Next Issue
Volume 10, September
Previous Issue
Volume 10, July
 
 

Fluids, Volume 10, Issue 8 (August 2025) – 32 articles

Cover Story (view full-size image): Cavitating flows are of great interest in the fields of hydraulic machineries, which can significantly affect mechanical performance and safety. A convolutional neural network, U-Net, is adopted to build a model that can predict the vapor volume fraction from velocity fields. It is applied to cavitating flows around a Clark-Y hydrofoil. Our study confirms the feasibility of predicting cavitation fields using velocity fields, which suggests the possibility of developing data-driven cavitation models using machine learning techniques. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 3070 KB  
Article
An Insight into Blood Flow and Wall Shear Stress in Abdominal Aortic Aneurysms Coupling Laboratory and CFD Simulations
by Monica Moroni and Stefania Espa
Fluids 2025, 10(8), 218; https://doi.org/10.3390/fluids10080218 - 21 Aug 2025
Viewed by 232
Abstract
We studied the hemodynamics of abdominal aortic aneurysms (AAAs) by combining laboratory experiments and numerical simulations, with a focus on potential rupture mechanisms. In particular, we investigated the influence of geometrical features—beyond the commonly used maximum diameter—on flow patterns and the wall shear [...] Read more.
We studied the hemodynamics of abdominal aortic aneurysms (AAAs) by combining laboratory experiments and numerical simulations, with a focus on potential rupture mechanisms. In particular, we investigated the influence of geometrical features—beyond the commonly used maximum diameter—on flow patterns and the wall shear stress (WSS) distribution. Following our previous in vitro study performed utilizing a symmetrical bulge, we extended the analysis to an asymmetrical aneurysm geometry. Experiments and simulations were conducted under steady flow conditions while varying the Reynolds number over a wide range (490 < Re < 3930), to replicate the flow regimes occurring throughout the cardiac cycle. High-resolution, two-dimensional velocity fields were measured in the lab via image analysis and numerically computed using ANSYS Fluent®. These data enabled a detailed characterization of both flow patterns and WSS distributions in healthy aorta and within the aneurysmal region. The good agreement between numerical and experimental results, as well as consistency with the literature, validates the adopted approach and supports its use for future investigations into AAA hemodynamics and rupture risk assessment. Full article
(This article belongs to the Special Issue Advances in Hemodynamics and Related Biological Flows)
Show Figures

Figure 1

70 pages, 30789 KB  
Review
Advances in Flow–Structure Interaction and Multiphysics Applications: An Immersed Boundary Perspective
by Mithun Kanchan, Anwak Manoj Kumar, Pedapudi Anantha Hari Arun, Omkar Powar, Kulmani Mehar and Poornesh Mangalore
Fluids 2025, 10(8), 217; https://doi.org/10.3390/fluids10080217 - 21 Aug 2025
Viewed by 692
Abstract
This article discusses contemporary strategies to deal with immersed boundary (IB) frameworks useful for analyzing flow–structure interaction in complex settings. It focuses on immense advancements in various fields: biology, oscillation of structures due to fluid flow, deformable materials, thermal processes, settling particles, multiphase [...] Read more.
This article discusses contemporary strategies to deal with immersed boundary (IB) frameworks useful for analyzing flow–structure interaction in complex settings. It focuses on immense advancements in various fields: biology, oscillation of structures due to fluid flow, deformable materials, thermal processes, settling particles, multiphase systems, and sound propagation. The discussion also involves a review of techniques addressing moving boundary conditions at complex interfaces. Evaluating practical examples and theoretical challenges that have been addressed by these frameworks are another focus of the article. Important results highlight the integration of IB methods with adaptive mesh refinement and high-order accuracy techniques, which enormously improve computational efficiency and precision in modeling complex solid–fluid interactions. The article also describes the evolution of IB methodologies in tackling problems of energy harvesting, bio-inspiration propulsion, and thermal-fluid coupling, which extends IB methodologies broadly in many scientific and industrial areas. More importantly, by bringing together different insights and paradigms from across disciplines, the study highlights the emerging trends in IB methodologies towards solving some of the most intricate challenges within the technical and scientific domains. Full article
Show Figures

Figure 1

21 pages, 1439 KB  
Article
Laminar Pipe Flow Instability: A Theoretical-Experimental Perspective
by Franz Durst and El-Sayed Zanoun
Fluids 2025, 10(8), 216; https://doi.org/10.3390/fluids10080216 - 18 Aug 2025
Viewed by 343
Abstract
This paper revisits the theoretically predicted inherent stability of fully developed laminar pipe flow, which remains unconfirmed by experimental evidence. A recently developed theory of pipe-flow stability/instability addresses the gap between experimental observations and classical theoretical predictions by accounting for a parallel secondary [...] Read more.
This paper revisits the theoretically predicted inherent stability of fully developed laminar pipe flow, which remains unconfirmed by experimental evidence. A recently developed theory of pipe-flow stability/instability addresses the gap between experimental observations and classical theoretical predictions by accounting for a parallel secondary flow through the pipe’s roughness layer that accompanies the main stream. This secondary flow alters the near-wall velocity profile in the rough-wall region, creating an inflection point that promotes shear-driven instabilities and triggers the laminar-to-turbulent transition. A stability factor S=Dc/D is introduced, where D is the nominal pipe diameter and Dc refers to the critical pipe diameter. The pipe flow remains laminar and stable for S>1.0, and becomes unstable for S<1. Various experimental findings are theoretically derived, and the laminar-to-turbulent transition is identified at S=1.0. Particular attention is paid to the dependence of flow transition on both pipe diameter and pipe length. Rather than relying on a critical Reynolds number Rec, this study proposes the critical pipe diameter Dc as the key parameter governing the laminar pipe flow instability, where Rec refers here to the condition-dependent threshold at which laminar pipe flow becomes unstable and transition to turbulence occurs. The present analysis further suggests that instability arises only if the pipe length L exceeds a critical threshold Lc, that is, L>Lc. The theoretical treatment presented provides deeper physical insights into the onset of laminar pipe flow instability including the phenomenon of reverse transition. It also distinguishes between natural and forced flow transitions, providing a refined understanding of the transition process. Finally, suggestions for future experimental work are made to further validate or challenge this new theoretical perspective on pipe flow instability. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

