Particles in Homogeneous Isotropic Turbulence: Clustering and Relative Influence of the Forces Exerted on Particles
Abstract
1. Introduction
2. Simulation Set-Up
2.1. Turbulent Flow
2.2. Particle Dynamics
2.3. Simulation Parameters
3. Results
3.1. Turbulent Flow Analysis
3.2. Cluster Identification
3.3. Relative Importance of the Different Hydrodynamic Contributions Acting on Particles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
forcing parameter | - | |
matrix term of linear function of particle velocity | N·s/m | |
vector term of linear function of particle velocity | N | |
drag coefficient | - | |
added mass coefficient | - | |
particle diameter | m | |
dimensionless particle diameter | - | |
particle-to-fluid density ratio | - | |
shear lift coefficient | - | |
drag force | N | |
Faxén correction | N | |
forces acting on particle | N | |
inertia force | N | |
pressure gradient force | N | |
added mass force | N | |
shear lift force | N | |
identity matrix | - | |
k | turbulent kinetic energy | m2/s2 |
L | integral length scale | m |
mass of particle | kg | |
pressure | N/m2 | |
invariant of the velocity gradient tensor | s−2 | |
enstrophy density | s−2 | |
volumic mean enstrophy | s−2 | |
shear Reynolds number | - | |
particle Reynolds number | - | |
Taylor microscale Reynolds number | - | |
deformation tensor | - | |
particle transversal section | m2 | |
fluid velocity | m/s | |
fluid velocity at particle position | m/s | |
particle velocity | m/s | |
integral velocity scale | m/s | |
particle position | m | |
strain rate | s−1 | |
strain rate at the particle location | s−1 | |
rotation rate | s−1 | |
rotation rate at the particle location | s−1 | |
space step/length lattice unit | - | |
time step/time lattice unit | - | |
turbulent dissipation rate | m2/s3 | |
Kolmogorov length scale | m | |
dynamic viscosity | Pa s | |
kinematic viscosity | m2s−1 | |
vorticity | s−1 | |
fluid density | kg/m3 | |
particle density | kg/m3 | |
integral time scale | s | |
Kolmogorov integral time scale | s | |
particle relaxation time | s | |
Stokes number | - |
References
- Guha, A. Transport and Deposition of Particles in Turbulent and Laminar Flow. Annu. Rev. Fluid Mech. 2008, 40, 311–341. [Google Scholar] [CrossRef]
- Domingo, P.; Vervisch, L.; Réveillon, J. DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combust. Flame 2005, 140, 172–195. [Google Scholar] [CrossRef]
- Eskin, D.; Ratulowski, J.; Akbarzadeh, K.; Andersen, S. Modeling of asphaltene deposition in a production tubing. AIChE J. 2012, 58, 2936–2948. [Google Scholar] [CrossRef]
- Bellot, J.-P.; Kroll-Rabotin, J.-S.; Gisselbrecht, M.; Joishi, M.; Saxena, A.; Sanders, S.; Jardy, A. Toward Better Control of Inclusion Cleanliness in a Gas Stirred Ladle Using Multiscale Numerical Modeling. Materials 2018, 11, 1179. [Google Scholar] [CrossRef]
- Huai, W.; Li, S.; Katul, G.G.; Liu, M.; Yang, Z. Flow dynamics and sediment transport in vegetated rivers: A review. J. Hydrodyn. 2021, 33, 400–420. [Google Scholar] [CrossRef]
- Squires, K.D.; Eaton, J.K. Preferential concentration of particles by turbulence. Phys. Fluids A Fluid Dyn. 1991, 3, 1169–1178. [Google Scholar] [CrossRef]
- Eaton, J.K.; Fessler, J.R. Preferential concentration of particles by turbulence. Int. J. Multiph. Flow 1994, 20, 169–209. [Google Scholar] [CrossRef]
- Wang, L.-P.; Maxey, M.R. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 1993, 256, 27–68. [Google Scholar] [CrossRef]
