Computational Fluid Dynamics Applied to Transport Phenomena

A special issue of Fluids (ISSN 2311-5521). This special issue belongs to the section "Mathematical and Computational Fluid Mechanics".

Deadline for manuscript submissions: closed (31 August 2025) | Viewed by 3341

Special Issue Editors


E-Mail Website
Guest Editor
Escola de Engenharia, Universidade Federal do Rio Grande—FURG, Rio Grande 96203-900, Brazil
Interests: computational fluid dynamics; computational solid mechanics; renewable energy; constructal design
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Escola de Engenharia, Universidade Federal do Rio Grande—FURG, Rio Grande 96203-900, Brazil
Interests: thermodynamics; fluid mechanics; heat transfer; constructal design

E-Mail Website
Guest Editor
Escola de Engenharia, Universidade Federal do Rio Grande—FURG, Rio Grande 96203-900, Brazil
Interests: fluid mechanics; heat transfer; renewable energy; constructal design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In engineering, transport phenomena refer to the study and analysis of how mass, energy, and momentum move and distribute in different media. These phenomena are fundamental in various engineering fields such as chemical, mechanical, civil, and environmental engineering. Therefore, understanding and controlling these phenomena is crucial for the efficient design and operation of systems and processes in engineering. Additionally, it is well known that an efficient and versatile way to approach the problems of transport phenomena in engineering is through computational fluid dynamics (CFD). For this Special Issue, we call for a wide range of papers addressing computational modeling applied to transport phenomena, which can be supported by analytical and/or experimental approaches. Topics of interest include, but are not limited to, the following: internal and external flows, multiphase flows, heat exchangers, refrigeration systems, chemical reactors, sediment transport, pollutant dispersion, wastewater treatment, and renewable energy systems.

Additionally, this Special Issue will also publish selected papers from the 10º MCSul/X SEMENGO (MCSul: Southern Conference on Computational Modeling; SEMENGO: Seminar and Workshop on Ocean Engineering; https://www.even3.com.br/10-conferencia-sul-em-modelagem-computacional-10-mcsul-e-o-x-seminario-e-workshop-em-engenharia-oceanica-x-semengo-435016/) held on 4–6 December 2024, in Rio Grande do Sul, Brazil.

Prof. Dr. Liércio André Isoldi
Prof. Dr. Luiz Alberto Oliveira Rocha
Prof. Dr. Elizaldo Domingues Dos Santos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fluids is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • heat transfer
  • fluid flow
  • numerical simulation
  • computational modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

30 pages, 19735 KB  
Article
Assessing Pedestrian Comfort in Dense Urban Areas Using CFD Simulations: A Study on Wind Angle and Building Height Variations
by Paulo Ulisses da Silva, Gustavo Bono and Marcelo Greco
Fluids 2025, 10(9), 233; https://doi.org/10.3390/fluids10090233 - 1 Sep 2025
Viewed by 495
Abstract
Pedestrian wind comfort is a critical factor in the design of sustainable and livable dense urban areas. This study systematically investigates the effects of surrounding building height and wind incidence angle on pedestrian-level wind conditions, analyzing a nine-building arrangement through validated Computational Fluid [...] Read more.
Pedestrian wind comfort is a critical factor in the design of sustainable and livable dense urban areas. This study systematically investigates the effects of surrounding building height and wind incidence angle on pedestrian-level wind conditions, analyzing a nine-building arrangement through validated Computational Fluid Dynamics (CFD) simulations. Scenarios included neighborhood heights varying from 0L to 6L and wind angles from 0° to 45°. The results reveal that wind angles aligned with urban canyons (0° case) induce a strong Venturi effect, creating hazardous conditions with Mean Velocity Ratio (MVR) peaks reaching 3.42. Conversely, an oblique 45° angle mitigates high speeds by promoting flow recirculation. While increasing neighborhood height generally intensifies channeling, the study also highlights that even an isolated building (0L case) can generate hazardous localized velocities due to flow separation around its corners. The Overall Mean Velocity Ratio (OMVR) analysis identifies that, among the studied cases, a 2L neighborhood height is the most tolerable configuration, striking a balance between sheltering and channeling effects. Ultimately, these findings highlight for urban planners the importance of analyzing diverse geometric configurations and wind scenarios, reinforcing the value of CFD as an essential tool for designing safer and more comfortable public spaces. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

19 pages, 26478 KB  
Article
Three-Dimensional Numerical Simulation of Flow Around a Spur Dike in a Meandering Channel Bend
by Yan Xing, Congfang Ai, Hailong Cui and Zhangling Xiao
Fluids 2025, 10(8), 198; https://doi.org/10.3390/fluids10080198 - 29 Jul 2025
Viewed by 408
Abstract
This paper presents a three-dimensional (3D) free surface model to predict incompressible flow around a spur dike in a meandering channel bend, which is highly 3D due to the presence of curvature effects. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations using an [...] Read more.
This paper presents a three-dimensional (3D) free surface model to predict incompressible flow around a spur dike in a meandering channel bend, which is highly 3D due to the presence of curvature effects. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations using an explicit projection method. The 3D grid system is built from a two-dimensional grid by adding dozens of horizontal layers in the vertical direction. Numerical simulations consider four test cases with different spur dike locations in the same meandering channel bend with the same Froude numbers as 0.22. Four turbulence models, the standard k-ε model, the k-ω model, the RNG k-ε model and a nonlinear k-ε model, are implemented in our three-dimensional free surface model. The performance of these turbulence models within the RANS framework is assessed. Comparisons between the model results and experimental data show that the nonlinear k-ε model behaves better than the three other models in general. Based on the results obtained by the nonlinear k-ε model, the highly 3D flow field downstream of the spur dike was revealed by presenting velocity vectors at representative cross-sections and streamlines at the surface and bottom layers. Meanwhile, the 3D characteristics of the downstream separation zone were also investigated. In addition, to highlight the advantage of the nonlinear turbulence model, comparisons of velocity vectors at representative cross-sections between the results obtained by the linear and nonlinear k-ε models are also presented. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

