CrossRef]
- Pan, F.; Yu, Y.; Yu, L.; Lin, H.; Wang, Y.; Zhang, L.; Pan, D.; Zhu, R. Quantitative assessment on soil concentration of heavy metal–contaminated soil with various sample pretreatment techniques and detection methods. Environ. Monit. Assess 2020, 192, 800. [Google Scholar] [CrossRef]
- Qu, M.; Guang, X.; Liu, H.; Zhao, Y.; Huang, B. Additional sampling using in-situ portable X-ray fluorescence (PXRF) for rapid and high-precision investigation of soil heavy metals at a regional scale. Environ. Pollut. 2022, 292, 118324. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Ersoy, A.; Yünsel, T.Y. The assessment of soil contamination by heavy metals using geostatistical sequential Gaussian simulation method. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 2142–2161. [Google Scholar] [CrossRef]
- Markert, B.; Breure, A.M.; Zechmeister, H.G. Chapter 1: Definitions, strategies and principles for bioindication/biomonitoring of the environment. In Bioindicators and Biomonitors; Elsevier Science: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Nahmani, J.; Hodson, M.E.; Black, S. A review of studies performed to assess metal uptake by earthworms. Environ. Pollut. 2007, 145, 402–424. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001, 60, 193–207. [Google Scholar] [CrossRef]
- Oliveira, A.R.; Correia, A.A.S.; Rasteiro, M.G. Heavy Metals Removal from Aqueous Solutions by Multiwall Carbon Nanotubes: Effect of MWCNTs Dispersion. Nanomaterials 2021, 11, 2082. [Google Scholar] [CrossRef]
- Matos, M.P.S.R.; Correia, A.A.S.; Rasteiro, M.G. Application of carbon nanotubes to immobilize heavy metals in contaminated soils. J. Nanoparticle Res. 2017, 19, 126. [Google Scholar] [CrossRef]
- Correia, A.A.S.; Matos, M.P.S.R.; Gomes, A.R.; Rasteiro, M.G. Immobilization of Heavy Metals in Contaminated Soils—Performance Assessment in Conditions Similar to a Real Scenario. Appl. Sci. 2020, 10, 7950. [Google Scholar] [CrossRef]
- Ghandali, M.; Safarzadeh, S.; Ghasemi-Fasaei, R.; Zeinali, S. Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO2 nanoparticle-modified biochar. Sci. Rep. 2024, 14, 61270. [Google Scholar] [CrossRef] [PubMed]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Majeed, B.K.; Shwan, D.M.S.; Rashid, K.A. A review on environmental contamination of petroleum hydrocarbons, its effects and remediation approaches. Environ. Sci. Process. Impacts 2025, 27, 526–548. [Google Scholar] [CrossRef]
- Elijah, A.A. A Review of the Petroleum Hydrocarbons Contamination of Soil, Water and Air and the Available Remediation Techniques, Taking into Consideration the Sustainable Development Goals. Earthline J. Chem. Sci. 2022, 7, 97–113. [Google Scholar] [CrossRef]
- Gennadiev, A.N.; Pikovskii, Y.I.; Tsibart, A.S.; Smirnova, M.A. Hydrocarbons in soils: Origin, composition, and behavior (Review). Eurasian Soil Sci. 2015, 48, 1076–1089. [Google Scholar] [CrossRef]
- Daâssi, D.; Almaghribi, F.Q. Petroleum-contaminated soil: Environmental occurrence and remediation strategies. 3 Biotech 2022, 12, 139. [Google Scholar] [CrossRef]
- Khodaparast, M.; Khoshgoftar, A. A Review of the Effect of Hydrocarbon Contamination on Soil Resistance Parameters; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Mostrom, M.S. Petroleum Product Poisoning in Animals. MSD Veterinary Manual. 2021. Available online: https://www.msdvetmanual.com/toxicology/petroleum-product-poisoning/petroleum-product-poisoning-in-animals (accessed on 5 April 2025).