17 pages, 3458 KB  
Article
Investigation of Heart Valve Dynamics: A Fluid-Structure Interaction Approach
by Muhammad Adnan Anwar, Mudassar Razzaq, Muhammad Owais, Kainat Jahangir and Marcel Gurris
Fluids 2025, 10(8), 215; https://doi.org/10.3390/fluids10080215 - 15 Aug 2025
Viewed by 337
Abstract
This study presents a numerical investigation into the heart valve through a fluid–structure interaction (FSI) framework using a two-dimensional, steady-state, Newtonian flow assumption. While simplified, this approach captures core biomechanical effects and provides a baseline for future extension toward non-Newtonian, pulsatile, and three-dimensional [...] Read more.
This study presents a numerical investigation into the heart valve through a fluid–structure interaction (FSI) framework using a two-dimensional, steady-state, Newtonian flow assumption. While simplified, this approach captures core biomechanical effects and provides a baseline for future extension toward non-Newtonian, pulsatile, and three-dimensional models. The analysis focuses on the influence of magnetic field intensity characterized by the Hartmann number (Ha) and flow regime defined by the Reynolds number (Re) on critical hemodynamic parameters, including wall shear stress (WSS), velocity profiles, and pressure gradients in the valve region. The results demonstrate that stronger magnetic fields significantly stabilize intravalvular flow by suppressing recirculation zones and reducing flow separation distal to valve constrictions, offering protective hemodynamic benefits and serving as a non-invasive method to modulate vascular behavior and reduce the risk of cardiovascular pathologies such as atherosclerosis and hypertension. Full article
(This article belongs to the Special Issue Recent Advances in Cardiovascular Flows)
Show Figures

Figure 1

16 pages, 32413 KB  
Article
Impact of Streamwise Pressure Gradient on Shaped Film Cooling Hole Using Large Eddy Simulation
by Yifan Yang, Kexin Hu, Can Ma, Xinrong Su and Xin Yuan
Fluids 2025, 10(8), 214; https://doi.org/10.3390/fluids10080214 - 15 Aug 2025
Viewed by 300
Abstract
In turbine blade environments, the combination of blade curvature and accelerating flow gives rise to streamwise pressure gradients (SPGs), which substantially impact coolant–mainstream interactions. This study investigates the effect of SPGs on film cooling performance using Large Eddy Simulation (LES) for a shaped [...] Read more.
In turbine blade environments, the combination of blade curvature and accelerating flow gives rise to streamwise pressure gradients (SPGs), which substantially impact coolant–mainstream interactions. This study investigates the effect of SPGs on film cooling performance using Large Eddy Simulation (LES) for a shaped cooling hole at a density ratio of DR=1.5 under two blowing ratios: M=0.5 and M=1.6. Both favorable pressure gradient (FPG) and zero pressure gradient (ZPG) conditions are examined. LES predictions are validated against experimental data in the high blowing ratio case, confirming the accuracy of the numerical method. Comparative analysis of the time-averaged flow fields indicates that, at M=1.6, FPG enhances wall attachment of the coolant jet, reduces boundary layer thickness, and suppresses vertical dispersion. Counter-rotating vortex pairs (CVRPs) are also compressed in this process, leading to improved downstream cooling. At M=0.5, however, the ZPG promotes greater lateral coolant spread near the hole exit, resulting in superior near-field cooling performance. Instantaneous flow structures are also analyzed to further explore the unsteady dynamics governing film cooling. The Q criterion exposes the formation and evolution of coherent vortices, including hairpin vortices, shear-layer vortices, and horseshoe vortices. Compared to ZPG, the FPG case exhibits a greater number of downstream hairpin vortices identified by density gradient, and this effect is particularly pronounced at the lower blowing ratio. The shear layer instability is evaluated using the local gradient Ri number, revealing widespread Kelvin–Helmholtz instability near the jet interface. In addition, Fast Fourier Transform (FFT) analysis shows that FPG shifts disturbance energy to lower frequencies with higher amplitudes, indicating enhanced turbulent dissipation and intensified coolant mixing at a low blowing ratio. Full article
(This article belongs to the Special Issue Modelling and Simulation of Turbulent Flows, 2nd Edition)
Show Figures

Figure 1

15 pages, 3838 KB  
Article
Cavitation–Velocity Correlation in Cavitating Flows Around a Clark-Y Hydrofoil Using a Data-Driven U-Net
by Yadong Han, Bingfu Han, Ming Liu and Lei Tan
Fluids 2025, 10(8), 213; https://doi.org/10.3390/fluids10080213 - 13 Aug 2025
Viewed by 322
Abstract
Cavitating flows are of great interest in the fields of hydraulic machineries, which can significantly affect mechanical performance and safety. Despite various efforts being dedicated to figuring out the interaction between flow and cavitation fields, their correlation has not been clearly addressed. To [...] Read more.
Cavitating flows are of great interest in the fields of hydraulic machineries, which can significantly affect mechanical performance and safety. Despite various efforts being dedicated to figuring out the interaction between flow and cavitation fields, their correlation has not been clearly addressed. To this end, in this study, a convolutional neural network, U-Net, was adopted to build a model that can predict the vapor volume fraction from velocity fields. Large eddy simulations of cavitating flows around a Clark-Y hydrofoil were conducted, and the simulated snapshots with velocity and vapor volume fraction were adopted as a dataset for training the network. The predicted vapor volume fraction shows good agreement with the referred simulation results, with a L1 deviation lower than 2 × 10−4, considering all the snapshots. The comparable L1 deviation between the training and validation datasets suggests the existence of a strong correlation between velocity and cavitation fields. The cavitation–velocity interaction derived from using U-Net suggests that the location with zero velocity indicates the interior part of attached and cloud cavitations, and the local vortical velocity fields usually suggest the existence of cavitation shedding. Full article
(This article belongs to the Special Issue Multiphase Flow and Fluid Machinery)
Show Figures

Figure 1

13 pages, 2730 KB  
Article
Air Entrainment and Slope Erosion During Overflow on a Levee Covered by Non-Uniform Turfgrass
by Yoshiya Igarashi, Norio Tanaka, Muhammad W. A. Junjua and Takeharu Kobori
Fluids 2025, 10(8), 212; https://doi.org/10.3390/fluids10080212 - 12 Aug 2025
Viewed by 321
Abstract
To mitigate flood damage caused by overflow from a levee, it is essential to prevent the levee failure or extend the time to breaching. Although turfgrass on a levee slope is effective in suppressing erosion, insufficient maintenance can reduce its coverage. When overtopping [...] Read more.
To mitigate flood damage caused by overflow from a levee, it is essential to prevent the levee failure or extend the time to breaching. Although turfgrass on a levee slope is effective in suppressing erosion, insufficient maintenance can reduce its coverage. When overtopping occurs under such non-uniform turfgrass conditions, the flow tends to entrain air. In spillways, air entrainment is known to reduce friction loss; therefore, it may also contribute to lowering shear stress and erosion depth. This study conducted flume experiments with artificial turf arranged in various patterns on levee slopes to investigate flow patterns, air entrainment, and erosion. The flow pattern changed depending on the turf arrangement and overflow depth, and air entrainment occurred due to water surface fluctuations around the turfgrass. The inception point of air entrainment was found to be similar to or shorter than that observed in stepped spillways. Furthermore, the experiments showed a tendency for erosion depth to decrease once air entrainment is fully developed. This finding is significant because it suggests that erosion can potentially be minimized not only by reinforcing the levee structure itself but also by modifying flow characteristics through designs that promote air entrainment. Full article
Show Figures

