An Insight into Blood Flow and Wall Shear Stress in Abdominal Aortic Aneurysms Coupling Laboratory and CFD Simulations
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Investigation Setup
2.2. Numerical Investigation Setup
Numerical Model Validation
3. Results and Discussion
3.1. Flow Patterns in ASYM AAA
3.2. Numerical Simulations
SYM vs. ASYM AAA
- Axial velocity profiles
- WSS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAA | Abdominal aortic aneurysm |
WSS | Wall shear stress |
TWSS | Time-averaged wall shear stress |
PWSS | Peak wall shear stress |
OSI | Oscillatory shear index |
ILT | Intraluminal thrombus thickness |
RRT | Relative residence time |
CFD | Computational fluid dynamics |
SYM | Symmetrical bulge |
ASYM | Asymmetrical bulge |
HLPT | Hybrid Lagrangian Particle Tracking |
RANS | Reynolds-Averaged Navier–Stokes equations |
References
- Manta, A.; Tzirakis, K. A Comprehensive Review on Computational Analysis, Research Advances, and Major Findings on Abdominal Aortic Aneurysms for the Years 2021 to 2023. Ann. Vasc. Surg. 2025, 110 Pt A, 63–81. [Google Scholar] [CrossRef]
- Chaikof, E.L.; Dalman, R.L.; Eskandari, M.K.; Jackson, B.M.; Lee, W.A.; Mansour, M.A.; Mastracci, T.M.; Mell, M.; Murad, M.H.; Nguyen, L.L.; et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018, 67, 2–77. [Google Scholar] [CrossRef] [PubMed]
- Wanhainen, A.; Van Herzeele, I.; Bastos Goncalves, F.; Bellmunt Montoya, S.; Berard, X.; Boyle, J.R.; D’Oria, M.; Prendes, C.F.; Karkos, C.D.; Kazimierczak, A.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Abdominal Aorto-Iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 192–331. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.K.; Gueldner, P.H.; Aloziem, O.U.; Liang, N.L.; Vorp, D.A. An artificial intelligence based abdominal aortic aneurysm prognosis classifier to predict patient outcomes. Sci. Rep. 2024, 14, 3390. [Google Scholar] [CrossRef] [PubMed]
- Belkacemi, D.; Al-Rawi, M.; Abbes, M.T.; Laribi, B. Flow behaviour and wall shear stress derivatives in abdominal aortic aneurysm models: A detailed CFD analysis into asymmetry effect. CFD Lett. 2022, 14, 60–74. [Google Scholar] [CrossRef]
- Urrutia, J.; Roy, A.; Raut, S.S.; Antón, R.; Muluk, S.C.; Finol, E.A. Geometric surrogates of abdominal aortic aneurysm wall mechanics. Med. Eng. Phys. 2018, 59, 43–49. [Google Scholar] [CrossRef]
- Vorp, D.A.; Raghavan, M.L.; Webster, M.W. Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry. J. Vasc. Surg. 1998, 27, 632–639. [Google Scholar] [CrossRef]
- Rawat, D.S.; Pourquie, M.; Poelma, C. Numerical Investigation of Turbulence in Abdominal Aortic Aneurysms. J. Biomech. Eng. 2019, 141, 061001. [Google Scholar] [CrossRef]
- Vergara, C.; Le Van, D.; Quadrio, M.; Formaggia, L.; Domanin, M. Large eddy simulations of blood dynamics in abdominal aortic aneurysms. Med. Eng. Phys. 2017, 47, 38–46. [Google Scholar] [CrossRef]
- Zambrano, B.A.; Gharahi, H.; Lim, C.; Jaberi, F.A.; Lee, W.; Baek, S. Association of intraluminal thrombus, hemodynamic forces, and abdominal aortic aneurysm expansion using longitudinal CT images. Ann. Biomed. Eng. 2016, 44, 1502–1514. [Google Scholar] [CrossRef]
- Saha, S.C.; Francis, I.; Saha, G.; Huang, X.; Molla, M.M. Hemodynamic Insights into Abdominal Aortic Aneurysms: Bridging the Knowledge Gap for Improved Patient Care. Fluids 2024, 9, 50. [Google Scholar] [CrossRef]
- Quarteroni, A.; Manzoni, A.; Vergara, C. The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 2017, 26, 365–590. [Google Scholar] [CrossRef]
- Deplano, V.; Knapp, Y.; Bertrand, E.; Gaillard, E. Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm. J. Biomech. 2007, 340, 2406–2413. [Google Scholar] [CrossRef] [PubMed]
- Querzoli, G.; Fortini, S.; Espa, S.; Melchionne, S. A laboratory model of the aortic root flow including the coronary arteries. Exp. Fluids 2016, 57, 134. [Google Scholar] [CrossRef]
- Yazdi, S.G.; Huetter, L.; Docherty, P.D.; Williamson, P.N.; Clucas, D.; Jermy, M.; Geoghegan, P.H. A Novel Fabrication Method for Compliant Silicone Phantoms of Arterial Geometry for Use in Particle Image Velocimetry of Haemodynamics. Appl. Sci. 2019, 9, 3811. [Google Scholar] [CrossRef]