- Al-Mebayedh, H.; Niu, A.; Lin, C. Petroleum Hydrocarbon Composition of Oily Sludge and Contaminated Soils in a Decommissioned Oilfield Waste Pit under Desert Conditions. Appl. Sci. 2022, 12, 1355. [Google Scholar] [CrossRef]
- Hamamin, D.F. Passive soil gas technique for investigating soil and groundwater plume emanating from volatile organic hydrocarbon at Bazian oil refinery site. Sci. Total Environ. 2018, 622–623, 1485–1498. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782–e1700787. [Google Scholar] [CrossRef]
- Plastics Europe. Plastics—The Facts 2019: An Analysis of European Plastics Production, Demand and Waste Data; Plastics Europe, Association of Plastics Manufacturers: Brussels, Belgium, 2019. [Google Scholar]
- MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic production. Science 2021, 373, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Allen, D.; Karbalaei, S.; Maselli, V.; Walker, T.R. Micro(nano) plastic sources, fate and effects: What we know after 10 years of research. J. Hazardous Mater. Adv. 2022, 6, 100057–100069. [Google Scholar] [CrossRef]
- Magalhães, S.; Paciência, D.; Rodrigues, J.M.M.; Lindman, B.; Alves, L.; Medronho, B.; Rasteiro, M.G. Insights on Microplastic Contamination from Municipal andTextile Industry Effluents and Their Removal Using a Cellulose-Based Approach. Polymers 2024, 16, 2803. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Huang, X.P.; Xiang, L.; Wang, Y.Z.; Li, Y.W.; Li, H.; Cai, Q.Y.; Mo, C.H.; Wong, M.H. Source, migration and toxicity of microplastics in soil. Environ. Int. 2020, 137, 105263–105276. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Xia, M.; Jiang, K.; Cao, Z.; Zhang, X.; Hu, X. Photo-oxidative degradation mitigated the developmental toxicity of polyamide microplastics to zebra fish larvae by modulating macrophage-triggered proinflammatory responses and apoptosis. Environ. Sci. Technol. 2020, 54, 13888–13898. [Google Scholar] [CrossRef]
- Blasing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks, Track Trends in Analytical. TrAC Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Kim, Y.N.; Yoon, J.H.; Kim, K.H. Microplastic contamination in soil environment—A review. Soil Sci. Annu. 2020, 71, 300–308. [Google Scholar] [CrossRef]
- Sa’adu, I.; Farsang, A. Plastic contamination in agricultural soils: A review. Environ. Sci. Eur. 2023, 35, 3–11. [Google Scholar] [CrossRef]
- Nizzetto, L.; Futter, M.; Langaas, S. Are agricultural soils dumps for microplastics of urban origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef]
- Cusworth, S.J.; Davies, W.J.; McAinsh, M.R.; Gregory, A.S.; Storkey, J.; Stevens, C.J. Agricultural fertilisers contribute substantially to microplastics concentrations in UK soils. Commun. Earth Environ. 2024, 5, 1–5. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ingraffia, R.; de Souza Machado, A.A. Microplastic incorporation into soil in agroecosystems. Front. Plant Sci. 2017, 8, 1805. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Song, S.; Ma, Q.; Lu, Y. Sources, migration, accumulation and influence of microplastics in terrestrial plant communities. Environ. Exp. Botany 2021, 192, 104635–104644. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, S.; Pelaez, A.M.; Huerta-Lavanga, E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro and micro plastics in soil plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Yang, M.; Huang, D.; Tian, Y.; Zhang, Q.; Zhu, H.; Xu, C. Influences of different source microplastics with different particle sizes and application rates on soil properties and growth of Chinese cabbage (Brassica chinensis L.). Ecotoxcol. Environ. Saf. 2021, 222, 112480–112488. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Lau, C.H.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Gorlich, A.S.; Rillig, M.C. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef]
