Impact of Wastewater Pollution on Antibiotic Resistance in an Algerian Waterway: A Preliminary Investigation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling Strategy
2.2. Sample Collection and Preservation
2.3. Microbiological Analyses
2.3.1. Enumeration of Fecal Contamination Indicators
- Total coliforms and Escherichia coli: Bromocresol Purple Lactose Broth (BCPL), incubated at 37 °C for 24–48 h, in accordance with the principles of the ISO 9308-2:2012 standard [60].
 - Fecal coliforms: Brilliant Green Bile Broth (BGBB) and peptone water, incubated at 44 °C for 24 h, following the miniaturized method described in the ISO 9308-3:1998 standard [61].
 - Intestinal enterococci (Fecal streptococci): Litsky Broth (EVA), incubated at 37 °C for 24–48 h, in accordance with the ISO 7899:2000 standard [62].
 
2.3.2. Bacterial Isolation and Identification
2.3.3. Antibiotic Susceptibility Testing (Antibiogram)
2.4. Physicochemical Analyses
2.5. Statistical Analyses
3. Results
3.1. Physicochemical and Microbiological Water Characterization
3.2. Bacterial Community Composition
3.3. Antibiotic Resistance Profiles
3.4. Correlations Between Environmental Parameters and Antibiotic Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du Plessis, A. Persistent degradation: Global water quality challenges and required actions. One Earth 2022, 5, 129–131. [Google Scholar] [CrossRef]
 - Kettab, A. Les ressources en eau en Algérie: Stratégies, enjeux et vision. Desalination 2001, 136, 25–33. [Google Scholar] [CrossRef]
 - Debieche, T.H. Evolution de la Qualité des Eaux (Salinité, Pollution) Sous L’effet de la Pollution Urbaine, Industrielle et Agricole. Cas de la Basse Plaine de la Seybouse (Nord-Est Algérien). Ph.D. Thesis, University of Constantine, Constantine, Algeria, 2002. [Google Scholar]
 - Agence Européenne de l’Environnement. State and Pressure of the Marine and Coastal Mediterranean Environment; Environmental Assessment Series No. 7; Agence Européenne de l’Environnement: Copenhagen, Denmark, 1999. [Google Scholar]
 - Salah, D.; Laffite, A.; Sivalingam, P.; Poté, J.W. Occurrence of toxic metals and their selective pressure for antibiotic-resistant clinically relevant bacteria in hospital wastewater and their receiving urban river in the Democratic Republic of the Congo. Environ. Sci. Pollut. Res. Int. 2021, 29, 20530–20541. [Google Scholar] [CrossRef]
 - Guergazi, S.; Achour, S. Caractéristiques physico-chimiques des eaux d’alimentation de la ville de Biskra. Larhyss J. 2005, 4, 119–127. [Google Scholar]
 - Singh, B.J.; Chakraborty, A.; Sehgal, R. A systematic review of industrial wastewater management: Evaluating challenges and enablers. J. Environ. Manag. 2023, 348, 119230. [Google Scholar] [CrossRef]
 - Mahmud, Z.; Manik, M.C.; Rahman, A.; Mondal, M.I.H.; Ullah, A.K.M.A.; Munna, M.S.; Sha-Alm, M.; Asaduzzaman, M.; Rubayet-Ul-Alam, A.S.M.; Rahman, M.Z.; et al. Impact of untreated tannery wastewater in the evolution of multidrug-resistant bacteria in Bangladesh. Sci. Rep. 2024, 14, 7147. [Google Scholar] [CrossRef]
 - Benchaiba, L. Condition D’écoulement et Impact sur la Mobilisation des Ressources en eau: Bassin Versant de L’oued Bouhamdene (W. de Guelma, Est Algérien). Master’s Thesis, El Hadj Lakhder University, Batna, Algeria, 2006. [Google Scholar]