- Aliseda, A.; Cartellier, A.; Hainaux, F.; Lasheras, J.C. Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 2002, 468, 77–105. [Google Scholar] [CrossRef]
- Ireland, P.J.; Bragg, A.D.; Collins, L.R. The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects. J. Fluid Mech. 2016, 796, 617–658. [Google Scholar] [CrossRef]
- Brandt, L.; Coletti, F. Particle-Laden Turbulence: Progress and Perspectives. Annu. Rev. Fluid Mech. 2022, 54, 159–189. [Google Scholar] [CrossRef]
- Maxey, M.R.; Riley, J.J. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 1983, 26, 883–889. [Google Scholar] [CrossRef]
- Armenio, V.; Fiorotto, V. The importance of the forces acting on particles in turbulent flows. Phys. Fluids 2001, 13, 2437–2440. [Google Scholar] [CrossRef]
- Elghobashi, S.; Truesdell, G.C. Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 1992, 242, 655–700. [Google Scholar] [CrossRef]
- Daitche, A. On the role of the history force for inertial particles in turbulence. J. Fluid Mech. 2015, 782, 567–593. [Google Scholar] [CrossRef]
- Olivieri, S.; Picano, F.; Sardina, G.; Iudicone, D.; Brandt, L. The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence. Phys. Fluids 2014, 26, 041704. [Google Scholar] [CrossRef]
- Yokojima, S.; Shimada, Y.; Mukaiyama, K. A further study of history force effect on particle clustering in turbulence. Eur. J. Mech.-B/Fluids 2024, 103, 11–24. [Google Scholar] [CrossRef]
- Eggels, J.G.M.; Somers, J.A. Numerical simulation of free convective flow using the lattice-Boltzmann scheme. Int. J. Heat Fluid Flow 1995, 16, 357–364. [Google Scholar] [CrossRef]
- Sungkorn, R.; Derksen, J.J. Simulations of dilute sedimenting suspensions at finite-particle Reynolds numbers. Phys. Fluids 2012, 24, 123303. [Google Scholar] [CrossRef]
- Lundgren, T.S. Linearly forced isotropic turbulence. Annu. Res. Briefs 2003, 461–473. [Google Scholar]
- Carroll, P.L.; Blanquart, G. A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 2013, 25, 105114. [Google Scholar] [CrossRef]
- Rosales, C.; Meneveau, C. Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties. Phys. Fluids 2005, 17, 095106. [Google Scholar] [CrossRef]
- Schiller, L.; Naumann, A. A drag coefficient correlation. Z. Ver. Dtsch. Ing. 1933, 77, 318–320. [Google Scholar]
- Saffman, P.G. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 1965, 22, 385–400. [Google Scholar] [CrossRef]
- Mei, R. An approximate expression for the shear lift force on a spherical particle at finite reynolds number. Int. J. Multiph. Flow 1992, 18, 145–147. [Google Scholar] [CrossRef]
- Taylor, G.I. The forces on a body placed in a curved or converging stream of fluid. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1928, 120, 260–283. [Google Scholar] [CrossRef]
- Magnaudet, J.; Rivero, M.; Fabre, J. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 1995, 284, 97–135. [Google Scholar] [CrossRef]
- Valiño, L.; Martín, J.; Házi, G. Dynamics of Isotropic Homogeneous Turbulence with Linear Forcing Using a Lattice Boltzmann Method. Flow Turbul. Combust. 2010, 84, 219–237. [Google Scholar] [CrossRef]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511–525. [Google Scholar] [CrossRef]
- Monchaux, R.; Bourgoin, M.; Cartellier, A. Analyzing preferential concentration and clustering of inertial particles in turbulence. Int. J. Multiph. Flow 2012, 40, 1–18. [Google Scholar] [CrossRef]
- Baker, B.; Lawson, R.P. Analysis of Tools Used to Quantify Droplet Clustering in Clouds. J. Atmos. Sci. 2010, 67, 3355–3367. [Google Scholar] [CrossRef]