- Boughattas, I.; Hattab, S.; Zitouni, N.; Mkhinini, M.; Missawi, O.; Bousseehine, N.; Bannin, M. Assesing the presence of microplasticsin Tunisian agricultural soils and their potential toxicity effects using Eisenia Andrei as bioindicator. Sci. Total Environ. 2021, 796, 148959–148969. [Google Scholar] [CrossRef]
- Grbic, J.; Helm, P.; Athey, S.; Rochman, C.M. Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Res. 2020, 174, 115623–115633. [Google Scholar] [CrossRef]
- Wright, S.I.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric microplastic deposition in a urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411–105418. [Google Scholar] [CrossRef]
- Monkul, M.M.; Ozhan, H. Microplastic contamination in soils: A review from geotechnical engineering view. Polymers 2021, 13, 4129. [Google Scholar] [CrossRef]
- Karakurt, O.; Altuntas, O.; Simsek, I.; Hatinoglu, D.; Sanin, F.D. Microplastics from industrial sources: A known but overlooked problem. J. Water Proc. Eng. 2025, 72, 107487–107498. [Google Scholar] [CrossRef]
- Deng, I.; Xi, H.; Wan, C.; Fu, L.; Wang, Y.; Wu, C. Is the petrochemical industry an overlooked critical source of environmental microplastics. J. Hazard. Mater. 2023, 451, 131199–131208. [Google Scholar] [CrossRef] [PubMed]
- Kilic, B.I.; Ustin, G.E.; Can, T. Characteristics and seasonal change of microplastics in organized industrial zone wastewater treatment plant. J. Environ. Chem. Eng. 2025, 13, 115516–115526. [Google Scholar] [CrossRef]
- Liu, J.; Bu, L.; Zhu, L.; Luo, S.; Chen, X.; Li, S. Optimizing plant density and plastic film mulch to increase maize and water use efficiency in semiarid areas. Agron. J. 2014, 106, 1138–1146. [Google Scholar] [CrossRef]
- Liu, E.K.; He, W.Q.; Yan, C.R. White revolution to white pollution—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001–091004. [Google Scholar] [CrossRef]
- Liu, X.E.; Li, X.G.; Hai, I.; Wang, Y.P.; Fu, T.T.; Turner, N.C.; Li, F.M. Film mulch ridge-furrow management increases maize productivity and sustains soil organic carbon in a dryland cropping system. J. Soil Sci. Soc. Am. 2014, 78, 1434–1441. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Q.; Hu, W.; Qin, J.; Zheng, Y.; Wang, J.; Wang, Q.; Xu, Y.; Guo, G.; Hu, S. Effects of plastic mulch film residues on soil-microbe-plant systems under different soil pH conditions. Chemosphere 2021, 267, 128901–128911. [Google Scholar] [CrossRef]
- Li, L.; Luo, Y.; Lu, R.; Zhou, Q.; Peijnenburg, W.J.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 2020, 3, 929–937. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Cai, Y.B. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks. Environ. Pollut. 2020, 257, 113570–113582. [Google Scholar] [CrossRef]
- Saijad, M.; Huang, Q.; Khan, S.; Khan, M.A.; Liu, Y.; Wang, J.; Lian, F.; Wang, Q.; Guo, G. Microplastics in the soil environment: A critical review. Environ. Technol. Innov. 2022, 27, 102408–102433. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Rist, S.; Bodin, J.; Jensen, L.H.; Schmidt, S.N.; Mayer, P.; Meibom, A.; Baun, A. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption and transfer to biota. Environ. Assess. Manag. 2017, 13, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Barletta, M.; Lima, A.R.A.; Costa, M.F. Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South America estuaries. Sci. Total Environ. 2019, 651, 1199–1218. [Google Scholar] [CrossRef] [PubMed]
- Panescu, V.A.; Bintintan, V.B.; Herghelegiu, M.C.; Coman, R.T.; Berg, V.; Lyche, J.V.; Belden-Galea, M.S. Pollution assessment with persistent organic pollutants in upper soil of a series of rural Roma communities in Transylvania, Romania, its sources apportionment, and the associated risk on human health. Sustainability 2024, 16, 232. [Google Scholar] [CrossRef]