Figure 1

14 pages, 7337 KB  
Article
The Study and Determination of Rational Hydraulic Parameters of a Prototype Multi-Gear Pump
by Olga Zharkevich, Alexandra Berg, Olga Reshetnikova, Andrey Berg, Oxana Nurzhanova, Asset Altynbayev, Darkhan Zhunuspekov and Oleg Stukach
Fluids 2025, 10(8), 211; https://doi.org/10.3390/fluids10080211 - 11 Aug 2025
Viewed by 342
Abstract
This article presents a comprehensive experimental and theoretical study and substantiation of the hydraulic parameters of a prototype multi-gear pump. The proposed pump design, which features one drive gear and four driven gears, aims to address the common disadvantages of traditional gear pumps, [...] Read more.
This article presents a comprehensive experimental and theoretical study and substantiation of the hydraulic parameters of a prototype multi-gear pump. The proposed pump design, which features one drive gear and four driven gears, aims to address the common disadvantages of traditional gear pumps, including radial force imbalance, uneven flow, high acoustic noise, and increased fluid leakage. Tests of the prototype multi-stage pump were conducted on a specialized test stand in the “Hydraulics” workshop of “Hansa-Flex Hydraulik Almaty” LLP. Experimental analysis, supported by theoretical calculations, established the optimal operating speed range for the prototype to be between 900 and 1450 rpm, with the volumetric efficiency remaining stable between 70% and 88% when using VMGZ hydraulic oil (45 cSt). A significant deterioration in performance, including a sharp drop in volumetric efficiency to 30% and a decrease in the pressure generated, was observed at rotational speeds below 900 rpm due to an increase in internal leaks. In addition, this study examined the effect of kinematic viscosity, which revealed a 15–20% decrease in performance and power when using a fluid with lower viscosity (15 cSt) with a slight increase in noise level. This study also examines in detail the linear relationship between useful power and pressure in the system and analyzes noise characteristics under various operating conditions. Full article
(This article belongs to the Section Non-Newtonian and Complex Fluids)
Show Figures

Figure 1

21 pages, 3783 KB  
Article
Fluid–Structure Interaction Effects on Developing Complex Non-Newtonian Flows Within Flexible Tubes
by Sheldon Wang, Dalong Gao and Hassan Pouraria
Fluids 2025, 10(8), 210; https://doi.org/10.3390/fluids10080210 - 10 Aug 2025
Viewed by 242
Abstract
Complex non-Newtonian glues are widely used in electrical vehicle (EV) manufacturing plants. In this paper, we focus on initial transient and compressibility issues which are closely associated with high pressure, boundary conditions, and flexible tubes, as well as their respective fluid–structure interaction effects. [...] Read more.
Complex non-Newtonian glues are widely used in electrical vehicle (EV) manufacturing plants. In this paper, we focus on initial transient and compressibility issues which are closely associated with high pressure, boundary conditions, and flexible tubes, as well as their respective fluid–structure interaction effects. Both thixotropic and power law non-Newtonian nearly compressible fluid models have been employed to couple with flexible tubes with two different sets of material properties, namely, Young’s modulus and density. In addition to thick-wall cylindrical pressure vessel solutions, different pressure and velocity boundary conditions have also been studied with the consideration of initial transient and steady solutions for acoustic models. Moreover, the radial direction displacement distributions through the tube wall thickness and axial directions compare well within 4 to 9 percentage points with theoretical solutions of thick-wall cylinders under internal and external pressures. Finally, inverse optimization methods have been employed for the calibration of key parameters in comparison with experimental and computational results. Full article
Show Figures

Figure 1

25 pages, 2697 KB  
Article
Thermal Performance Comparison of Working Fluids for Geothermal Snow Melting with Gravitational Heat Pipe
by Wenwen Cui, Yutong Chai, Soheil Asgarpour and Shunde Yin
Fluids 2025, 10(8), 209; https://doi.org/10.3390/fluids10080209 - 8 Aug 2025
Viewed by 487
Abstract
Snow and ice accumulation on transportation infrastructure presents significant safety and maintenance challenges in cold regions, while conventional removal methods are both energy-intensive and environmentally detrimental. This study proposes a passive Heat Pipe–Coupled Geothermal Snow Melting System (HP-GSMS) that harnesses shallow geothermal energy [...] Read more.
Snow and ice accumulation on transportation infrastructure presents significant safety and maintenance challenges in cold regions, while conventional removal methods are both energy-intensive and environmentally detrimental. This study proposes a passive Heat Pipe–Coupled Geothermal Snow Melting System (HP-GSMS) that harnesses shallow geothermal energy to maintain snow-free surfaces without external energy input. Using Fluent-based CFD simulations, the system’s thermal performance was evaluated under various working fluids (ammonia, carbon dioxide, water) and pipe materials (stainless steel, aluminum). A one-dimensional thermal resistance model validated the CFD results under ammonia–stainless steel conditions, predicting a heat flux of 358.6 W/m2 compared to 361.0 W/m2 from the simulation, with a deviation of only 0.66%, confirming model accuracy. Ammonia demonstrated superior phase-change efficiency, with the aluminum–ammonia configuration yielding the highest heat flux (up to 677 W/m2), surpassing typical snow-melting thresholds. Aluminum pipes enhanced radial heat conduction without compromising phase stability, while water exhibited poor phase-change performance and CO2 showed moderate but stable behavior. Additionally, a dynamic three-node RC thermal network was employed to assess transient performance under realistic diurnal temperature variations, revealing surface heat fluxes ranging from 230 to 460 W/m2, with a daily average of approximately 340 W/m2. These findings demonstrate the HP-GSMS’s practical viability in cold climates and underscore the importance of selecting low-boiling-point fluids and high-conductivity materials for scalable, energy-efficient, and low-carbon snow-melting applications in urban infrastructure. Full article
Show Figures