- He, W.; Jiao, M.; Fang, X.; Shen, Z.; Cai, Q.; Zhang, L. In vitro study of flow characteristics in abdominal aortic aneurysm. AIP Adv. 2024, 14, 2158–3226. [Google Scholar] [CrossRef]
- Conlisk, N.; Geers, A.J.; McBride, O.M.; Newby, D.E.; Hoskins, P.R. Patient-specific modelling of abdominal aortic aneurysms: The influence of wall thickness on predicted clinical outcomes. Med. Eng. Phys. 2016, 38, 526–537. [Google Scholar] [CrossRef]
- Bardi, F.; Gasparotti, E.; Vignali, E.; Antonuccio, M.N.; Storto, E.; Avril, S.; Celi, S. A hybrid mock circulatory loop integrated with a LED-PIV system for the investigation of AAA compliant phantoms. Front. Bioeng. Biotechnol. 2024, 12, 1452278. [Google Scholar] [CrossRef]
- Fan, T.; Wang, J.; Wang, X.; Chen, X.; Zhao, D.; Xie, F.; Chen, G. Integrated multidisciplinary approach to aneurysm hemodynamic analysis: Numerical simulation, in Vitro experiment, and deep learning. Front. Bioeng. Biotechnol. 2025, 13, 1602190. [Google Scholar] [CrossRef]
- Espa, S.; Moroni, M.; Boniforti, M.A. In-Vitro Simulation of the Blood Flow in an Axisymmetric Abdominal Aortic Aneurysm. Appl. Sci. 2019, 9, 4560. [Google Scholar] [CrossRef]
- Shindler, L.; Moroni, M.; Cenedese, A. Using optical flow equation for particle detection and velocity prediction in particle tracking. Appl. Math. Comput. 2012, 218, 8684–8694. [Google Scholar] [CrossRef]
- Li, Z.; Kleinstreuer, C. A comparison between different asymmetric abdominal aortic aneurysm morphologies employing computational fluid–structure interaction analysis. Eur. J. Mech. B/Fluids 2007, 26, 615–631. [Google Scholar] [CrossRef]
- Al-Jumaily, A.M.; Embong, A.H.B.; Al-Rawi, M.; Mahadevan, G.; Sugita, S. Aneurysm rupture prediction based on strain energy-CFD modelling. Bioengineering 2023, 10, 1231. [Google Scholar] [CrossRef]
# | Q (lh−1) | Q (10−3 m3s−1) | Re | Wb (ms−1) | τPois (N/m2) |
---|---|---|---|---|---|
1 | 25 | 0.007 | 490 | 0.027 | 0.012 |
2 | 50 | 0.014 | 980 | 0.055 | 0.024 |
3 | 75 | 0.021 | 1470 | 0.082 | 0.036 |
4 | 100 | 0.028 | 1970 | 0.109 | 0.049 |
5 | 150 | 0.042 | 2950 | 0.164 | 0.073 |
6 | 200 | 0.056 | 3930 | 0.218 | 0.097 |
Model | Model Description | Minimum Size (10−3 m) | Maximum Size (10−3 m) | Number of Elements |
---|---|---|---|---|
SYM | Symmetrical AAA | 0.293 | 0.586 | 2,557,965 |
ASYM | Asymmetrical AAA | 0.280 | 0.561 | 5,805,835 |
# | τP (Pa) | τAS (Pa) | τD (Pa) |
---|---|---|---|
1 | 0.0116 | 0.0012 | 0.0199 |
2 | 0.0253 | 0.0025 | 0.0464 |
3 | 0.0379 | 0.0034 | 0.0724 |
4 | 0.0507 | 0.0039 | 0.0993 |
5 | 0.1445 | 0.0592 | 0.3729 |
6 | 0.2251 | 0.0889 | 0.5878 |
# | τP Anterior (Pa) | τP Posterior (Pa) | τAS Anterior (Pa) | τAS Posterior (Pa) | τD Anterior (Pa) | τD Posterior (Pa) |
---|---|---|---|---|---|---|
1 | 0.0146 | 0.0122 | 0.0031 | 0.0048 | 0.0384 | 0.0210 |
2 | 0.0256 | 0.0233 | 0.0057 | 0.0106 | 0.0527 | 0.0403 |
3 | 0.0374 | 0.0355 | 0.0077 | 0.0166 | 0.0682 | 0.0624 |
4 | 0.0494 | 0.0478 | 0.0076 | 0.0226 | 0.1376 | 0.0847 |
5 | 0.0886 | 0.1536 | 0.0949 | 0.0753 | 0.8959 | 0.4122 |
6 | 0.1191 | 0.2388 | 0.1494 | 0.1208 | 1.3920 | 0.6409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moroni, M.; Espa, S. An Insight into Blood Flow and Wall Shear Stress in Abdominal Aortic Aneurysms Coupling Laboratory and CFD Simulations. Fluids 2025, 10, 218. https://doi.org/10.3390/fluids10080218
Moroni M, Espa S. An Insight into Blood Flow and Wall Shear Stress in Abdominal Aortic Aneurysms Coupling Laboratory and CFD Simulations. Fluids. 2025; 10(8):218. https://doi.org/10.3390/fluids10080218
Chicago/Turabian StyleMoroni, Monica, and Stefania Espa. 2025. "An Insight into Blood Flow and Wall Shear Stress in Abdominal Aortic Aneurysms Coupling Laboratory and CFD Simulations" Fluids 10, no. 8: 218. https://doi.org/10.3390/fluids10080218
APA StyleMoroni, M., & Espa, S. (2025). An Insight into Blood Flow and Wall Shear Stress in Abdominal Aortic Aneurysms Coupling Laboratory and CFD Simulations. Fluids, 10(8), 218. https://doi.org/10.3390/fluids10080218