- Grassi, P.; Fattore, E.; Generoso, C.; Fanelli, R.; Arvati, M.; Zuccato, E. Polychlorobiphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in fruit and vegetables from an industrial area in northern Italy. Chemosphere 2010, 79, 292–298. [Google Scholar] [CrossRef]
- Dreyer, A.; Minkos, A. Polychlorobiphenyls (PCBs), polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/F) in ambient and depositions in German background. Environ. Pollut. 2023, 316, 120511–120522. [Google Scholar] [CrossRef]
- Li, Y.F.; Hao, S.; Ma, W.L.; Yand, P.F.; Li, W.L.; Zhang, Z.F.; Liu, L.Y.; Macdonald, R.W. Persistent organic pollutants in global surface soils: Distributions and fractionations. Environ. Sci. Ecothech. 2024, 18, 100311–100326. [Google Scholar] [CrossRef]
- K’Oreje, K.O.; Okoth, M.; Van Langenhove, H.; Demeestere, J. Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: Literature review and a look ahead. J. Environ. Manag. 2020, 254, 109752–109770. [Google Scholar] [CrossRef]
- Kroon, F.J.; Berry, K.L.E.; Brinkman, D.L.; Kookana, R.; Leusch, D.L.; Melvin, S.D.; Neale, P.A.; Negri, A.P.; Puotinen, M.; Tsang, J.J.; et al. Sources, presence and potential effects of contaminants of emerging concern in the marine environments of the Great Barrier Reef and Torres Strait, Australia. Sci. Total Environ. 2020, 719, 135140–135161. [Google Scholar] [CrossRef]
- Vandermeersch, G.; Lourenço, H.M.; Alvarez-Munoz, D.; Cunha, S.; Diogène, J.; Cano-Sancho, G.; Sloth, J.J.; Kwadijk, C.; Barcelo, D.; Allegaert, W.; et al. Environmental contaminants of emerging concern in seafood—European database on contaminant levels. Environ. Res. 2015, 143, 29–45. [Google Scholar] [CrossRef]
- Reichert, G.; Hilgert, S.; Fuchs, S.; Azevedo, J.C.R. Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. Environ. Pollut. 2019, 235, 113140–113153. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, V.K.; Mishra, M.; Piyush; Kakkar, V.; Tiwari, A.; Kumar, S.; Yadav, V.P.; Gargava, P. Assessment of persistent organic pollutants in soil ans sediments from an urbanized flood plain area. Environ. Geochem. Health 2021, 43, 3375–3392. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, X.; Na, G.; Lin, Z.; Ding, Q.; Yao, Z. Correlations between physicochemical properties of PAHs and their distribution in soil, moss and reindeer dung at Ny-Alesund of the Artic. Environ. Pollut. 2009, 157, 3132–3136. [Google Scholar] [CrossRef] [PubMed]
- UNEP (United Nations Environmental Programme). Revised Text and Annexes. 2017. Available online: http://www.pops.int/Home/tabid/2121/Default.aspx (accessed on 5 April 2025).
- Becker, B.; Halshall, C.J.; Tych, W.; Kallenborn, R.; Schiabch, M.; Mano, S. Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere. Atmos. Chem. Phys. Dis. 2009, 9, 515–540. [Google Scholar] [CrossRef]
- Harner, T.; Shoeib, M.; Diamond, M.; Stern, G.; Rosenberg, B. Using passive air samplers to assess urban-rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environ. Sci. Technol. 2004, 38, 4474–4483. [Google Scholar] [CrossRef]
- Newton, S.; Sellstroem, U.; Wit, C. Emerging flame retardants, PBDEs, and HBCDDs in indoor and outdoor media in Stockholm, Sweden. Environ. Sci. Technol. 2015, 49, 2912–2920. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Li, Y.F.; Wang, D.; Jia, H.; Harner, T.; Sverko, E.; Wan, X.; Xu, D.; Ren, N.; et al. Analysis of polychlorinated biphenyls in concurrently sampled Chinese air and surface soil. Environ. Sci. Technol. 2008, 42, 6514–6518. [Google Scholar] [CrossRef]
- Haynes, R.; Murtaza, G.; Naidu, R. Inorganic and organic constituents and contaminants of biosolids: Implications for land application. Adv. Agron. 2009, 104, 165–267. [Google Scholar]