Figure 1

19 pages, 4608 KB  
Article
Experimental Study on the Influence of Groove-Flap and Concave Cavity on the Output Characteristics of Vertical Axis Wind Turbine
by Jiale Xue, Yongyan Chen, Li Song, Yifan Xing, Baiqiang Wang and Yansong Sun
Fluids 2025, 10(8), 208; https://doi.org/10.3390/fluids10080208 - 8 Aug 2025
Viewed by 265
Abstract
To address the low wind energy utilization efficiency of vertical axis wind turbines (VAWTs) and enhance their engineering applicability, cavity and groove-flap structures were incorporated into turbine blades. Numerical simulations were performed to optimize these configurations, followed by wind tunnel experiments investigating output [...] Read more.
To address the low wind energy utilization efficiency of vertical axis wind turbines (VAWTs) and enhance their engineering applicability, cavity and groove-flap structures were incorporated into turbine blades. Numerical simulations were performed to optimize these configurations, followed by wind tunnel experiments investigating output power variations of three VAWT types under different wind speeds at installation angles of 0°, 2°, 4°, and 6°. The Omega criterion was employed to comparatively analyze vortex evolution patterns at the leading and trailing edges for installation angles of 0°, 3°, and 5°. Experimental results demonstrated nonlinear growth in output power with increasing wind speed and rotational velocity, with groove-flap VAWTs exhibiting superior performance. The optimal installation angle was identified within 2.5–3.5°, where appropriate angles reduced adverse pressure gradients, delayed boundary layer separation, and mitigated vortex shedding effects. Excessive angles induced vortex accumulation and wake disturbances, compromising flow field stability. This study provides critical insights for optimizing VAWT aerodynamic performance through structural modifications and installation angle adjustments. Full article
(This article belongs to the Special Issue Vortex Definition and Identification)
Show Figures

Figure 1

18 pages, 463 KB  
Article
Improved Box Models for Newtonian and Power-Law Viscous Gravity Currents in Rectangular and Axisymmetric Geometries
by M. Ungarish
Fluids 2025, 10(8), 207; https://doi.org/10.3390/fluids10080207 - 8 Aug 2025
Viewed by 208
Abstract
We consider the flow of gravity currents of Newtonian and power-law non-Newtonian viscous fluids, injected over a horizontal boundary in rectangular and cylindrical (axisymmetric) systems. We focus on some novel box model (BM) predictions. Previously published theoretical studies consider a power-law volume [...] Read more.
We consider the flow of gravity currents of Newtonian and power-law non-Newtonian viscous fluids, injected over a horizontal boundary in rectangular and cylindrical (axisymmetric) systems. We focus on some novel box model (BM) predictions. Previously published theoretical studies consider a power-law volume V=qtα (influx rate Θ=αqtα1) where q>0 and α0 are constants and t is time. The lubrication simplification equations predict a self-similar flow: the propagation is KLtβ, and the height (thickness) profile is determined by a second-order ODE in the reduced length ξ[0,1]. The predicted β and KL are in good agreement with laboratory data. Previous studies reported that a basic BM predicts K1tβ propagation with the same β as the lubrication model, but the discrepancy between K1 and KL is in general not small. This work points out two inconsistencies of the basic BM with the physical system and presents an improved, more consistent, BM prediction, K2tβ. We show that K2 is in general more accurate than K1 (including in comparison with experimental data). Next, we consider a general influx Θ(t) (not a power law). We demonstrate that the BM provides a simple and flexible framework of initial-value time-dependent ODEs, though for such systems the lubrication theory lacks analytical reduction and requires numerical solution of a non-linear PDE (in time and length). Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

6 pages, 197 KB  
Editorial
Contact Line Dynamics and Droplet Spreading
by Alireza Mohammad Karim
Fluids 2025, 10(8), 206; https://doi.org/10.3390/fluids10080206 - 6 Aug 2025
Viewed by 379
Abstract
Contact line motion occurs when a liquid encounters a solid surface [...] Full article
(This article belongs to the Special Issue Contact Line Dynamics and Droplet Spreading)
22 pages, 4658 KB  
Article
Experimental Research on Ship Wave-Induced Motions of Tidal Turbine Catamaran
by Tinghui Liu, Xiwu Gong, Zijian Yu and Yonghe Xie
Fluids 2025, 10(8), 205; https://doi.org/10.3390/fluids10080205 - 4 Aug 2025
Viewed by 291
Abstract
In this research, the effect of ship navigation on the mooring system of a deep-sea floating tidal energy platform is experimentally investigated. Hydrodynamic experiments were conducted on a figure-of-eight mooring system with a KCS ship (KRISO Container Ship) as the sailing ship model [...] Read more.
In this research, the effect of ship navigation on the mooring system of a deep-sea floating tidal energy platform is experimentally investigated. Hydrodynamic experiments were conducted on a figure-of-eight mooring system with a KCS ship (KRISO Container Ship) as the sailing ship model and a catamaran as the carrier model of the tidal current energy generator under the combined effect of waves and ocean currents. The experimental results show that the increase in ship speed increases the amplitude of the carrier motion re-response. When the ship speed increases from 1.2 m/s to 1.478 m/s, the roll amplitude increases by 220%. At the same time, a decrease in the distance and draft of the navigating vessel also increases the amplitude of the motion response. Then, the actual sea conditions are simulated by the combined effect of ship waves and regular waves. As the wave period decreases and the height increases, the platform motion response is gradually reduced by the ship-generated waves. These findings provide important insights for optimizing the mooring system design in wave-dominated marine environments. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