- Shaw, R.A.; Kostinski, A.B.; Larsen, M.L. Towards quantifying droplet clustering in clouds. Q. J. R. Meteorol. Soc. 2002, 128, 1043–1057. [Google Scholar] [CrossRef]
- Han, K.; Lee, H.; Hwang, W. Pseudo real-time continuous measurements of particle preferential concentration in homogeneous isotropic turbulence. Exp. Therm. Fluid Sci. 2020, 112, 109968. [Google Scholar] [CrossRef]
- Baker, L.; Frankel, A.; Mani, A.; Coletti, F. Coherent clusters of inertial particles in homogeneous turbulence. J. Fluid Mech. 2017, 833, 364–398. [Google Scholar] [CrossRef]
- Wood, A.M.; Hwang, W.; Eaton, J.K. Preferential concentration of particles in homogeneous and isotropic turbulence. Int. J. Multiph. Flow 2005, 31, 1220–1230. [Google Scholar] [CrossRef]
- Petersen, A.J.; Baker, L.; Coletti, F. Experimental study of inertial particles clustering and settling in homogeneous turbulence. J. Fluid Mech. 2019, 864, 925–970. [Google Scholar] [CrossRef]
- Shen, J.; Lu, Z.; Wang, L.-P.; Peng, C. Influence of particle-fluid density ratio on the dynamics of finite-size particles in homogeneous isotropic turbulent flows. Phys. Rev. E 2021, 104, 025109. [Google Scholar] [CrossRef]
- Bec, J.; Gustavsson, K.; Mehlig, B. Statistical Models for the Dynamics of Heavy Particles in Turbulence. Annu. Rev. Fluid Mech. 2024, 56, 189–213. [Google Scholar] [CrossRef]
- Ariki, T.; Yoshida, K.; Matsuda, K.; Yoshimatsu, K. Scale-similar clustering of heavy particles in the inertial range of turbulence. Phys. Rev. E 2018, 97, 033109. [Google Scholar] [CrossRef]
- Monchaux, R.; Bourgoin, M.; Cartellier, A. Preferential concentration of heavy particles: A Voronoï analysis. Phys. Fluids 2010, 22, 103304. [Google Scholar] [CrossRef]
- Ferenc, J.-S.; Néda, Z. On the size distribution of Poisson Voronoi cells. Phys. A Stat. Mech. Its Appl. 2007, 385, 518–526. [Google Scholar] [CrossRef]
- Jiménez, J.; Wray, A.A.; Saffman, P.G.; Rogallo, R.S. The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 1993, 255, 65–90. [Google Scholar] [CrossRef]
- Wang, X.; Wan, M.; Yang, Y.; Wang, L.-P.; Chen, S. Reynolds number dependence of heavy particles clustering in homogeneous isotropic turbulence. Phys. Rev. Fluids 2020, 5, 124603. [Google Scholar] [CrossRef]
[] | [] | [] | [] | [] | [] |
---|---|---|---|---|---|
0.047 | 1 |
Case | ||||||||
---|---|---|---|---|---|---|---|---|
1 | ||||||||
4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellache, H.; Chapelle, P.; Kroll-Rabotin, J.-S. Particles in Homogeneous Isotropic Turbulence: Clustering and Relative Influence of the Forces Exerted on Particles. Fluids 2025, 10, 201. https://doi.org/10.3390/fluids10080201
Bellache H, Chapelle P, Kroll-Rabotin J-S. Particles in Homogeneous Isotropic Turbulence: Clustering and Relative Influence of the Forces Exerted on Particles. Fluids. 2025; 10(8):201. https://doi.org/10.3390/fluids10080201
Chicago/Turabian StyleBellache, Hamid, Pierre Chapelle, and Jean-Sébastien Kroll-Rabotin. 2025. "Particles in Homogeneous Isotropic Turbulence: Clustering and Relative Influence of the Forces Exerted on Particles" Fluids 10, no. 8: 201. https://doi.org/10.3390/fluids10080201
APA StyleBellache, H., Chapelle, P., & Kroll-Rabotin, J.-S. (2025). Particles in Homogeneous Isotropic Turbulence: Clustering and Relative Influence of the Forces Exerted on Particles. Fluids, 10(8), 201. https://doi.org/10.3390/fluids10080201