- Albanese, S.; Guarino, A. Assessing contamination sources and environmental hazards for potentially toxic elements and organic compounds in the soils of a heavily anthropized area: The case study of the Acerra plain (Southern Italy). Geosciences 2010, 8, 552–578. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, Y.; Liu, Y.-W.; Chang, H.-Q.; Li, Z.-J.; Xue, J.-M. Uptake and translocation of organic pollutants in plants: A review. J. Integr. Agric. 2017, 16, 1659–1668. [Google Scholar] [CrossRef]
- Aparicio, J.D.; Raimondo, E.E.; Saez, J.M.; Costa-Gutierrez, S.B.; Álvarez, A.; Benimeli, C.S.; Polti, M.A. The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. J. Environ. Chem. Eng. 2022, 10, 107141. [Google Scholar] [CrossRef]
- Santos, M.; Rebola, S.; Evtuguin, D.V. Soil Remediation: Current Approaches and Emerging Bio-Based Trends. Soil Syst. 2025, 9, 35. [Google Scholar] [CrossRef]
- Singh, A.; Kuhad, R.C.; Ward, O.P. (Eds.) Advances in applied bioremediation. In Soil Biology; Springer: Berlin, Germany, 2009; Volume 17, pp. 1–19. [Google Scholar]
- Babu, A.G.; Reja, S.I.; Akhtar, N.; Sultana, M.; Deore, P.S.; Ali, F.I. Bioremediation of polycyclic aromatic hydrocarbons (PAHs): Current practices and outlook. In Microbial Metabolism of Xenobiotic Compounds; Arora, N.K., Ed.; Springer: New York, NY, USA, 2019; pp. 189–216. [Google Scholar]
- Van Dillewijn, P.; Caballero, A.; Paz, J.A.; González-Pérez, M.M.; Oliva, J.M.; Ramos, J.L. Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ. Sci. Technol. 2007, 41, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Maletic, S.P.; Dalmacija, B.D.; Roncevic, S.D. Petroleum Hydrocarbon Biodegradability in Soil—Implications for Bioremediation. In Hydrocarbon; Kutcherov, V., Kolesnikov, A., Eds.; Intech: London, UK, 2013; Volume 3, pp. 43–64. [Google Scholar]
- National Research Council. Innovations in Ground Water and Soil Cleanup: From Concept to Commercialization; The National Academies Press: Washington, DC, USA, 1997. [Google Scholar]
- FAO; UNEP. Global Assessment of Soil Pollution: Report; FAO: Rome, Italy, 2021.
- CLAIRE. Contaminated Land Remediation, Defra Research Project SP1001 Final Report; CLAIRE: London, UK, 2010. [Google Scholar]
- Karthika, N.; Jananee, K.; Murugaiyan, V. Remediation of contaminated soil using soil washing—A review. Int. J. Eng. Res. Appl. 2016, 16, 13–18. [Google Scholar]
- Vulava, V.M.; Seaman, J.C. Mobilization of lead from highly weathered porous material by extracting agents. Environ. Sci. Technol. 2000, 34, 4828–4834. [Google Scholar] [CrossRef]
- Nowack, B.; VanBriesen, J.M. (Eds.) Biogeochemistry of Chelating Agents. In ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2005; Volume 910. [Google Scholar]
- Simpanen, S. Evaluation of In-Situ Remediation Methods in Soils Contaminated with Organic Pollutants. Ph.D. Thesis, University of Helsinki, Lahti, Finland, 2016. [Google Scholar]
- Zhang, C.; Chen, X.; Tan, Y.; Feng, Y.; Zhong, Z. Soil vapour extraction removal of semi volatile organic compounds in soil: A pilot-scale study. In Proceedings of the International Conference on Sustainable Energy and Environmental Engineering, Bangkok, Thailand, 25–26 October 2015; pp. 180–182. [Google Scholar]
- Jankaite, A.; Vasarevičius, S. Remediation technologies for soils contaminated with heavy metals. J. Environ. Eng. Land. Manag. 2005, 13, 109a–113a. [Google Scholar] [CrossRef]
- Agante, A.C.C. Remediation of Soils Contaminated by Heavy Metals Using Biochars. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2021. (In Portuguese). [Google Scholar]
- Jiang, Q.; He, Y.; Wu, Y.; Dian, B.; Zhang, J.; Li, T.; Jiang, M. Solidification/stabilization of soil heavy metals by alkaline industrial wastes: A critical review. Environ. Pollut. 2022, 312, 120094–120109. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Innovative Site Remediation Technology: Volume 4, Design and Application, Stabilization/Solidification; EPA 542/B-97/007; Office of Solid Waste and Emergency Response: Washington, DC, USA, 1997.