17 pages, 1546 KB  
Article
Design and Optimization of Valve Lift Curves for Piston-Type Expander at Different Rotational Speeds
by Yongtao Sun, Qihui Yu, Zhenjie Han, Ripeng Qin and Xueqing Hao
Fluids 2025, 10(8), 204; https://doi.org/10.3390/fluids10080204 - 1 Aug 2025
Viewed by 214
Abstract
The piston-type expander (PTE), as the primary output component, significantly influences the performance of an energy storage system. This paper proposes a non-cam variable valve actuation system for the PTE, supported by a mathematical model. An enhanced S-curve trajectory planning method is used [...] Read more.
The piston-type expander (PTE), as the primary output component, significantly influences the performance of an energy storage system. This paper proposes a non-cam variable valve actuation system for the PTE, supported by a mathematical model. An enhanced S-curve trajectory planning method is used to design the valve lift curve. The study investigates the effects of various valve lift design parameters on output power and efficiency at different rotational speeds, employing orthogonal design and SPSS Statistics 27 (Statistical Product and Service Solutions) simulations. A grey comprehensive evaluation method is used to identify optimal valve lift parameters for each speed. The results show that valve lift parameters influence PTE performance to varying degrees, with intake duration having the greatest effect, followed by maximum valve lift, while intake end time has the least impact. The non-cam PTE outperforms the cam-based PTE. At 800 rpm, the optimal design yields 7.12 kW and 53.5% efficiency; at 900 rpm, 8.17 kW and 50.6%; at 1000 rpm, 9.2 kW and 46.8%; and at 1100 rpm, 12.09 kW and 41.2%. At these speeds, output power increases by 18.37%, 11.42%, 11.62%, and 9.82%, while energy efficiency improves by 15.01%, 15.05%, 14.24%, and 13.86%, respectively. Full article
Show Figures

Figure 1

19 pages, 3763 KB  
Article
Mathematical Study of Pulsatile Blood Flow in the Uterine and Umbilical Arteries During Pregnancy
by Anastasios Felias, Charikleia Skentou, Minas Paschopoulos, Petros Tzimas, Anastasia Vatopoulou, Fani Gkrozou and Michail Xenos
Fluids 2025, 10(8), 203; https://doi.org/10.3390/fluids10080203 - 1 Aug 2025
Viewed by 432
Abstract
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than [...] Read more.
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than 200 pregnant women (in the second and third trimesters) reveals significant increases in the umbilical arterial peak systolic velocity (PSV) between the 22nd and 30th weeks, while uterine artery velocities remain relatively stable, suggesting adaptations in vascular resistance during pregnancy. By combining the Navier–Stokes equations with Doppler ultrasound-derived inlet velocity profiles, we quantify several key fluid dynamics parameters, including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), Reynolds number (Re), and Dean number (De), evaluating laminar flow stability in the uterine artery and secondary flow patterns in the umbilical artery. Since blood exhibits shear-dependent viscosity and complex rheological behavior, modeling it as a non-Newtonian fluid is essential to accurately capture pulsatile flow dynamics and wall shear stresses in these vessels. Unlike conventional imaging techniques, CFD offers enhanced visualization of blood flow characteristics such as streamlines, velocity distributions, and instantaneous particle motion, providing insights that are not easily captured by Doppler ultrasound alone. Specifically, CFD reveals secondary flow patterns in the umbilical artery, which interact with the primary flow, a phenomenon that is challenging to observe with ultrasound. These findings refine existing hemodynamic models, provide population-specific reference values for clinical assessments, and improve our understanding of the relationship between umbilical arterial flow dynamics and fetal growth restriction, with important implications for maternal and fetal health monitoring. Full article
Show Figures

Figure 1

1 pages, 121 KB  
Correction
Correction: Hernández-Juárez et al. Low-Frequency Acoustic Emissions During Granular Discharge in Inclined Silos. Fluids 2025, 10, 138
by Josué Roberto Hernández-Juárez, Abel López-Villa, Abraham Medina and Daniel Armando Serrano Huerta
Fluids 2025, 10(8), 202; https://doi.org/10.3390/fluids10080202 - 1 Aug 2025
Viewed by 156
Abstract
The authors would like to make the following correction to this published paper [...] Full article
19 pages, 15398 KB  
Article
Particles in Homogeneous Isotropic Turbulence: Clustering and Relative Influence of the Forces Exerted on Particles
by Hamid Bellache, Pierre Chapelle and Jean-Sébastien Kroll-Rabotin
Fluids 2025, 10(8), 201; https://doi.org/10.3390/fluids10080201 - 1 Aug 2025
Viewed by 281
Abstract
A combination of lattice Boltzmann method (LBM)-based computations and Lagrangian particle tracking simulations is presented to study the dispersion and clustering of inertial particles in a forced homogeneous and isotropic turbulent flow and to analyze the relative importance of the various forces acting [...] Read more.
A combination of lattice Boltzmann method (LBM)-based computations and Lagrangian particle tracking simulations is presented to study the dispersion and clustering of inertial particles in a forced homogeneous and isotropic turbulent flow and to analyze the relative importance of the various forces acting on particles. The particle dynamics are investigated across a wide range of particle-to-fluid density ratios (from 0.01 to 1000) and Stokes numbers (from 1.4 × 10−6 to 55.4), at a Taylor microscale Reynolds number of 33.6. Particle clustering is quantified using Voronoï tessellations. Results confirm that clustering intensity is maximized at Stokes numbers around unity, where particles preferentially accumulate in low-vorticity regions. Particle dynamics within the turbulent flow considered here vary fundamentally with density and size, even among tracer-like particles. Low-density and neutrally buoyant particles mimic tracers via either velocity matching or acceleration balance, while dense particles follow inertia-dominated dynamics. Full article
Show Figures

Figure 1

19 pages, 1780 KB  
Article
Steady Radial Diverging Flow of a Particle-Laden Fluid with Particle Migration
by C. Q. Ru
Fluids 2025, 10(8), 200; https://doi.org/10.3390/fluids10080200 - 1 Aug 2025
Viewed by 201
Abstract
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the [...] Read more.
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the fluid depends on their inlet velocity ratio at the entrance, the mass density ratio and the Stokes number of particles, and the particles heavier (or lighter) than the fluid will move faster (or slower) than the fluid when their inlet velocities are equal (then Stokes drag vanishes at the entrance). The relative motion of particles with respect to the fluid leads to particle migration and the non-uniform distribution of particles. An explicit expression is obtained for the steady particle distribution eventually attained due to particle migration. Our results demonstrated and confirmed that, for both light particles (gas bubbles) and heavy particles, depending on the particle-to-fluid mass density ratio, the volume fraction of particles attains its maximum or minimum value near the entrance of the radial flow and after then monotonically decreases or increases with the radial coordinate and converges to an asymptotic value determined by the particle-to-fluid inlet velocity ratio. Explicit solutions given here could help quantify the steady particle distribution in the decelerating radial flow of a particle-fluid suspension. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