22 pages, 3296 KB  
Article
Performance of an L-Shaped Duct OWC-WEC Integrated into Vertical and Sloped Breakwaters by Using a Free-Surface RANS-Based Numerical Model
by Eric Didier and Paulo R. F. Teixeira
Fluids 2025, 10(5), 114; https://doi.org/10.3390/fluids10050114 - 30 Apr 2025
Cited by 1 | Viewed by 670
Abstract
Waves generated by the wind in oceans and seas have a significant available quantity of clean and renewable energy. However, harvesting their energy is still a challenge. The integration of an oscillating water column (OWC) wave energy converter into a breakwater leads to [...] Read more.
Waves generated by the wind in oceans and seas have a significant available quantity of clean and renewable energy. However, harvesting their energy is still a challenge. The integration of an oscillating water column (OWC) wave energy converter into a breakwater leads to more viability, since it allows working as both harbor and coastal protection and harvesting wave energy. The main objective of this study is to investigate different configurations of L-shaped duct OWC devices inserted into vertical and sloped (2:3) impermeable breakwaters for different lengths of the lip by using a numerical model based on the Reynolds-Averaged Navier-Stokes equations. The ANSYS FLUENT® software (2016) is used in 2D numerical simulations by adopting the volume of fluid method to consider the two-phase free surface flow (water and air). It was observed that both the length of the lip and the length of the L-shaped duct OWC significantly influence the resonance and the efficiency of the OWC device. In addition, the performance of the OWC device varies significantly with its geometric configuration, which needs to be adapted for the local sea state. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

21 pages, 2488 KB  
Article
Combination of Integral Transforms and Linear Optimization for Source Reconstruction in Heat and Mass Diffusion Problems
by André J. P. de Oliveira, Diego C. Knupp, Luiz A. S. Abreu, David A. Pelta and Antônio J. da Silva Neto
Fluids 2025, 10(4), 106; https://doi.org/10.3390/fluids10040106 - 21 Apr 2025
Cited by 1 | Viewed by 421
Abstract
This paper presents a novel methodology for estimating space- and time-dependent source terms in heat and mass diffusion problems. The approach combines classical integral transform techniques (CITTs) with the least squares optimization method, enabling an efficient reconstruction of source terms. The method employs [...] Read more.
This paper presents a novel methodology for estimating space- and time-dependent source terms in heat and mass diffusion problems. The approach combines classical integral transform techniques (CITTs) with the least squares optimization method, enabling an efficient reconstruction of source terms. The method employs a double expansion framework, using both spatial eigenfunction and temporal expansions. The new presented idea assumes that the source term can be expressed as a spatial expansion in eigenfunctions of the eigenvalue problem, and then each transient function associated with each term of spatial expansion is rewritten as an additional expansion, where the unknown coefficients approximating the transformed source enable the direct use of the solution in the objective function. This, in turn, results in a linear optimization problem that can be quickly minimized. Numerical experiments, including one-dimensional and two-dimensional scenarios, demonstrate the accuracy of the proposed method in the presence of noisy data. The results highlight the method’s robustness and computational efficiency, even with minimal temporal expansion terms. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

15 pages, 3456 KB  
Article
Evaluation of the Adsorption Potential of Benzo(a)pyrene in Coal Produced from Sewage Treatment Station Sludge
by Natiele Kleemann, Débora Jaeschke, Nauro Silveira, Jr., Luiz Pinto, Tito Cadaval, Jr., Jean Arias, Sergiane Barbosa, Ednei Primel and Adilson Bamberg
Fluids 2025, 10(4), 98; https://doi.org/10.3390/fluids10040098 - 7 Apr 2025
Cited by 2 | Viewed by 516
Abstract
This work investigates the adsorption of benzo[a]pyrene (BaP) using a charcoal adsorbent derived from sewage treatment plant sludge. BaP is a polycyclic aromatic hydrocarbon (PAH), carcinogenic to humans, which his used by the World Health Organization as a marker for all PAH mixtures. [...] Read more.
This work investigates the adsorption of benzo[a]pyrene (BaP) using a charcoal adsorbent derived from sewage treatment plant sludge. BaP is a polycyclic aromatic hydrocarbon (PAH), carcinogenic to humans, which his used by the World Health Organization as a marker for all PAH mixtures. The charcoal was produced by the pyrolysis (500 °C, 4 h) of municipal sewage sludge. The resulting biochar presented mesoporous and oxygenated functional groups that are beneficial for the adsorption of benzo[a]pyrene. The material contained graphitic structures, suggesting potential sites for π–π interactions. The adsorption followed the Elovich kinetic model. A maximum adsorbed value of 60.8 µg g−1 was achieved for an initial BaP concentration of 100 µg L−1 of BaP at 298 K after 20 min. Parameters related to mass transfer phenomena, such as the intraparticle diffusion coefficient, were determined using the homogeneous solid diffusion model (HSDM). These experimental data demonstrate the great potential for computational fluid dynamics (CFD) applications. The value reached for the intraparticle diffusion coefficient was 1.63 × 10−13 m2s−1. Adsorption equilibrium experiments showed that the Langmuir model was most suitable for experimental data, suggesting a monolayer molecular adsorption process. The results showed that charcoal can be employed as an effective material for removing BaP. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

Back to TopTop