 - Kafi-Benyahia, M. Variabilité Spatiale des Caractéristiques et des Origines des Polluants de Temps de Pluie Dans le Réseau D’assainissement Unitaire Parisien. Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, Paris, France, 2006. [Google Scholar]
 - Muurinen, J.; Muziasari, W.I.; Hultman, J.; Pärnänen, K.; Narita, V.; Lyra, C.; Fadlillah, L.N.; Rizki, L.P.; Nurmi, W.; Tiedje, J.M.; et al. Antibiotic Resistomes and Microbiomes in the Surface Water along the Code River in Indonesia Reflect Drainage Basin Anthropogenic Activities. Environ. Sci. Technol. 2022, 56, 14994–15006. [Google Scholar] [CrossRef] [PubMed]
 - Gao, F.; He, L.; Liu, Y.; Li, Z.; Zhang, W.; Zhang, T.; Chen, Z.; Su, J.; Zhu, Y.-G.; Li, L.-G. Integrating global microbiome data into antibiotic resistance assessment in large rivers. Water Res. 2023, 250, 121030. [Google Scholar] [CrossRef]
 - Joakim Larsson, D.G.; Flach, F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2021, 20, 257. [Google Scholar] [CrossRef]
 - Sodhi, K.; Kumar, M.; Singh, D. Insight into the amoxicillin resistance, ecotoxicity, and remediation strategies. J. Water Process Eng. 2021, 39, 101858. [Google Scholar] [CrossRef]
 - Emmanuel, E. Evaluation des Risques Sanitaires et Ecotoxicologiques Liés aux Effluents Hospitaliers. Ph.D. Thesis, INSA de Lyon, Lyon, France, 2004. [Google Scholar]
 - Lee, K.-B.; Kim, D.-W.; Lee, D.-H.; Kim, M.; Kim, M.-H.; Kim, J.-H.; Cha, C.-J. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome 2020, 8, 2. [Google Scholar] [CrossRef]
 - Bagra, K.; Singh, H.; Klümper, U.; Singh, G. Drivers of antibiotic resistance in two monsoon-impacted Indian urban rivers receiving untreated wastewater. bioRxiv 2024. [Google Scholar] [CrossRef]
 - Gao, Y.; Li, X.; Fan, X.; Zhao, J.; Zhang, Z. Wastewater treatment plants as reservoirs and sources for antibiotic resistance genes: A review on occurrence, transmission and removal. J. Water Process Eng. 2022, 45, 102539. [Google Scholar] [CrossRef]
 - Marathe, N.P.; Berglund, F.; Razavi, M.; Johnning, A.; Fick, J.; Flach, C.-F.; Larsson, D.G.J. Sewage effluent from an Indian hospital harbors novel carbapenemases and integron-borne antibiotic resistance genes. Microbiome 2019, 7, 97. [Google Scholar] [CrossRef]
 - Sun, H.; Zhang, H.; Wu, D.; Luo, Y.; Wang, X.; Chen, Y. Deciphering the antibiotic resistome and microbial community in municipal wastewater treatment plants at different elevations in eastern and western China. Water Res. 2022, 229, 119461. [Google Scholar] [CrossRef] [PubMed]
 - Leroy-Freitas, D.; Machado, E.A.S.; Presa, P.I.; Alves, B.C.R.; O’Dwyer, D.B.; Lira, N.; de Oliveira, J.C.F.; Paulo, A.C.; Santos, C.E.I.; de Oliveira, R.R.R.; et al. Exploring the microbiome, antibiotic resistance genes and potential human pathogens in municipal wastewater treatment plants in Brazil. Sci. Total Environ. 2022, 844, 156773. [Google Scholar] [CrossRef] [PubMed]
 - Ping, Q.; Zhang, Z.; Zhang, Y.; Peng, Y.; Huang, Y. The prevalence and removal of antibiotic resistance genes in full-scale wastewater treatment plants and their contributing factors. Sci. Total Environ. 2022, 823, 154154. [Google Scholar] [CrossRef] [PubMed]
 - Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems—A review. Sci. Total Environ. 2019, 697, 134023. [Google Scholar] [CrossRef]
 - Ory, J.; Bricheux, G.; Togola, A.; Bonnet, J.L.; Donnadieu-Bernard, F.; Nakusi, L.; Forestier, C.; Traoré, O. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent. Environ. Pollut. 2016, 214, 635–645. [Google Scholar] [CrossRef]
 - Pérez-Alvarez, I.; Islas-Flores, H.; Gómez-Oliván, L.M.; Mejía-García, M.S.; SanJuan-Reyes, M.G.; Galar-Martínez, N. Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact. Environ. Pollut. 2018, 240, 330–341. [Google Scholar] [CrossRef]
 - Mazzitelli, J.; Budzinski, H.; Cachot, J.; Geffard, O.; Marty, P.; Chiffre, A.; François, A.; Bonnafé, E.; Geret, F. Evaluation of psychiatric hospital wastewater toxicity: What is its impact on aquatic organisms? Environ. Sci. Pollut. Res. 2018, 25, 26090–26102. [Google Scholar] [CrossRef] [PubMed]
 - Wu, H.; Bin, L.; Guo, P.; Zhao, Y.; Chen, C.; Chen, Z.; Tang, B. Ecological risk assessment of the typical anti-epidemic drugs in the Pearl River Delta by tracing their source and residual characteristics. J. Hazard. Mater. 2023, 463, 132914. [Google Scholar] [CrossRef]
 - Bengtsson-Palme, J.; Milakovic, M.; Švecová, H.; Ganjto, M.; Jonsson, V.; Grabic, R.; Udiković-Kolić, N. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Water Res. 2019, 162, 437–445. [Google Scholar] [CrossRef] [PubMed]
 - Hassoun-Kheir, N.; Stabholz, Y.; Kreft, J.-U.; de la Cruz, Z.C.; Cytryn, E.; Kolodny, I.; Béjà, O.; Halpern, M. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci. Total Environ. 2020, 743, 140804. [Google Scholar] [CrossRef]
 - Zhang, S.; Huang, J.; Zhao, Z.; Cao, Y.; Li, B. Hospital Wastewater as a Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. Front. Public Health 2020, 8, 574968. [Google Scholar] [CrossRef]
 - Chandja, W.; Onanga, R.; Nguema, P.; Lekana-Douki, J.B.; Nguema-Amvane, P.; Ondo, J.P.; Mv-Meyo, F. Emergence of Antibiotic Residues and Antibiotic-Resistant Bacteria in Hospital Wastewater: A Potential Route of Spread to African Streams and Rivers, a Review. Water 2024, 16, 3179. [Google Scholar] [CrossRef]
 - Kehl, K.; Schallenberg, A.; Szekat, C.; Albert, C.; Sib, E.; Exner, M.; Zacharias, N.; Schreiber, C.; Parčina, M.; Bierbaum, G. Dissemination of carbapenem resistant bacteria from hospital wastewater into the environment. Sci. Total Environ. 2021, 800, 151339. [Google Scholar] [CrossRef]
 - Dávidová-Geržová, L.; Lausova, J.; Sukkar, I.; Růžička, F.; Látal, J.; Woznicová, V.; Holý, O.; Dolejská, M. Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli. Front. Cell. Infect. Microbiol. 2023, 13, 1184081. [Google Scholar] [CrossRef]
 - Sambaza, S.S.; Naicker, N. Contribution of wastewater to antimicrobial resistance: A review article. J. Glob. Antimicrob. Resist. 2023, 34, 23–29. [Google Scholar] [CrossRef]
 - Uluseker, C.; Kaster, K.M.; Thorsen, K.; Gözderliler, E.; Özkök, E.; Uçar, F.B.; Gali, H.E.; Yesiladali, S.K.; Gredičak, M.; Pozo, C.; et al. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front. Microbiol. 2021, 12, 717809. [Google Scholar] [CrossRef]