18 pages, 1583 KB  
Article
Heat Transfer Characteristics of Thermosyphons Used in Vacuum Water Heaters
by Zied Lataoui, Adel M. Benselama and Abdelmajid Jemni
Fluids 2025, 10(8), 199; https://doi.org/10.3390/fluids10080199 - 31 Jul 2025
Viewed by 253
Abstract
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to [...] Read more.
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to investigate the effects of the operating conditions for a thermosyphon used in solar water heaters. The study particularly focuses on the influence of the inclination angle. Thus, a comprehensive simulation model is developed using the volume of fluid (VOF) approach. Complex and related phenomena, including two-phase flow, phase change, and heat exchange, are taken into account. To implement the model, an open-source CFD toolbox based on finite volume formulation, OpenFOAM, is used. The model is then validated by comparing numerical results to the experimental data from the literature. The obtained results show that the simulation model is reliable for investigating the effects of various operating conditions on the transient and steady-state behavior of the thermosyphon. In fact, bubble creation, growth, and advection can be tracked correctly in the liquid pool at the evaporator. The effects of the designed operating conditions on the heat transfer parameters are also discussed. In particular, the optimal tilt angle is shown to be 60° for the intermediate saturation temperature (<50 °C) and 90° for the larger saturation temperature (>60 °C). Full article
(This article belongs to the Special Issue Convective Flows and Heat Transfer)
Show Figures

Figure 1

19 pages, 26478 KB  
Article
Three-Dimensional Numerical Simulation of Flow Around a Spur Dike in a Meandering Channel Bend
by Yan Xing, Congfang Ai, Hailong Cui and Zhangling Xiao
Fluids 2025, 10(8), 198; https://doi.org/10.3390/fluids10080198 - 29 Jul 2025
Viewed by 338
Abstract
This paper presents a three-dimensional (3D) free surface model to predict incompressible flow around a spur dike in a meandering channel bend, which is highly 3D due to the presence of curvature effects. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations using an [...] Read more.
This paper presents a three-dimensional (3D) free surface model to predict incompressible flow around a spur dike in a meandering channel bend, which is highly 3D due to the presence of curvature effects. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations using an explicit projection method. The 3D grid system is built from a two-dimensional grid by adding dozens of horizontal layers in the vertical direction. Numerical simulations consider four test cases with different spur dike locations in the same meandering channel bend with the same Froude numbers as 0.22. Four turbulence models, the standard k-ε model, the k-ω model, the RNG k-ε model and a nonlinear k-ε model, are implemented in our three-dimensional free surface model. The performance of these turbulence models within the RANS framework is assessed. Comparisons between the model results and experimental data show that the nonlinear k-ε model behaves better than the three other models in general. Based on the results obtained by the nonlinear k-ε model, the highly 3D flow field downstream of the spur dike was revealed by presenting velocity vectors at representative cross-sections and streamlines at the surface and bottom layers. Meanwhile, the 3D characteristics of the downstream separation zone were also investigated. In addition, to highlight the advantage of the nonlinear turbulence model, comparisons of velocity vectors at representative cross-sections between the results obtained by the linear and nonlinear k-ε models are also presented. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

21 pages, 6272 KB  
Article
Numerical Study of Gas Dynamics and Condensate Removal in Energy-Efficient Recirculation Modes in Train Cabins
by Ivan Panfilov, Alexey N. Beskopylny, Besarion Meskhi and Sergei F. Podust
Fluids 2025, 10(8), 197; https://doi.org/10.3390/fluids10080197 - 29 Jul 2025
Viewed by 261
Abstract
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy [...] Read more.
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy efficiency of the train. In this study, a model of liquid film formation on and removal from various cabin surfaces was constructed using the fundamental Navier–Stokes hydrodynamic equations. A special transport model based on the liquid vapor diffusion equation was used to simulate the air environment inside the cabin. The evaporation and condensation of surface films were simulated using the Euler film model, which directly considers liquid–gas and gas–liquid transitions. Numerical results were obtained using the RANS equations and a turbulence model by means of the finite volume method in Ansys CFD. Conjugate fields of temperature, velocity and moisture concentration were constructed for various time intervals, and the dependence values for the film thicknesses on various surfaces relative to time were determined. The verification was conducted in comparison with the experimental data, based on the protocol for measuring the microclimate indicators in workplaces, as applied to the train cabin: the average ranges encompassed temperature changes from 11% to 18%, and relative humidity ranges from 16% to 26%. Comparison with the results of other studies, without considering the phase transition and condensation, shows that, for the warm mode, the average air temperature in the cabin with condensation is 12.5% lower than without condensation, which is related to the process of liquid evaporation from the heated walls. The difference in temperature values for the model with and without condensation ranged from −12.5% to +4.9%. We demonstrate that, with an effective mode of removing condensate film from the window surface, including recirculation modes, the energy consumption of the climate control system improves significantly, but this requires a more accurate consideration of thermodynamic parameters and relative humidity. Thus, considering the moisture condensation model reveals that this variable can significantly affect other parameters of the microclimate in cabins: in particular, the temperature. This means that it should be considered in the numerical modeling, along with the basic heat transfer equations. Full article
Show Figures

Figure 1

23 pages, 5974 KB  
Article
Gas–Liquid Two-Phase Flow in a Hydraulic Braking Pipeline: Flow Pattern and Bubble Characteristics
by Xiaolu Li, Yiyu Ke, Cangsu Xu, Jia Sun and Mingxuan Liang
Fluids 2025, 10(8), 196; https://doi.org/10.3390/fluids10080196 - 29 Jul 2025
Viewed by 377
Abstract
An in-depth analysis of the two-phase flow in a hydraulic braking pipeline can reveal its evolution process pertinent for designing and maintaining the hydraulic system. In this study, a high-speed camera examined the two-phase flow pattern and bubble characteristics in a hydraulic braking [...] Read more.
An in-depth analysis of the two-phase flow in a hydraulic braking pipeline can reveal its evolution process pertinent for designing and maintaining the hydraulic system. In this study, a high-speed camera examined the two-phase flow pattern and bubble characteristics in a hydraulic braking pipeline. Bubble flow pattern recognition, bubble segmentation, and bubble tracking were performed to analyze the bubble movement, including its behavior, distribution, velocity, and acceleration. The results indicate that the gas–liquid two-phase flow patterns in the hydraulic braking pipeline include bubbly, slug, plug, annular, and transient flows. Experiments reveal that bubbly flow is the most frequent, followed by slug, plug, and transient flows. However, plug and transient flows are unstable, while annular flow occurs at a wheel speed of 200 r/min. Bubbles predominantly appear in the upper section of the pipeline. Furthermore, large bubbles travel faster than small bubbles, whereas slug flow bubbles exhibit higher velocities than those in plug or transient flows. Full article
(This article belongs to the Special Issue Hydraulic Flow in Pipelines)
Show Figures