- O’Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.W.; Alessi, D.S.; Shen, Z.; Bolan, N.S.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619–620, 815–826. [Google Scholar] [CrossRef]
- FAO. Recarbonization of Global Soils; Global Soil partnership; FAO: Roma, Italy, 2019. [Google Scholar]
- Senila, M.; Cadar, O.; Senila, L.; Angyus, B.S. Simulated Bioavailability of Heavy Metals (Cd, Cr, Cu, Pb, Zn) in Contaminated Soil Amended with Natural Zeolite Using Diffusive Gradients in Thin-Films (DGT) Technique. Agriculture 2022, 12, 321. [Google Scholar] [CrossRef]
- ITRC. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater; Interstate Technology and Regulatory Cooperation Work Group In Situ Chemical Oxidation Work Team: 2001. Available online: https://apps.dtic.mil/sti/tr/pdf/ADA492437.pdf (accessed on 5 April 2025).
- Vidonish, J.E.; Zygourakis, K.; Masiello, C.A.; Sabadell, G.; Alvarez, P.J.J. Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation. Engineering 2016, 2, 426–437. [Google Scholar] [CrossRef]
- EPA. CLU-IN—Technologies—Remediation. Available online: https://clu-in.org/techfocus/default.focus/sec/Thermal_Treatment%3A_In_Situ/cat/Overview/ (accessed on 20 May 2025).
- Istrate, I.A.; Cocârtă, D.M.; Wu, Z.; Stoian, M.A. Minimizing the health risks from hydrocarbon-contaminated soils by using electric-field based treatment for soil remediation. Sustainability 2018, 10, 253. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.; Zhao, M.; Rong, H.; Zhang, K.; Chen, Q. Comparison of bioloeaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge. Chemosphere 2016, 168, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tan, W.; Gong, J.; Wei, G. Electrokinetic Remediation of Zn-Polluted Soft Clay Using a Novel Electrolyte Chamber Configuration. Toxics 2023, 11, 263. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, R.; Altaee, A.; Zhou, J.L.; Karbassiyazdi, E.; Ganbat, N. Effective remediation of heavy metals in contaminated soil by electrokinetic technology incorporating reactive filter media. Sci. Total Environ. 2021, 794, 148668–148679. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhao, M.; Chen, L.; Gong, Z.; Hu, J.; Ma, D. Electrokinetic remediation for the removal of heavy metals in soil: Limitations, solutions and prospection. Sci. Total Environ. 2023, 903, 165970–165992. [Google Scholar] [CrossRef]
- Song, B.; Zeng, G.; Gong, J.; Liang, J.; Xu, P.; Liu, Z.; Zhang, Y.; Zhang, C.; Cheng, M.; Liu, Y.; et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ. Int. 2017, 105, 43–55. [Google Scholar] [CrossRef]
- Polti, M.A.; Atjian, M.C.; Amoroso, M.J.; Abate, C.M. Soil chromium bioremediation: Synergic activity of actinobacteria and plants. Int. Biodeterior. Biodegrad. 2011, 65, 1175–1181. [Google Scholar] [CrossRef]
- Verma, A. Bioremediation Techniques for Soil Pollution: An Introduction. In Biodegradation Technology of Organic and Inorganic Pollutants; Mendes, F.K., Nogueira de Sousa, R., Mielke, K.C., Eds.; Intech Open: London, UK, 2021; pp. 1–14. [Google Scholar]
- Stroud, J.; Paton, G.; Semple, K.T. Microbe-aliphatic hydrocarbon interactions in soil: Implications for biodegradation and bioremediation. J Appl Microbiol. 2007, 102, 1239–1253. [Google Scholar] [CrossRef]
- Agnello, A.C.; Bagard, M.; van Hullebusch, E.D.; Esposito, G.; Huguenot, D. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci. Total Environ. 2016, 563–564, 693–703. [Google Scholar] [CrossRef]
- Megharaj, M.; Ramakrishnan, B.; Venkateswarlu, K.; Sethunathan, N.; Naidu, R. Bioremediation approaches for organic pollutants: A critical perspective. Environ. Int. 2011, 37, 1362–1375. [Google Scholar] [CrossRef]
- Leech, C.; Tighe, M.K.; Pereg, L.; Winter, G.; McMillan, M.; Esmaeili, A.; Wilson, S.C. Bioaccessibility constrains the co-composting bioremediation of field aged PAH contaminated soils. Int. Biodeterior. Biodegrad. 2020, 149, 104922–104934. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Chebbi, A.; Formicola, F.; Prasad, S.; Gomez, F.H.; Franzetti, A.; Vaccari, M. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere 2022, 293, 133572. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Dashti, N.; Khanafer, M.; Al-Awadhi, H.; Radwan. Bioremediation of soils saturated with spilled crude oil. Sci. Rep. 2020, 10, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.L.; Tsang, Y.Y.; Chiu, S.W. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 2003, 52, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Breedveld, G.D.; Sparrevik, M. Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Biodegradation 2000, 11, 391–399. [Google Scholar] [CrossRef]
- Betancur-Corredor, B.; Pino, N.J.; Cardona, S.; Peñuela, G.A. Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil. J. Environ. Sci. 2015, 28, 101–109. [Google Scholar] [CrossRef]
- Caldeira, J.B.; Correia, A.A.; Branco, R.; Morais, P.V. The effect of biopolymer stabilisation on biostimulated or bioaugmented mine residue for potential technosol production. Sci. Rep. 2024, 14, 25583. [Google Scholar] [CrossRef]
- Lacalle, R.G.; Becerril, J.M.; Garbisu, C. Biological methods of polluted soil remediation for an effective economically-optimal recovery of soil health and ecosystem services. J. Environ. Sci. Public Health 2020, 4, 112–133. [Google Scholar] [CrossRef]
- Fuentes, M.S.; Raimondo, E.E.; Amoroso, M.J.; Benimeli, C.S. Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. Chemosphere 2017, 173, 359–367. [Google Scholar] [CrossRef]
- Shen, T.; Pi, Y.; Bao, M.; Xu, N.; Li, Y.; Lu, J. Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia. Environ. Sci. Proc. Impacts 2015, 17, 2022–2033. [Google Scholar] [CrossRef]
- Bento, F.M.; Camargo, F.O.A.; Okeke, B.C.; Frankenberger, W.T. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Tech. 2005, 96, 1049–1055. [Google Scholar] [CrossRef]
- Patel, V.P.; Desai, S.A.; Thakur, S. Mechanistic approach of genetically modified organisms for detoxification of xe-nobiotic substances. In Microbiome-Assisted Bioremediation; Patel, V.P., Li, W.-J., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 241–255. [Google Scholar]
- Schaefer, M.; Juliane, F. The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Appl. Soil Ecol. 2007, 36, 53–62. [Google Scholar] [CrossRef]
- Chachina, S.B.; Voronkova, N.A.; Baklanova, O.N. Biological remediation of the petroleum and diesel contaminated soil with earthworms Eisenia fetida. Procedia Eng. 2016, 152, 122–133. [Google Scholar] [CrossRef]
- Peter, O. Biological Remediation of Hydrocarbon and Heavy Metals Contaminated Soil. Chapter 7. In Soil Contamination; Pascucci, S., Ed.; InTech Open: London, UK, 2011; pp. 127–142. [Google Scholar]
- Farrell, R.E.; Germida, J.J. Phytotechnologies: Plant-based systems for remediation of oil impacted soils. In Proceedings of the Remediation Technologies Symposium, Banff, Canada, 16–18 October 2002. [Google Scholar]
- Sandrin, T.R.; Maier, R.M. Impact of metals on the biodegradation of organic pollutants. Environ. Health Perspect. 2003, 111, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gu, L.; Ge, S.; Liu, X.; Zhang, X.; Chen, X. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environ. Technol. 2019, 40, 2345–2353. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Y.; Li, S.; Huang, X.; Cheng, X.; Pan, W. Remediation of crude oil contaminated soil through an integrated biological-chemical-biological strategy. Sci. Total Environ. 2024, 919, 170756. [Google Scholar] [CrossRef]
- Chen, Y.; He, X.; Gao, J.; Wang, F.; Hou, Y.; Cai, Q.; Liu, Q. Biochar assisted bioremediation of soils with combined contamination of petroleum hydrocarbons and heavy metals: A review. Appl. Soil Ecol. 2024, 204, 105720. [Google Scholar] [CrossRef]
- Glick, B.R. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 2010, 28, 367–374. [Google Scholar] [CrossRef]
- Adikesavan, S.; Aruliah, R.; Jayaraman, T.; Azhagesan, A.; Kuppusamy, S.; Jagannathan, M.; Rahman, P.K.S.M. Integrated Remediation Processes Toward Heavy Metal Removal/Recovery from Various Environments—A Review. Front. Environ. Sci. 2019, 7, 1–15. [Google Scholar]
- Bhargavi, V.L.N.; Sudha, P.N. Removal of heavy metal ions from soil by electrokinetic assisted phytoremediation method. Int. J. Chem. Technol. Res. 2015, 8, 192–202. [Google Scholar]
Contaminant Type | Sources | Soil Quality | Plants and Microorganisms | Animals | Humans |
---|---|---|---|---|---|
Heavy Metals | Industrial and military activities, mining, fertilisers and pesticides, waste disposal, forest fires | Reduce nutrient availability with impact on soil fertility, inhibit enzyme activity, changes soil properties (aggregation, hydraulic conductivity) | Inhibit plant and/or root growth, reduce photosynthesis, toxic to soil microbial communities and diversity | Bioaccumulation in their tissues and organs → physiological disfunctions (organ damage, neurological and reproductive issues) | Via food chain or water exposure → neurological disorders, cancer, kidney and liver damage, cardiovascular, skin and gastrointestinal issues |
Petroleum Hydrocarbons | Crude oil exploration and extraction, transport, industrial processing and refining, storage and accidental leaks/spills | Disrupt soil porosity and permeability, reduce water and air retention, reduce nutrient availability, alter physical structure, reduce soil shear strength | Toxic to rhizosphere organisms, inhibit germination and plant growth, toxic to soil microbial communities and reduce diversity, microbial biomass and enzymatic activities | Ingestion/inhalation or direct contact → organ damage, neurological impairment, reproductive problems | Exposure via ingestion/inhalation or direct contact → neurological disorders, cancer risk, kidney and liver damage, endocrine disruption, respiratory and skin disorders |
Nano- and Microplastics | Degradation of plastic waste from agriculture, health products, cosmetics, food, coatings, etc. | Reduce bulk density and water-holding capacity, increase adsorption of other contaminants | Physical and chemical stress on microbial communities, hinder root uptake of nutrients and plant metabolism, reduce photosynthesis and plant growth | Ingestion/inhalation or direct contact → blockage or damage of digestive system | Exposure via ingestion/inhalation or direct contact → oxidative stress, potential carcinogenicity, hormone disruption |
Persistent Organic Pollutants | Industrial chemicals, pesticides, unintentional by-products, waste incineration, crude refining plants, vehicle emissions | Long-term persistence and bioaccumulation in soil matrix, low degradation rates, altered soil nutrient cycles | Toxic to soil biota, reduce microbial activities, bioaccumulate in plants (through leaves and roots), alter plant growth | Ingestion/inhalation or direct contact → bioaccumulation in tissues, fat and milk, endocrine system disruption | Exposure via ingestion/inhalation or direct contact → endocrine disruption, carcinogenicity, neurotoxicity through long-term exposure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, A.A.S.; Rasteiro, M.G. A Review of Persistent Soil Contaminants: Assessment and Remediation Strategies. Environments 2025, 12, 229. https://doi.org/10.3390/environments12070229
Correia AAS, Rasteiro MG. A Review of Persistent Soil Contaminants: Assessment and Remediation Strategies. Environments. 2025; 12(7):229. https://doi.org/10.3390/environments12070229
Chicago/Turabian StyleCorreia, António Alberto S., and Maria Graça Rasteiro. 2025. "A Review of Persistent Soil Contaminants: Assessment and Remediation Strategies" Environments 12, no. 7: 229. https://doi.org/10.3390/environments12070229
APA StyleCorreia, A. A. S., & Rasteiro, M. G. (2025). A Review of Persistent Soil Contaminants: Assessment and Remediation Strategies. Environments, 12(7), 229. https://doi.org/10.3390/environments12070229