 - Su, Z.; Chen, L.; Wen, D. Impact of wastewater treatment plant effluent discharge on the antibiotic resistome in downstream aquatic environments: A mini review. Front. Environ. Sci. Eng. 2024, 18, 36. [Google Scholar] [CrossRef]
 - La Rosa, M.C.; Maugeri, A.; Favara, G.; Mastra, C.L.; San Lio, R.M.; Barchitta, M.; Agodi, A. The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. Antibiotics 2025, 14, 131. [Google Scholar] [CrossRef] [PubMed]
 - Shafiq, M.; Guo, X.; Wang, M.; Bilal, H.; Xin, L.; Yuan, Y.; Yao, F.; Sheikh, T.M.M.; Khan, M.N.; Jiao, X. Integrative metagenomic dissection of last-resort antibiotic resistance genes and mobile genetic elements in hospital wastewaters. Sci. Total Environ. 2024, 949, 174930. [Google Scholar] [CrossRef] [PubMed]
 - Rahim, K.; Nawaz, M.N.; Almehmadi, M.; Alsuwat, M.A.; Liu, L.; Yu, C.; Khan, S.S. Public health implications of antibiotic resistance in sewage water: An epidemiological perspective. Bioresour. Bioprocess. 2024, 11, 48. [Google Scholar] [CrossRef] [PubMed]
 - Lee, J.; Ju, F.; Beck, K.; Bürgmann, H. Differential effects of wastewater treatment plant effluents on the antibiotic resistomes of diverse river habitats. ISME J. 2023, 17, 1993–2002. [Google Scholar] [CrossRef]
 - Siri, Y.; Sresung, M.; Paisantham, P.; Mongkolsuk, S.; Sirikanchana, K.; Honda, R.; Precha, N.; Makkaew, P. Antibiotic resistance genes and crAssphage in hospital wastewater and a canal receiving the treatment effluent. Environ. Pollut. 2024, 361, 124771. [Google Scholar] [CrossRef]
 - Soufi, L.; Kampouris, I.D.; Lüneberg, K.; Heyde, B.J.; Pulami, D.; Glaeser, S.P.; Siebe, C.; Siemens, J.; Smalla, K.; Grohmann, E.; et al. Wastewater-borne pollutants influenced antibiotic resistance genes and mobile genetic elements in the soil without affecting the bacterial community composition in a changing wastewater irrigation system. J. Hazard. Mater. 2025, 494, 138680. [Google Scholar] [CrossRef]
 - Hazra, M.; Joshi, H.; Williams, J.B.; Watts, J.E.M. Antibiotics and antibiotic resistant bacteria/genes in urban wastewater: A comparison of their fate in conventional treatment systems and constructed wetlands. Chemosphere 2022, 303, 135148. [Google Scholar] [CrossRef]
 - Sahni, R.; Veeraraghavan, B.; Bakthavatchalam, Y. Orally Administered Amoxicillin/Clavulanate: Current Role in Outpatient Therapy. Infect. Dis. Ther. 2020, 10, 15–25. [Google Scholar] [CrossRef]
 - Matsubara, M.E.; Helwig, K.; Hunter, C.; Roberts, J.; Subtil, E.L.; Coelho, L.H.G. Amoxicillin removal by pre-denitrification membrane bioreactor (A/O-MBR): Performance evaluation, degradation by-products, and antibiotic resistant bacteria. Ecotoxicol. Environ. Saf. 2020, 192, 110258. [Google Scholar] [CrossRef]
 - Straubinger, R.K.; Lidbury, J.A.; Hartmann, K.; Leutenegger, C.M.; Unterer, S.; da Costa, R.C.; Hartmann, A.; de Godoy, K.; Suchodolski, J.S. Effect of amoxicillin-clavulanic acid on clinical scores, intestinal microbiome, and amoxicillin-resistant Escherichia coli in dogs with uncomplicated acute diarrhea. J. Vet. Intern. Med. 2020, 34, 1166–1176. [Google Scholar]
 - Saciuk, Y.; Nevo, D.; Chowers, M.; Obolski, U. Penicillin allergy as an instrumental variable for estimating antibiotic effects on resistance. Nat. Commun. 2025, 16, 1088. [Google Scholar] [CrossRef]