Figure 1

24 pages, 5313 KB  
Article
The Influence of Gravity Gradient on the Inertialess Stratified Flow and Vortex Structure over an Obstacle in a Narrow Channel
by Karanvir Singh Grewal, Roger E. Khayat and Kelly A. Ogden
Fluids 2025, 10(8), 195; https://doi.org/10.3390/fluids10080195 - 29 Jul 2025
Viewed by 320
Abstract
The current study examines the influence of a varying gravity field and its interaction with density stratification. This represents a novel area in baroclinic flow analysis. The classical vortex and internal wave structures in stratified flows are shown to be significantly modified when [...] Read more.
The current study examines the influence of a varying gravity field and its interaction with density stratification. This represents a novel area in baroclinic flow analysis. The classical vortex and internal wave structures in stratified flows are shown to be significantly modified when gravity varies with height. Vortices may shift, stretch, or weaken depending on the direction and strength of gravity variation, and internal waves develop asymmetries or damping that are not present under constant gravity. We examine the influence of gravity variation on the flow of both homogeneous and density-stratified fluids in a channel with topography consisting of a Gaussian obstacle lying at the bottom of the channel. The flow is without inertia, induced by the translation of the top plate. Both the density and gravity are assumed to vary linearly with height, with the minimum density at the moving top plate. The narrow-gap approach is used to generate the flow field in terms of the pressure gradient along the top plate, which, in turn, is obtained in terms of the bottom topography and the three parameters of the problem, namely, the Froude number and the density and gravity gradients. The resulting stream function is a fifth-order polynomial in the vertical coordinate. In the absence of stratification, the flow is smooth, affected rather slightly by the variable topography, with an essentially linear drop in the pressure induced by the contraction. For a weak stratified fluid, the streamlines become distorted in the form of standing gravity waves. For a stronger stratification, separation occurs, and a pair of vortices generally appears on the two sides of the obstacle, the size of which depends strongly on the flow parameters. The influence of gravity stratification is closely coupled to that of density. We examine conditions where the coupling impacts the pressure and the velocity fields, particularly the onset of gravity waves and vortex flow. Only a mild density gradient is needed for flow separation to occur. The influence of the amplitude and width of the obstacle is also investigated. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

23 pages, 5286 KB  
Article
Measurements of Wake Concentration from a Finite Release of a Dense Fluid Upstream of a Cubic Obstacle
by Romana Akhter and Nigel Kaye
Fluids 2025, 10(8), 194; https://doi.org/10.3390/fluids10080194 - 29 Jul 2025
Viewed by 283
Abstract
Results are reported for a series of small-scale experiments that examine the dispersion of dense gas released upstream of an isolated building. The experiments replicate the geometry of the Thorney Island Phase II field tests and show good qualitative agreement with the flow [...] Read more.
Results are reported for a series of small-scale experiments that examine the dispersion of dense gas released upstream of an isolated building. The experiments replicate the geometry of the Thorney Island Phase II field tests and show good qualitative agreement with the flow regimes observed therein. The experiments were run in a water flume, and the flow is characterized by the Richardson number (Ri), where high Ri represent relatively high density releases. For low Ri the dense cloud flows over and around the building and any fluid drawn into the building wake is rapidly flushed. However, for high Ri, the dense cloud collapses, flows around the building, and is drawn into the wake. The dense fluid layer becomes trapped in the wake and is flushed by small parcels of fluid being peeled off the top of the layer and driven up and out of the wake. Results are presented for the concentration field along the center plane (parallel to the flow) of the building wake and time series of concentration just above the floor and downstream of the building. The time series for low-Ri and high-Ri flows are starkly different, with differences explained in terms of the observed flow regimes. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

28 pages, 10432 KB  
Review
Rapid CFD Prediction Based on Machine Learning Surrogate Model in Built Environment: A Review
by Rui Mao, Yuer Lan, Linfeng Liang, Tao Yu, Minhao Mu, Wenjun Leng and Zhengwei Long
Fluids 2025, 10(8), 193; https://doi.org/10.3390/fluids10080193 - 28 Jul 2025
Viewed by 2052
Abstract
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. [...] Read more.
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. In the field of built environment research, surrogate modeling has become a key technology to connect the needs of high-fidelity CFD simulation and rapid prediction, whereas the low-dimensional nature of traditional surrogate models is unable to match the physical complexity and prediction needs of built flow fields. Therefore, combining machine learning (ML) with CFD to predict flow fields in built environments offers a promising way to increase simulation speed while maintaining reasonable accuracy. This review briefly reviews traditional surrogate models and focuses on ML-based surrogate models, especially the specific application of neural network architectures in rapidly predicting flow fields in the built environment. The review indicates that ML accelerates the three core aspects of CFD, namely mesh preprocessing, numerical solving, and post-processing visualization, in order to achieve efficient coupled CFD simulation. Although ML surrogate models still face challenges such as data availability, multi-physics field coupling, and generalization capability, the emergence of physical information-driven data enhancement techniques effectively alleviates the above problems. Meanwhile, the integration of traditional methods with ML can further enhance the comprehensive performance of surrogate models. Notably, the online ministry of trained ML models using transfer learning strategies deserves further research. These advances will provide an important basis for advancing efficient and accurate operational solutions in sustainable building design and operation. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
Show Figures

Figure 1

24 pages, 8255 KB  
Article
Non-Periodic Reconstruction from Sub-Sampled Velocity Measurement Data Based on Data-Fusion Compressed Sensing
by Jun Hong, Ziyu Chen, Jiawei Lu and Gang Xiao
Fluids 2025, 10(8), 192; https://doi.org/10.3390/fluids10080192 - 26 Jul 2025
Viewed by 287
Abstract
Compressive sensing (CS) is capable of resolving high frequencies from subsampled data. However, it is challenging to apply CS in non-periodic flow fields with multiple frequencies. This study introduces a novel data fusion CS approach aimed at reconstructing temporally resolved flow fields from [...] Read more.
Compressive sensing (CS) is capable of resolving high frequencies from subsampled data. However, it is challenging to apply CS in non-periodic flow fields with multiple frequencies. This study introduces a novel data fusion CS approach aimed at reconstructing temporally resolved flow fields from subsampled particle image velocimetry (PIV) data, integrating constraints derived from a limited number of high-frequency pointwise measurements. The approach combines measurements from particle image velocimetry (PIV), which have high spatial resolution but low temporal resolution, and a few pointwise probes, which have high temporal resolution but low spatial resolution. In the proposed method, proper orthogonal decomposition (POD) is conducted first to the PIV data, thus acquiring spatial modes and low-temporally resolved coefficients. To reconstruct the non-periodic and multiple-frequency coefficients from the PIV data, the traditional CS yields strong high-frequency noise. In this regard, the coefficients obtained from the pointwise measurements using least square (LS) regression can serve as a reciprocal space to suppress the high-frequency noise in the CS reconstruction. Using relaxation factors, the results from LS regression apply the upper and lower boundaries for the CS. By fusing the pointwise measurement and PIV data, the reconstruction performance can be significantly improved. To verify the performance, non-periodic and multiple frequency flow fields in the wake of two cylinders with different diameters are used. Compared to the ground truth, CS and LS reconstruction give an error of about 7% and 13%, respectively. On the other hand, the data fusion CS only has an error of about 2%. The dependency of this method on the number of pointwise probes is also examined. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