 - Velho, P.; Lopes, C.; Macedo, E. Water Purification Using Choline-Amino Acid Ionic Liquids: Removal of Amoxicillin. Ind. Eng. Chem. Res. 2024, 63, 10427–10435. [Google Scholar] [CrossRef] [PubMed]
 - Miguel, A.G.S.; Jetten, M.S.M.; Welte, C.U. The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. Water Res. X 2020, 9, 100065. [Google Scholar] [CrossRef]
 - Calderón-Franco, D.; van Loosdrecht, M.C.M.; Abeel, T.; Weissbrodt, D.G. Free-floating extracellular DNA: Systematic profiling of mobile genetic elements and antibiotic resistance from wastewater. Water Res. 2020, 189, 116592. [Google Scholar] [CrossRef] [PubMed]
 - de Nies, L.; Busi, S.B.; Kunath, B.J.; May, P.; Wilmes, P. Mobilome-driven segregation of the resistome in biological wastewater treatment. eLife 2021, 11, e81196. [Google Scholar] [CrossRef]
 - Yuan, W.; Zeng, X.; Cao, Y.; Yang, Q.; Riaz, L.; Wang, Q. Distribution of antibiotic resistance genes from human and animal origins to their receiving environments: A regional scale survey of urban settings. Environ. Pollut. 2021, 290, 118512. [Google Scholar] [CrossRef]
 - Liu, N.; Li, G.; Su, Y.; Zhao, Y.; Ma, J.; Huang, G. Environmental drivers and interaction mechanisms of heavy metal and antibiotic resistome exposed to amoxicillin during aerobic composting. Front. Microbiol. 2023, 13, 1079114. [Google Scholar] [CrossRef]
 - Ferreira, C.; Abreu-Silva, J.; Manaia, C.M. The balance between treatment efficiency and receptor quality determines wastewater impacts on the dissemination of antibiotic resistance. J. Hazard. Mater. 2022, 434, 128933. [Google Scholar] [CrossRef] [PubMed]
 - Bouchaala, L.; Grara, N.; Charchar, N.; Nourine, H.; Dahdah, K.; Driouche, Y.; Amrane, A.; Alsaeedi, H.; Cornu, D.; Bechelany, M.; et al. Microbiological Characterization and Pathogen Control in Drying Bed-Processed Sewage Sludge. Water 2024, 16, 3276. [Google Scholar] [CrossRef]
 - Bouchaala, L.; Charchar, N.; Grara, N.; Amor, I.B.; Zeghoud, S.; Hemmami, H.; Houhamdi, M.; Szparaga, A.; Murariu, O.C.; Caruso, G.; et al. Assessing the Efficiency of Phragmites australis in Wastewater Treatment as a Natural Approach to Water Quality Improvement. Sustainability 2025, 17, 1102. [Google Scholar] [CrossRef]
 - Niox, J. Algérie et Tunisie, 2nd ed.; Région de L’est (Province de Constantine); Géographie Militaire, 2005; 47p, Available online: http://aj.garcia.free.fr/geographie_alg/pdf/chap6.pdf (accessed on 5 September 2025).
 - Gueroui, Y. Caractérisation Hydrochimique et Bactériologique des Eaux Souterraines de L’aquifère Superficiel de la Plaine de Tamlouka (Nord-Est Algérien). Ph.D. Thesis, Université 8 Mai 1945-Guelma, Guelma, Algérie, 2015. [Google Scholar]
 - Rodier, J.; Legube, B.; Merlet, N. L’analyse de L’eau, 9th ed.; Dunod: Malakoff, France, 2009. [Google Scholar]
 - ISO 9308-2:2012; Water Quality—Enumeration of Escherichia coli and Coliform Bacteria—Part 2: Most Probable Number Method. ISO: Geneva, Switzerland, 2012.
 - ISO 9308-3:1998; Water Quality—Detection and Enumeration of Escherichia coli and Coliform Bacteria—Part 3: Miniaturized Method (Most Probable Number). ISO: Geneva, Switzerland, 1998.
 - ISO 7899:2000; Water Quality—Detection and Enumeration of Intestinal Enterococci. ISO: Geneva, Switzerland, 2000.
 - Comité de l’Antibiogramme de la Société Française de Microbiologie. Recommandations; SFM: Paris, France, 2019. [Google Scholar]
 - Yilmaz, G.; Kaya, Y.; Vergili, I.; Beril Gönder, Z.; Özhan, G.; Ozbek Celik, B.; Altinkum, S.M.; Bagdatli, Y.; Boergers, A.; Tuerk, J. Characterization and toxicity of hospital wastewaters in Turkey. Environ. Monit. Assess. 2017, 189, 55. [Google Scholar] [CrossRef]
 - Aboulkacem, A.; Chahlaoui, A.; Soulaymani, A.; Rhazi-Filali, F.; Et Bena, D. Etude Comparative de la Qualité Bactériologique des Eaux des Oueds Boufekrane et Ouislane à la Traversée de la Ville de Meknès (Maroc). Rev. Microbiol. Ind. San. Environ. 2007, 1, 10–22. [Google Scholar]
 - Degbey, C.; Makoutode, M.; Ouendo, E.-M.; Fayomi, B. La qualité de l’eau de puits dans la commune d’Abomey-Calavi au Bénin. Environ. Risques Santé 2008, 4, 279–283. [Google Scholar] [CrossRef]
 - Pérez-López, M.; Miranda-Falcón, M.; Correa-Ramírez, M.; Loredo-Treviño, A. Effect of Two Types of Wastewater Treatment Plants on Antibiotic Resistance of Fecal Coliform. Water 2024, 16, 2364. [Google Scholar] [CrossRef]
 - Al Salah, D.M.M.; Ngweme, G.N.; Laffite, A.; Otamonga, J.P.; Mulaji, C.; Poté, J. Hospital wastewaters: A reservoir and source of clinically relevant bacteria and antibiotic resistant genes dissemination in urban river under tropical conditions. Ecotoxicol. Environ. Saf. 2020, 200, 110767. [Google Scholar] [CrossRef]
 - Jerzsele, Á.; Szabó, Á; Barnácz, F.; Csirmaz, B.; Kovács, L.; Kerek, Á. Antimicrobial Susceptibility Profiles of Escherichia coli Isolates from Clinical Cases of Turkeys in Hungary (2022–2023). Antibiotics 2025, 14, 338. [Google Scholar] [CrossRef]
 - Filby, B.; Weldrick, P.; Paunov, V. Overcoming Beta-Lactamase-Based Antimicrobial Resistance by Nanocarrier-Loaded Clavulanic Acid and Antibiotic Cotreatments. ACS Appl. Bio Mater. 2022, 8, 3826–3840. [Google Scholar] [CrossRef] [PubMed]
 - Mathur, R. Community-acquired resistance and health impact. J. Infect. Dis. Ther. 2022, 10, 15–22. [Google Scholar]
 


| Site ID | Site Name | GPS Coordinates | Primary Pollution Sources | Site Description & Key Features | 
|---|---|---|---|---|
| P1 | Upstream Reference | 36°19′36″ N, 7°10′06″ E | Minimal anthropogenic influence; diffuse agricultural runoff. | An agricultural and pastoral area, practically uninhabited and free of any direct wastewater outlets, with sparse vegetation. | 
| P2 | Direct Impact | 36°21′18″ N, 7°07′51″ E | Untreated domestic and hospital wastewater; artisanal industrial runoff. | Point of maximum contamination; influenced by the City of Oued–Zénati (>50,000 inhabitants). | 
| P3 | Downstream Recovery | 36°14′39″ N, 7°02′39″ E | Residual impact from P2; diffuse agricultural runoff. | Located approx. 7 km downstream of P2 in a rural area with high macrophyte density. | 
| Parameter | Site P1 (Upstream) | Site P2 (Impacted) | Site P3 (Downstream) | F-Statistic (F) | p-Value | 
|---|---|---|---|---|---|
| pH | 7.58 ± 0.31 | 7.54 ± 0.31 | 7.61 ± 0.31 | 0.08 | 0.920 | 
| Temperature (°C) | 13.1 ± 4.5 | 17.1 ± 4.5 | 14.7 ± 4.5 | 1.80 | 0.187 | 
| Salinity (PSU) | 0.52 ± 0.13 | 0.65 ± 0.13 | 0.66 ± 0.13 | 5.45 | 0.011 | 
| Electrical Conductivity (µS/cm) | 1513 ± 206 | 1726 ± 206 | 1632 ± 206 | 2.62 | 0.095 | 
| Suspended Solids (mg/L) | 181.0 ± 110.4 | 225.4 ± 110.4 | 194.3 ± 110.4 | 0.15 | 0.862 | 
| Dissolved Oxygen (mg/L) | 12.2 ± 5.26 | 5.7 ± 5.26 | 12.5 ± 5.26 | 3.88 | 0.035 | 
| Nitrates (NO3−) (mg/L) | 3.69 ± 1.50 | 2.68 ± 1.50 | 3.17 ± 1.50 | 0.85 | 0.441 | 
| Nitrites (NO2−) (mg/L) | 0.24 ± 0.22 | 0.47 ± 0.22 | 0.26 ± 0.22 | 3.94 | 0.033 | 
| Ammonium (NH4+) (mg/L) | 0.92 ± 0.85 | 1.47 ± 0.85 | 1.25 ± 0.85 | 0.44 | 0.649 | 
| Orthophosphates (PO43−) (mg/L) | 0.73 ± 0.78 | 1.86 ± 0.78 | 1.11 ± 0.78 | 3.43 | 0.049 | 
| Parameter | Site P1 (Upstream) | Site P2 (Impacted) | Site P3 (Downstream) | 
|---|---|---|---|
| Total Coliforms (TC) | 7.7 × 105 ± 9.9 × 105 [2 × 103–2.5 × 107] | 3.2 × 107 ± 1.8 × 107 [2.5 × 105–9.5 × 107] | 1.6 × 107 ± 1.2 × 107 [2 × 103–3.3 × 107] | 
| Fecal Coliforms (FC) | 2.5 × 104 ± 1.0 × 105 [6.5 × 102–1.9 × 105] | 9.5 × 105 ± 3.0 × 105 [3.5 × 105–2.5 × 106] | 1.5 × 105 ± 5.0 × 104 [2 × 104–2.5 × 105] | 
| Fecal Streptococci (FS) | 1.5 × 102 ± 5.0 × 102 [102–1.6 × 103] | 2.4 × 104 ± 8.0 × 102 [4.4 × 103–1.5 × 105] | 3.0 × 103 ± 1.0 × 103 [2 × 103–5 × 105] | 
| Bacterial Species | Site P1  (12 Isolates)  | Site P2  (15 Isolates)  | Site P3 (6 Isolates)  | Total per Species (N = 33) | 
|---|---|---|---|---|
| Aeromonas hydrophila | 3 | 3 | 0 | 6 | 
| Plesiomonas shigelloides | 3 | 0 | 0 | 3 | 
| Chryseobacterium miningosepticum | 3 | 3 | 0 | 6 | 
| Klebsiella pneumoniae | 3 | 3 | 3 | 9 | 
| Escherichia coli | 0 | 3 | 0 | 3 | 
| Serratia odorifera | 0 | 3 | 0 | 3 | 
| Enterobacter cloacae | 0 | 0 | 3 | 3 | 
| Total par site | 12 | 15 | 6 | 33 | 
| Species (Point) | AK (30 µg) | TE (30 µg) | SXT (1.25/23.75 µg) | AX (20/10 µg) | CN (10 µg) | AM (10 µg) | CZ (30 µg) | 
|---|---|---|---|---|---|---|---|
| Aeromonas hydrophila (P1) | 40.0 ± 1.1 | 30.0 ± 0.6 | 26.0 ± 0.4 | 26.0 ± 1.0 | 46.0 ± 0.4 | 2.0 ± 0.3 | 2.0 ± 0.3 | 
| Plesiomonas shigelloides (P1) | 26.0 ± 0.4 | 25.0 ± 0.6 | 8.0 ± 0.3 | 10.0 ± 0.4 | 24.0 ± 0.4 | 3.0 ± 0.3 | 24.0 ± 0.4 | 
| Chryseobacterium miningosepticum (P1) | 13.0 ± 0.4 | 30.0 ± 0.5 | 9.0 ± 0.5 | 25.0 ± 0.3 | 40.0 ± 0.7 | 2.0 ± 0.3 | 28.0 ± 0.6 | 
| Klebsiella pneumoniae (P1) | 28.0 ± 0.4 | 18.0 ± 0.6 | 25.0 ± 0.4 | 10.0 ± 0.4 | 24.0 ± 0.4 | 4.0 ± 0.3 | 20.0 ± 0.3 | 
| Serratia odorifera (P2) | 12.0 ± 0.3 | 12.0 ± 0.3 | 9.0 ± 0.4 | 13.0 ± 0.3 | 25.0 ± 0.3 | 3.0 ± 0.3 | N/A | 
| Aeromonas hydrophila (P2) | 40.0 ± 0.6 | 30.0 ± 0.4 | 7.0 ± 0.3 | 26.0 ± 0.3 | 46.0 ± 0.4 | 2.0 ± 0.3 | N/A | 
| Chryseobacterium miningosepticum (P2) | 13.0 ± 0.3 | 24.0 ± 0.3 | 9.0 ± 0.3 | 12.0 ± 0.3 | 12.0 ± 0.3 | 5.0 ± 0.2 | 27.0 ± 0.3 | 
| Klebsiella pneumoniae (P2) | 20.0 ± 0.3 | 7.0 ± 0.2 | 6.0 ± 0.2 | 14.0 ± 0.3 | 19.0 ± 0.3 | 8.0 ± 0.3 | 11.0 ± 0.3 | 
| E. coli (P2) | 20.0 ± 0.4 | 16.0 ± 0.3 | 26.0 ± 0.3 | 15.0 ± 0.3 | 20.0 ± 0.2 | 2.0 ± 0.3 | 16.0 ± 0.3 | 
| Enterobacter cloacae (P3) | 20.0 ± 0.2 | 16.0 ± 0.2 | 24.0 ± 0.2 | 12.0 ± 0.2 | 20.0 ± 0.2 | 4.0 ± 0.2 | 13.0 ± 0.2 | 
| Klebsiella pneumoniae (P3) | 24.0 ± 0.2 | 16.0 ± 0.2 | 26.0 ± 0.2 | 20.0 ± 0.2 | 24.0 ± 0.2 | 11.0 ± 0.2 | 13.0 ± 0.2 | 
| Antibiotic | Site P1  (12 Isolates Tested)  | Site P2  (15 Isolates Tested)  | Site P3  (6 Isolates Tested)  | 
|---|---|---|---|
| Amikacine (AK) | 25% | 20% | 0% | 
| Tétracycline (TE) | 0% | 20% | 33.3% | 
| Triméthoprime/Sulfaméthoxazole (SXT) | 50% | 60% | 0% | 
| Amoxicilline + Acide Clavulanique (AX) | 25% | 60% | 0% | 
| Gentamicine (CN) | 0% | 0% | 0% | 
| Ampicilline (AM) | 75% | 100% | 100% | 
| Céfazoline (CZ) | 0% | 20% | 33.3% | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchaala, L.; Mellouk, F.Z.; Afri, A.; Grara, N.; Houhamdi, M. Impact of Wastewater Pollution on Antibiotic Resistance in an Algerian Waterway: A Preliminary Investigation. Earth 2025, 6, 139. https://doi.org/10.3390/earth6040139
Bouchaala L, Mellouk FZ, Afri A, Grara N, Houhamdi M. Impact of Wastewater Pollution on Antibiotic Resistance in an Algerian Waterway: A Preliminary Investigation. Earth. 2025; 6(4):139. https://doi.org/10.3390/earth6040139
Chicago/Turabian StyleBouchaala, Laid, Fatma Zohra Mellouk, Amira Afri, Nedjoud Grara, and Moussa Houhamdi. 2025. "Impact of Wastewater Pollution on Antibiotic Resistance in an Algerian Waterway: A Preliminary Investigation" Earth 6, no. 4: 139. https://doi.org/10.3390/earth6040139
APA StyleBouchaala, L., Mellouk, F. Z., Afri, A., Grara, N., & Houhamdi, M. (2025). Impact of Wastewater Pollution on Antibiotic Resistance in an Algerian Waterway: A Preliminary Investigation. Earth, 6(4), 139. https://doi.org/10.3390/earth6040139
        