26 pages, 1429 KB  
Review
Descriptors of Flow in Computational Hemodynamics
by Bogdan Ene-Iordache
Fluids 2025, 10(8), 191; https://doi.org/10.3390/fluids10080191 - 25 Jul 2025
Viewed by 596
Abstract
A considerable amount of scientific evidence demonstrates that the regime of magnitude, direction, and/or frequency of wall shear stress (WSS) modulates endothelial cell function and structure, influencing vascular biology in health and disease. Advances in computational fluid dynamics (CFD) and fluid–structure interaction (FSI) [...] Read more.
A considerable amount of scientific evidence demonstrates that the regime of magnitude, direction, and/or frequency of wall shear stress (WSS) modulates endothelial cell function and structure, influencing vascular biology in health and disease. Advances in computational fluid dynamics (CFD) and fluid–structure interaction (FSI) simulations in cardiovascular medicine have enabled accurate WSS quantification, correlating flow behavior and its interaction with the vessel wall with disease progression. To effectively analyze and interpret the results of numerical simulations, various descriptors of blood flow were defined. Such indicators allow researchers to quantify and characterize key aspects of blood flow, facilitating the study of healthy and pathological conditions, medical device design, and treatment planning. However, a very fast-growing collection of hemodynamic metrics were defined and used: whether called indicators, parameters, metrics, or indexes, they will be here referred to as hemodynamic descriptors. This narrative review was aimed at synthesizing scientific literature about the descriptors used to analyze blood flow in computational cardiovascular studies, highlighting their significance, applications, and advancements. Full article
(This article belongs to the Special Issue Advances in Hemodynamics and Related Biological Flows)
Show Figures

Figure 1

25 pages, 3790 KB  
Article
Studying Inverse Problem of Microscale Droplets Squeeze Flow Using Convolutional Neural Network
by Aryan Mehboudi, Shrawan Singhal and S.V. Sreenivasan
Fluids 2025, 10(8), 190; https://doi.org/10.3390/fluids10080190 - 24 Jul 2025
Viewed by 379
Abstract
We present a neural-network-based approach to solve the image-to-image translation problem in microscale droplets squeeze flow. A residual convolutional neural network is proposed to address the inverse problem: reconstructing a low-resolution (LR) droplet pattern image from a high-resolution (HR) liquid film thickness imprint. [...] Read more.
We present a neural-network-based approach to solve the image-to-image translation problem in microscale droplets squeeze flow. A residual convolutional neural network is proposed to address the inverse problem: reconstructing a low-resolution (LR) droplet pattern image from a high-resolution (HR) liquid film thickness imprint. This enables the prediction of initial droplet configurations that evolve into target HR imprints after a specified spreading time. The developed neural network architecture aims at learning to tune the refinement level of its residual convolutional blocks by using function approximators that are trained to map a given film thickness to an appropriate refinement level indicator. We use multiple stacks of convolutional layers, the output of which is translated according to the refinement level indicators provided by the directly connected function approximators. Together with a non-linear activation function, the translation mechanism enables the HR imprint image to be refined sequentially in multiple steps until the target LR droplet pattern image is revealed. We believe that this work holds value for the semiconductor manufacturing and packaging industry. Specifically, it enables desired layouts to be imprinted on a surface by squeezing strategically placed droplets with a blank surface, eliminating the need for customized templates and reducing manufacturing costs. Additionally, this approach has potential applications in data compression and encryption. Full article
Show Figures

Figure 1

17 pages, 3179 KB  
Article
Changes in Physical Parameters of CO2 Containing Impurities in the Exhaust Gas of the Purification Plant and Selection of Equations of State
by Xinyi Wang, Zhixiang Dai, Feng Wang, Qin Bie, Wendi Fu, Congxin Shan, Sijia Zheng and Jie Sun
Fluids 2025, 10(8), 189; https://doi.org/10.3390/fluids10080189 - 23 Jul 2025
Viewed by 342
Abstract
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the [...] Read more.
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the preferred scheme for transporting impurity-containing CO2 tail gas in purification plants due to its advantages of simple technology, low cost, and high safety, which are well suited to the scenarios of low transportation volume and short distance in purification plants. The research on its physical property and state parameters is precisely aimed at optimizing the process design of gaseous transportation so as to further improve transportation efficiency and safety. Therefore, it has important engineering practical significance. Firstly, this paper collected and analyzed the research cases of CO2 transport both domestically and internationally, revealing that phase state and physical property testing of CO2 gas containing impurities is the basic condition for studying CO2 transport. Subsequently, the exhaust gas captured by the purification plant was captured after hydrodesulfurization treatment, and the characteristics of the exhaust gas components were obtained by comparing before and after treatment. By preparing fluid samples with varied CO2 content and conducting the flash evaporation test and PV relationship test, the compression factor and density of natural gas under different temperatures and pressures were obtained. It is concluded that under the same pressure in general, the higher the CO2 content, the smaller the compression factor. Except for pure CO2, the higher the CO2 content, the higher the density under constant pressure, which is related to the content of C2 and heavier hydrocarbon components. At the same temperature, the higher the CO2 content, the higher the viscosity under the same pressure; the lower the pressure, the slower the viscosity growth slows down. The higher the CO2 content at the same temperature, the higher the specific heat at constant pressure. With the decrease in temperature, the CO2 content reaching the highest specific heat at the identical pressure gradually decreases. Finally, BWRS, PR, and SRK equations of state were utilized to calculate the compression factor and density of the gas mixture with a molar composition of 50% CO2 and the gas mixture with a molar composition of 100% CO2. Compared with the experimental results, the most suitable equation of state is selected as the PR equation, which refers to the parameter setting of critical nodes of CO2 gas transport. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop