Previous Issue
Volume 14, May-1
 
 

Plants, Volume 14, Issue 10 (May-2 2025) – 72 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
21 pages, 4110 KiB  
Article
Identification and Functional Analysis of Endophytic Bacteria Bacillus cereus in Sphagnum palustre
by Hongying Wang, Jiankang Xin, Xiaona Zhang and Shan Jiang
Plants 2025, 14(10), 1476; https://doi.org/10.3390/plants14101476 - 14 May 2025
Abstract
Endophytic bacteria in Sphagnum palustre have a growth-promoting effect on plants. In this study, the endophytic bacterium strain J11 in S. palustre was isolated and identified as Bacillus cereus, and its growth cycle, functional characteristics, and effects on maize growth were analyzed. [...] Read more.
Endophytic bacteria in Sphagnum palustre have a growth-promoting effect on plants. In this study, the endophytic bacterium strain J11 in S. palustre was isolated and identified as Bacillus cereus, and its growth cycle, functional characteristics, and effects on maize growth were analyzed. The results indicate that as B. cereus, the growth cycle of J11 consists of four phases, and the logarithmic phase lasts 2~24 h, with the abilities of phosphorus solubilization, protease, IAA, siderophore, and NH3 production. The phosphorus solubilization ability of J11 ranges from 1.66 ± 0.07 to 1.98 ± 0.07 mg/L, and the IAA production varies from 1.51 ± 0.07 to 8.67 ± 0.16 mg/L. It has a growth-promoting effect on maize by increasing the seed germination rate by 29.27%, plant height by 4.21%, leaf length by 17.12%, leaf width by 29.51%, above-ground fresh weight by 50.79%, below-ground fresh weight by 46.30%, and chlorophyll content by 56.81%. This study represents the first report on the isolation and identification of B. cereus from S. palustre. Furthermore, this study systematically investigated its multiple plant growth-promoting traits and functional characteristics. These findings provide valuable resources and a theoretical foundation for the development and functional exploration of microbial resources in agricultural applications. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

24 pages, 1608 KiB  
Article
Genomic Survey of Genes Encoding Major Intrinsic Proteins (MIPs) and Their Response to Arsenite Stress in Pepper (Capsicum annum)
by Syed Muhammad Azam, Kaixuan Huang, Jiaxin Yuan, Yanqing Bai, Qiaolin Chen, Panpan Dang, Hend Alwathnani, Hajar Fahad Bin Zayid, Renwei Feng and Christopher Rensing
Plants 2025, 14(10), 1475; https://doi.org/10.3390/plants14101475 - 14 May 2025
Abstract
Major intrinsic proteins (MIPs) are a super family of proteins that mediate the bidirectional concentration-dependent flux of water in particularly small solutes in fraction and some metalloids across the cell membrane. This article reports the genome-wide study of pepper genes encoding MIPs and [...] Read more.
Major intrinsic proteins (MIPs) are a super family of proteins that mediate the bidirectional concentration-dependent flux of water in particularly small solutes in fraction and some metalloids across the cell membrane. This article reports the genome-wide study of pepper genes encoding MIPs and their expression analysis. Using a bioinformatics homology search, 48 CAMIPs were identified on the genome of pepper. A total of 48 MIPs were further divided in sub classes as 22 CATIPs, 15 CAPIPs, 10 CANIPs, and 1 CASIP. The 48 Pepper MIP encoding genes were mapped on the 12 pepper chromosomes. CAMIP synteny analysis exhibited 17 duplicated genes, and these were clustered into eight tandem duplicated regions on pepper chromosomes. The tissue-specific expression of MIPs based on RNA-Seq showed certain CANIPs, CATIPs, and CAPIPs were highly expressed in roots, while some CATIPs and CASIPs were expressed in stem as well. As(III), at 0.5 and 1 mM, was applied to pepper plants, where 1 mM significantly reduced leaf chlorophyll content, leaf nitrogen content, and root length. To see which CAMIPs participate in As(III) transport, we tested the response of genes encoding MIPs to As(III) through qRT-PCR. As(III) uptake was observed in both shoot and root samples treated with 0.5 mM and 1 mM As(III) for 12 h and 24 h because of MIPs’ quantitative response through qRT-PCR. Most of the MIPs were down-regulated in response to both levels of As(III); besides CANIPs, there were CATIPs and CAPIPs up-regulated in response to higher concentrations of As(III) in the roots and shoot, which suggests the involvement of CAMIPs in the uptake as well as detoxification mechanism in pepper against As(III). Unlike prokaryotes, plant MIPs have diverse selectivity for arsenite and other solutes. Our study provides important insights into the arsenite uptake and detoxification, offering a foundation for further functional and stress-tolerance studies. Full article
(This article belongs to the Special Issue Biological Responses of Plants to Environmental Pollution)
11 pages, 1594 KiB  
Article
In Vitro and In Vivo Antitumor Activity of a Chloroform Partition from Ibervillea sonorae (S. Watson) GreeneEndophytic Bacillus subtilis Extracts
by Ricardo Romero-Arguelles, César Iván Romo-Sáenz, Patricia Tamez-Guerra, Diego Fonseca-Rivera, Joel H. Elizondo-Luevano, Nancy Edith Rodriguez-Garza, Orquidea Perez-Gutierrez, Celia María Quiñones-Flores, Carlos Arzate-Quintana, Lydia Paulina Loya Hernandez and Ricardo Gomez-Flores
Plants 2025, 14(10), 1474; https://doi.org/10.3390/plants14101474 - 14 May 2025
Abstract
Cancer is a complex disease due to its high variability and resistance to conventional treatments. The search for new therapies has prompted the study of less invasive natural sources, such as endophytic bacteria from medicinal plants. Bacillus subtilis is known to produce bioactive [...] Read more.
Cancer is a complex disease due to its high variability and resistance to conventional treatments. The search for new therapies has prompted the study of less invasive natural sources, such as endophytic bacteria from medicinal plants. Bacillus subtilis is known to produce bioactive metabolites with promising pharmacological properties. This study evaluated the antitumor activity of the endophyte B. subtilis from Ibervillea sonorae against murine L5178Y-R lymphoma cells within in vitro and in vivo models. B. subtilis methanol extract was fractionated in hexane, chloroform, and methanol, with the chloroform partition showing the highest tumor cell growth inhibition (IC50 = 34.62 ± 0.180 µg/mL) and the highest selectivity index (SI = 15.53) when compared with the hexane and methanol partitions. The in vivo study showed that mice treated with 10 mg/kg of the chloroform partition significantly (p < 0.01) reduced the tumor volume and weight without affecting tumor-free body weight. The maximum tolerated dose test indicated that 10 mg/kg was safe and well tolerated. These results indicate that B. subtilis may be a promising source of selective antitumor compounds. Full article
(This article belongs to the Special Issue Toxicity and Anticancer Activities of Natural Products from Plants)
Show Figures

Figure 1

25 pages, 936 KiB  
Article
Chemical Profiling of Polyphenolic Fraction of Cannabis sativa L. vr. Kompolti Industrial Inflorescences: Insights into Cannabidiol Neuroprotective Effects in a Cellular Model of Parkinson’s Disease
by Francesca Fantasma, Gilda D’Urso, Noemi Martella, Alessandra Capuano, Eleonora Boccia, Vadym Samukha, Vincenzo De Felice, Gabriella Saviano, Federico Trombetta, Gianluigi Lauro, Marco Segatto, Maria Giovanna Chini, Giuseppe Bifulco, Agostino Casapullo and Maria Iorizzi
Plants 2025, 14(10), 1473; https://doi.org/10.3390/plants14101473 - 14 May 2025
Abstract
The ultra-high-performance liquid chromatography high-resolution mass spectrometry (LC-ESI-HR-MS/MS) technique was used to characterize the polyphenolic fraction of the hot water infusion (WI) of inflorescences of Cannabis sativa L. Kompolti variety, commercially used for food preparations or cosmetic purposes. On water infusion extract, we [...] Read more.
The ultra-high-performance liquid chromatography high-resolution mass spectrometry (LC-ESI-HR-MS/MS) technique was used to characterize the polyphenolic fraction of the hot water infusion (WI) of inflorescences of Cannabis sativa L. Kompolti variety, commercially used for food preparations or cosmetic purposes. On water infusion extract, we applied a multidisciplinary approach, where NMR, MS, in vitro cell-free and cell-based assays coupled with in silico studies, were used to rationalize at the molecular level the effects of the major component Cannabidiol (CBD), in a model of Parkinson’s disease (PD). The phytochemical analysis by LC-MS/MS led to the tentative identification of many components belonging to different classes of polyphenols, such as phenolic acids, flavonoids, and their glycosides. CBD and cannabidiolic acid (CBDA) were also detected in good amounts in the infusion, together with several minor cannabinoids. In addition, the water infusion WI was evaluated for mineral content, total phenolic content, flavonoid content, and antioxidant capacity by DPPH and FRAP methods. Notably, our results in a cellular model of PD highlight that CBD protects against rotenone-induced cell death without recovering neuronal morphology. These biological outcomes were rationalized by an in silico approach, where we hypothesize that CBD could influence the cellular response to oxidative stress via its interaction with the Keap1/Nrf2 pathway. In summary, these results enriched the nutraceutical profile of the water infusion of the inflorescences of the Kompolti cultivar, which demonstrated a high CBD content. This study could lead to the development of dietary supplements that could help in the management of clinical symptoms related to the antioxidant activity of CBD in the pathophysiology of PD, which remains poorly characterized. Full article
Show Figures

Graphical abstract

18 pages, 1158 KiB  
Review
Pre-mRNA Splicing Functions in Plant Sexual Reproduction Development
by Dongjie Shao, Xinqi Gao and Yiming Wei
Plants 2025, 14(10), 1472; https://doi.org/10.3390/plants14101472 - 14 May 2025
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a critical post-transcriptional regulatory mechanism in gene expression. The precise splicing of pre-mRNAs is essential for plant development and responding to genetic and environmental signals. In plant sexual reproduction, gene expression regulation relies on the accurate processing [...] Read more.
Precursor messenger RNA (pre-mRNA) splicing is a critical post-transcriptional regulatory mechanism in gene expression. The precise splicing of pre-mRNAs is essential for plant development and responding to genetic and environmental signals. In plant sexual reproduction, gene expression regulation relies on the accurate processing of pre-mRNAs, which is fundamental for coordinating developmental programs. The alternation of generations in plants involves two key phases: gametophyte development, which produces gametes, and fertilization, which leads to the formation of a diploid sporophyte. Gametophyte and embryo development represent essential processes in plant sexual reproduction. This review focuses on summarizing and analyzing the current evidence regarding the role of pre-mRNA splicing in plant sexual reproduction, with an emphasis on its involvement in gametophyte formation and embryo development. Future challenges in understanding RNA splicing regulation in plant sexual reproduction are also discussed, particularly in modulating splicing factor levels and activities and identifying target mRNAs and non-coding RNAs regulated by these factors. This review provides crucial insights into the molecular mechanisms of plant reproductive development and offers a theoretical basis for improving plant fertility and adaptability via RNA splicing regulation. Full article
(This article belongs to the Special Issue Plant Reproduction and Embryonic Development)
19 pages, 5427 KiB  
Article
Screening and Identification of Drought-Tolerant Genes in Tomato (Solanum lycopersicum L.) Based on RNA-Seq Analysis
by Yue Ma, Yushan Li, Fan Wang, Quan Qing, Chengzhu Deng, Hao Wang and Yu Song
Plants 2025, 14(10), 1471; https://doi.org/10.3390/plants14101471 - 14 May 2025
Abstract
Drought is one of the major abiotic stresses that inhibits plant growth and development. Therefore, it is critical to explore drought resistance genes in crops to obtain high-quality breeding materials. In this study, the drought-sensitive tomato line “FQ118” and the resistant line “FQ119” [...] Read more.
Drought is one of the major abiotic stresses that inhibits plant growth and development. Therefore, it is critical to explore drought resistance genes in crops to obtain high-quality breeding materials. In this study, the drought-sensitive tomato line “FQ118” and the resistant line “FQ119” were treated with PEG-6000 and, at 0 h (CK), 6 h, 24 h, 36 h and 48 h, the plants were evaluated for growth and physiological indicators, and leaf tissues were collected for RNA-seq. The growth indicators (growth trend, dry and fresh weights above- and below-ground, etc.) and the antioxidant enzyme system reflect that “FQ119” has stronger drought tolerance. Through RNA-seq analysis, a total of 68,316 transcripts (37,908 genes) were obtained. The largest number of significant differentially expressed genes (DEGs) in the comparison of “FQ118” and “FQ119” was observed at 6 h and 48 h. KEGG analysis demonstrated the significant enrichment of certain pathways associated with drought stress, such as glycerolipid metabolism and galactose metabolism. Co-expression analysis revealed that 7 hub DEGs, including genes encoding a photosystem reaction center subunit protein, chlorophyll a-b binding protein, glyceraldehyde-3-phosphate dehydrogenase A (GAPDH), and others, were coenriched in both comparisons. In addition, three hub genes specific to the comparison during the 6-h processing stage, encoding oxygen-evolving enhancer protein 1, receptor-like serine/threonine-protein kinase and calcium-transporting ATPase, were identified. The above hub genes were related to plant resistance to drought stress, and RT‒qPCR verified that the overall magnitudes of the differences in expression between the two lines gradually increased over time. Virus-induced gene silencing (VIGS) experiments have demonstrated that GAPDH plays a relevant role in the drought resistance pathway. In addition, the differences in expression of 7 DEGs encoding transcription factors, including Dofs, WRKYs, MYBs, and MYCs, also tended to increase with increasing duration of drought treatment, as determined via qPCR. In summary, this study identified several valuable genes related to plant drought resistance by screening genes with differential transcription under drought stress. This in-depth gene mining may provide valuable references and resources for future breeding for drought resistance in tomato. Full article
Show Figures

Figure 1

18 pages, 1879 KiB  
Article
Pantoea stewartii subsp. stewartii an Inter-Laboratory Comparative Study of Molecular Tests and Comparative Genome Analysis of Italian Strains
by Valeria Scala, Nicoletta Pucci, Riccardo Fiorani, Alessia L’Aurora, Alessandro Polito, Marco Di Marsico, Riccardo Aiese Cigliano, Eleonora Barra, Serena Ciarroni, Francesca De Amicis, Salvatore Fascella, Francesca Gaffuri, Andreas Gallmetzer, Francesca Giacobbi, Pasquale Domenico Grieco, Valeria Gualandri, Giovanna Mason, Daniela Pasqua di Bisceglie, Domenico Rizzo, Maria Rosaria Silletti, Simona Talevi, Marco Testa, Cosimo Tocci and Stefania Loretiadd Show full author list remove Hide full author list
Plants 2025, 14(10), 1470; https://doi.org/10.3390/plants14101470 - 14 May 2025
Abstract
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium causing Stewart wilt, a severe disease in maize. Native to North America, it has spread globally through the maize seed trade. Resistant maize varieties and insecticides are crucial to mitigate the disease’s economic impact. [...] Read more.
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium causing Stewart wilt, a severe disease in maize. Native to North America, it has spread globally through the maize seed trade. Resistant maize varieties and insecticides are crucial to mitigate the disease’s economic impact. Pss is a quarantine pest, requiring phytosanitary certification for the seed trade in European countries. Accurate diagnostic tests, including real-time PCR, are fundamental to detect Pss and distinguish it from other bacteria, like Pantoea stewartii subsp. indologenes (Psi), a non-quarantine bacteria associated with maize seeds. Population genetics is a valuable tool for studying adaptation, speciation, population structure, diversity, and evolution in plant bacterial pathogens. In this study, the key activities of interlaboratory comparisons are reported to assess diagnostic sensitivity (DSE), diagnostic specificity (DSP) and accuracy (ACC) for different real-time PCR able to detect Pss in seeds. The results of complete sequencing of Italian bacterial isolates are presented. This study enhances our understanding of molecular methods for diagnosing and identifying pathogens in maize seeds, improving knowledge of Pss genomes to prevent their spread and trace possible entry routes from endemic to non-endemic areas. Full article
Show Figures

Figure 1

22 pages, 2034 KiB  
Article
Subcanopy and Inter-Canopy Supplemental Light Enhances and Standardizes Yields in Medicinal Cannabis (Cannabis sativa L.)
by José Garrido, Carolina Corral, María Teresa García-Valverde, Jesús Hidalgo-García, Carlos Ferreiro-Vera and Juan José Martínez-Quesada
Plants 2025, 14(10), 1469; https://doi.org/10.3390/plants14101469 - 14 May 2025
Abstract
Light supplementation within the canopy is an effective method to improve light distribution throughout the whole plant, ensuring the inner canopies receive adequate light exposure to maximize overall growth. This approach is gaining interest among cannabis growers looking for more efficient lighting strategies [...] Read more.
Light supplementation within the canopy is an effective method to improve light distribution throughout the whole plant, ensuring the inner canopies receive adequate light exposure to maximize overall growth. This approach is gaining interest among cannabis growers looking for more efficient lighting strategies to enhance their valuable production for medicinal purposes. We compared the traditional top lighting (TL) approach with two light supplementation methods: subcanopy lighting (SCL), which adds extra light to the inner canopies from below, and inter-canopy lighting (ICL), providing dedicated light at the basal and middle levels. Both SCL and ICL resulted in a more uniform light distribution throughout the plants and increased the yields of inflorescences, cannabinoids, and terpenes. The ICL treatment achieved the highest yield increases, showing a 29.95% increase in dry inflorescence yield, a 24.4% higher accumulation of THC, and a 12.5% increase in total terpene concentration. Notably, both SCL and ICL reduced the coefficients of variation, yielding more standardized products by decreasing the variability of the dry inflorescences yield, which also had more consistent chemical profiles, with reductions in variability for both THC and total terpene yields of over 50%. Although using more energy for lighting, SCL was more power-efficient for inflorescence and cannabinoid yields, while ICL was more efficient in achieving yield enhancements. In conclusion, adding supplemental light to the inner canopies enhances the profitability of medical cannabis cultivation, resulting in higher yields, improved energy efficiency, and more standardized products for research and medical purposes. Full article
(This article belongs to the Special Issue Cannabis sativa: Advances in Biology and Cultivation—2nd Edition)
Show Figures

Figure 1

15 pages, 3400 KiB  
Article
Genetic Diversity and Conservation of Bomarea ovallei (Phil.) Ravenna: Microsatellite Markers Reveal Population Vulnerability in the Atacama Desert
by Valeska Rozas-Lazcano, Mariel Mamani-Gómez, Irina Rojas-Jopia, Mariana Arias-Aburto and Roberto Contreras-Díaz
Plants 2025, 14(10), 1468; https://doi.org/10.3390/plants14101468 - 14 May 2025
Abstract
The Atacama Desert, the driest and oldest desert on Earth, hosts a unique floral phenomenon known as the Desierto Florido (Flowering Desert), which occurs sporadically in response to rare rainfall events. Bomarea ovallei (Phil.) Ravenna is an endemic and endangered species of the [...] Read more.
The Atacama Desert, the driest and oldest desert on Earth, hosts a unique floral phenomenon known as the Desierto Florido (Flowering Desert), which occurs sporadically in response to rare rainfall events. Bomarea ovallei (Phil.) Ravenna is an endemic and endangered species of the Atacama Desert. However, its populations are geographically restricted and potentially vulnerable to genetic erosion due to isolation and extreme environmental conditions. This study aims to assess the genetic diversity of B. ovallei populations and develop microsatellite markers using next-generation sequencing (NGS) technology. A total of 268 microsatellite loci were identified, and 34 co-dominant markers were successfully developed for the first time in B. ovallei. Genetic diversity analysis using eight fluorescently labeled SSR markers revealed low genetic diversity across four populations, with the highest diversity observed in the QCA population, located within Llanos de Challe National Park, and the lowest in the TOTO population, which is highly exposed to anthropogenic activities. UPGMA and STRUCTURE analyses revealed three genetic clusters and high admixture among populations, suggesting historical or ongoing gene flow despite geographical separation. The presence of non-polymorphic loci and low PIC values in some markers further supports limited genetic variation. The newly developed microsatellite markers offer a valuable tool for future genetic studies, enabling the monitoring of genetic diversity and informing strategies for the preservation of this rare and ecologically significant species. Full article
(This article belongs to the Special Issue Genetic Diversity and Population Structure of Plants)
Show Figures

Figure 1

16 pages, 2326 KiB  
Article
LcTprxII Overexpression Enhances Physiological and Biochemical Effects in Maize Under Alkaline (Na2CO3) Stress
by David Pitia Julius Michael, Qing Liu, Yuejia Yin, Xuancheng Wei, Jainyu Lu, Faiz Ur Rehman, Aroge Temitope, Buxuan Qian, Hanchao Xia, Jiarui Han, Xiangguo Liu, Long Jiang, Xin Qi, Ruidong Sun, Ziqi Chen and Jian Zhang
Plants 2025, 14(10), 1467; https://doi.org/10.3390/plants14101467 - 14 May 2025
Abstract
Alkaline stress limits crop productivity by causing osmotic and oxidative damage. This study investigated the new gene LcTprxII, a type II peroxiredoxin encoded by Leymus chinensis, and its role in enhancing alkaline stress tolerance in transgenic maize. The gene was cloned, overexpressed, and [...] Read more.
Alkaline stress limits crop productivity by causing osmotic and oxidative damage. This study investigated the new gene LcTprxII, a type II peroxiredoxin encoded by Leymus chinensis, and its role in enhancing alkaline stress tolerance in transgenic maize. The gene was cloned, overexpressed, and characterized using RT-PCR, phylogenetic analysis, and motif identification. Transgenic maize lines were generated via Agrobacterium-mediated transformation and subjected to physiological, biochemical, and transcriptomic analyses under alkaline stress. Under alkaline stress, the results revealed that LcTprxII overexpression significantly preserved chlorophyll content, mitigated oxidative damage, and maintained growth compared to wild-type plants, as evidenced by elevated activities of antioxidant enzymes (APX, CAT, SOD, and POD) and reduced malondialdehyde (MDA) content. Transcriptomic profiling identified 3733 differentially expressed genes and the upregulation of ABA and MAPK signaling pathways, highlighting the role of these genes in stress signaling and metabolic adaptation. Hormonal analysis indicated reduced ABA and increased GA levels in the transgenic lines. This study identified WRKY, bHLH, and MYB transcription factors as key regulators activated under alkaline stress, contributing to transcriptional regulation in transgenic maize. Field trials confirmed the agronomic potential of LcTprxII-overexpressing maize, with yield maintained under alkaline conditions. The present study revealed that LcTprxII enhances antioxidant defenses and stress signaling, which trigger tolerance to abiotic stress. Future studies should explore the long-term effects on growth, yield, and molecular interactions under diverse environmental conditions. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

24 pages, 16276 KiB  
Article
Insight into the Influence of Ecological Factors on Shaping Distribution Patterns of Camptotheca acuminata for Conservation and Management
by Taojing Wang, Yuchen Li, Teja Manda, Jie Lin, Tianyu Huang, Yao Zhang and Liming Yang
Plants 2025, 14(10), 1466; https://doi.org/10.3390/plants14101466 - 14 May 2025
Abstract
Camptotheca acuminata Decne. is an endemic and valuable tree species in China that is renowned for its medicinal and economic value due to secondary metabolites like camptothecin, a potent anti-cancer compound. With wild resources dwindling, it is a key protected species. Predicting and [...] Read more.
Camptotheca acuminata Decne. is an endemic and valuable tree species in China that is renowned for its medicinal and economic value due to secondary metabolites like camptothecin, a potent anti-cancer compound. With wild resources dwindling, it is a key protected species. Predicting and analyzing its suitable habitats under different future environmental scenarios is essential for conservation, introduction, development, and planting strategies. This study used 1008 distribution points and 32 environmental factors, applying the MaxEnt v3.4.4 model and ArcGIS v10.7 software to predict C. acuminata’s potential distribution under four greenhouse gas emission scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) for the present, 2050, and 2070. This study identifies the key environmental factors influencing its distribution and analyzes habitat trends under various ecological scenarios. The dominant environmental factors are Bio6 (contribution 23%; importance 59.8%), human activity factor (contribution 18.6%; importance 15.7%), Slope2 (contribution 1%; importance 7%), Slope3 (contribution 5.1%; importance 3.4%), elevation (contribution 0.9%; importance 1.7%), and Bio14 (contribution 41.2%; importance 1%). The total potential suitable habitat area for C. acuminata is 1.5796 × 104 km2. Except under RCP8.5, where the habitat area continuously increases, the habitat area shows a trend of first increasing and then decreasing. When human activity is considered, the total potential suitable habitat area is 1.8495 × 104 km2, with a consistent decrease under all scenarios except RCP8.5. Centroid migration analysis shows that, driven by global warming, the suitable habitats for C. acuminata are shifting toward higher latitudes. This study provides theoretical support for the conservation, resource management, and germplasm protection of C. acuminata under future ecological and environmental changes. Full article
Show Figures

Figure 1

18 pages, 6047 KiB  
Article
Response of Photosynthesis and Chlorophyll Fluorescence to Nitrogen Changes in Rice with Different Nitrogen Use Efficiencies
by Zexin Qi, Chen Xu, Rui Tang, Qiang Zhang, Wenzheng Sun, Chenglong Guan, Ye Wang, Mengru Zhang, Jiale Ding, Yuankai Zhang, Hong Yang, Ying Yang, Xiaolong Liu, Zhian Zhang and Fenglou Ling
Plants 2025, 14(10), 1465; https://doi.org/10.3390/plants14101465 - 14 May 2025
Abstract
Nitrogen is a key element in promoting crop growth and development and improving photosynthesis. This study aimed to study the response of two rice genotypes to the restoration of N supply after varying periods of N deficiency. We used the low-nitrogen-tolerant rice Jijing [...] Read more.
Nitrogen is a key element in promoting crop growth and development and improving photosynthesis. This study aimed to study the response of two rice genotypes to the restoration of N supply after varying periods of N deficiency. We used the low-nitrogen-tolerant rice Jijing 88 (JJ 88) and the nitrogen-sensitive rice variety Xinong 999 (XN 999) as test materials. The results of this study indicated that, compared to XN 999, JJ 88 has a higher content of the photosynthetic pigments. Photosynthesis in JJ 88 has strong adaptability under low-nitrogen conditions. Upon an increase in the nitrogen supply level, the maximum regeneration rate of ribulose biphosphate (RuBP, Jmax) and the maximum carboxylation rate of RuBP (Vcmax) in JJ 88 showed a relatively large increase. The chlorophyll fluorescence parameters, including the effective quantum yield of photosystem II (ΦPSII), the efficiency of excitation capture by open PSII centers (Fv′/Fm′), photochemical fluorescence quenching (qP), and the electron transfer rate (ETR) decreased slightly, while the non-photochemical fluorescence quenching (NPQ) increased slightly. Under low-nitrogen conditions, low-nitrogen-tolerant rice varieties maintain reasonable growth during the seedling stage. With an increase in the nitrogen supply level, the dry matter accumulation, photosynthetic pigment content, photosynthesis, and electron transfer ability of plants improve, but not to normal nitrogen supply levels. However, compared with XN 999, JJ 88 has a more proactive recovery ability. The research results provide valuable guidance for the breeding of nitrogen-efficient rice varieties and nitrogen fertilizer management. Full article
(This article belongs to the Special Issue Advances in Nitrogen Nutrition in Plants)
Show Figures

Figure 1

15 pages, 3301 KiB  
Article
Exogenous GA3 Promotes Germination by Reducing Endogenous Inhibitors in Sainfoin (Onobrychis viciifolia) Seeds
by Yanyan Luo, Kun Wang, Yuheng Yao and Lili Nan
Plants 2025, 14(10), 1464; https://doi.org/10.3390/plants14101464 - 14 May 2025
Abstract
Endogenous inhibitors can inhibit seed germination, and GA3 can promote seed germination. Whether GA3 can affect the changes in endogenous inhibitors has not been clarified. In order to study the effect of GA3 on the endogenous inhibitors in sainfoin ( [...] Read more.
Endogenous inhibitors can inhibit seed germination, and GA3 can promote seed germination. Whether GA3 can affect the changes in endogenous inhibitors has not been clarified. In order to study the effect of GA3 on the endogenous inhibitors in sainfoin (Onobrychis viciifolia) seeds, the systematic separation method and gas chromatography–mass pectrometry (GC-MS) method were used to determine the endogenous inhibitors using cabbage (Brassica rapa var. glabra Regel) as a bioassay model to validate the inhibitory activity in sainfoin seeds, and then the optimal concentration of GA3 was determined to promote seed germination. The results showed that endogenous inhibitors existed in the pod coat, seed coat, and seed embryo of sainfoin seeds, with the methanol and ethyl acetate phases showing the highest degree of inhibition. The organic compounds were mainly organic acids, phenols, lipids, and alkanes. The levels of changes in germination indicators, storage substances, and antioxidant enzymes determined that 600 mg/L GA3 was the optimum concentration to promote germination of sainfoin seed. It was also found that 600 mg/L GA3 reduced the relative content of endogenous inhibitors and changed the content of endogenous hormones. In summary, the presence of endogenous inhibitors may be one of the reasons for the low germination rate of sainfoin seeds, with 3-methoxycatechol and 4-nitrosodiphenylamine playing a major role. GA3 can reduce the relative content and types of endogenous inhibitors to promote the germination of sainfoin seeds. Our experimental results provide the basis for subsequent exploration of the mechanism of specific endogenous inhibitors and the identification of deeper molecular mechanisms. Full article
Show Figures

Figure 1

25 pages, 2837 KiB  
Review
Oxidative Stress in Rice (Oryza sativa): Mechanisms, Impact, and Adaptive Strategies
by Lady Edlenill J. Tavu and Mark Christian Felipe R. Redillas
Plants 2025, 14(10), 1463; https://doi.org/10.3390/plants14101463 - 14 May 2025
Abstract
Oxidative stress, arising from environmental challenges such as drought, salinity, extreme temperatures, and pathogen attack, significantly impairs rice (Oryza sativa) growth, yield, and grain quality. This review provides a comprehensive synthesis of the mechanisms underlying oxidative stress in rice, with a [...] Read more.
Oxidative stress, arising from environmental challenges such as drought, salinity, extreme temperatures, and pathogen attack, significantly impairs rice (Oryza sativa) growth, yield, and grain quality. This review provides a comprehensive synthesis of the mechanisms underlying oxidative stress in rice, with a focus on the generation of reactive oxygen species (ROS), their physiological and molecular impacts, and the antioxidant defense systems employed for mitigation. The roles of enzymatic and non-enzymatic antioxidants, along with key transcription factors, signaling pathways, and stress-responsive genes, are explored in detail. This study further highlights varietal differences in oxidative stress tolerance, emphasizing traditional, modern, and genetically engineered rice cultivars. Recent advances in breeding strategies, gene editing technologies, and multi-omics integration are discussed as promising approaches for enhancing stress resilience. The regulatory influence of epigenetic modifications and small RNAs in modulating oxidative stress responses is also examined. Finally, this paper identifies critical research gaps—including the need for multi-stress tolerance, long-term field validation, and deeper insights into non-coding RNA functions—and offers recommendations to inform the development of climate-resilient rice varieties through integrative, sustainable strategies. Full article
Show Figures

Figure 1

20 pages, 4454 KiB  
Article
Toxicity of Essential Oils of Origanum vulgare, Salvia rosmarinus, and Salvia officinalis Against Aculops lycopersici
by Thomas Giordano, Giuliano Cerasa, Ilaria Marotta, Mauro Conte, Santo Orlando, Adele Salamone, Michele Massimo Mammano, Carlo Greco and Haralabos Tsolakis
Plants 2025, 14(10), 1462; https://doi.org/10.3390/plants14101462 - 14 May 2025
Abstract
The tomato russet mite (TRM), Aculops lycopersici, is a destructive pest of tomato crops worldwide. It poses a significant challenge to growers in both greenhouse and open-field conditions. Traditional chemical control methods are often ineffective, promote resistance, and have negative environmental impacts. [...] Read more.
The tomato russet mite (TRM), Aculops lycopersici, is a destructive pest of tomato crops worldwide. It poses a significant challenge to growers in both greenhouse and open-field conditions. Traditional chemical control methods are often ineffective, promote resistance, and have negative environmental impacts. This has prompted the search for alternative strategies, such as biological control and eco-friendly botanical pesticides. In this study, we evaluated the acaricidal effects of essential oils (EOs) extracted from three officinal plants, Origanum vulgare L., Salvia rosmarinus Spenn., and Salvia officinalis L., cultivated using precision aromatic crop (PAC) techniques. Their efficacy was evaluated against A. lycopersici under laboratory conditions. The chemical composition of the EOs was determined by solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC-MS). The dominant component of O. vulgare EO was carvacrol (83.42%), followed by ρ-cymene (3.06%), and γ-terpinene (2.93%). In S. rosmarinus, α-pinene (28.0%), 1,8-cineole (11.00%), and borneol (7.72%) were the major components. S. officinalis EO was characterized by high levels of 1,8-cineole (27.67%), camphor (21.91%), and crisantenone (12.87%). We tested multiple concentrations (320–5000 μL L−1) and exposure times (1–4 days) to assess mite mortality. The results revealed both dose- and time-dependent toxic activity, with significant differences among EOs. O. vulgare EO was the most toxic, causing 90% mortality at 0.5% (w/v) concentration after 4 days. S. rosmatinus and S. officinalis EOs had more limited effects, with 46% and 42% mortality, respectively. Lethal concentration (LC50) values were 2.23 mL L−1 (95% CI: 1.74–3.05) for O. vulgare, 5.84 mL L−1 (95% CI: 3.28–22.29) for S. rosmarinus, and 6.01 mL L−1 (95% CI: 2.63–261.60) for S. officinalis. These results indicate that O. vulgare EO shows efficacy comparable to commercially available botanical pesticides. Our findings support the potential of O. vulgare EO as a viable alternative for the control of A. lycopersici, contributing to integrated pest management (IPM) strategies. Full article
(This article belongs to the Special Issue Plant Protection: Focusing on Phytophagous Mites)
Show Figures

Graphical abstract

21 pages, 4037 KiB  
Article
Comparative Study on the Effects of Silicon Nanoparticles and Cellulose Nanocrystals on Drought Tolerance in Tall Fescue (Festuca arundinacea Schreb.)
by Meng Li, Sile Hu, Xulong Bai, Jie Ren, Kanliang Tian, Huili Zhang, Zhilong Zhang and Vanquy Nguyen
Plants 2025, 14(10), 1461; https://doi.org/10.3390/plants14101461 - 14 May 2025
Abstract
Tall fescue (Festuca arundinacea Schreb.) is a herbaceous species that is commonly used for ecological slope restoration in China. However, water scarcity often constrains its growth due to the unique site conditions of steep slopes and climate-induced drought stress. This study aims [...] Read more.
Tall fescue (Festuca arundinacea Schreb.) is a herbaceous species that is commonly used for ecological slope restoration in China. However, water scarcity often constrains its growth due to the unique site conditions of steep slopes and climate-induced drought stress. This study aims to compare the ameliorative effects of silicon nanoparticles (Si NPs) and cellulose nanocrystals (CNCs) on drought stress in tall fescue and to elucidate their underlying mechanisms of action. The results indicated that drought stress impaired photosynthesis, restricted nutrient absorption, and increased oxidative stress, ultimately reducing biomass. However, Si NPs and CNCs enhanced drought tolerance and promoted biomass accumulation by improving photosynthesis, osmotic regulation, and antioxidant defense mechanisms. Specifically, Si NP treatment increased biomass by 48.71% compared to drought-stressed control plants, while CNCs resulted in a 33.41% increase. Transcriptome sequencing further revealed that both nanomaterials enhanced drought tolerance by upregulating genes associated with photosynthesis and antioxidant defense. Additionally, Si NPs improved drought tolerance by stimulating root growth, enhancing nutrient uptake, and improving leaf structure. In contrast, CNCs play a distinct role by regulating the expression of genes related to cell wall synthesis and metabolism. These findings highlight the crucial roles of these two nanomaterials in plant stress protection and offer a sustainable strategy for the maintenance and management of slope vegetation. Full article
Show Figures

Graphical abstract

18 pages, 4677 KiB  
Article
CsCBDAS2-Driven Enhancement of Cannabinoid Biosynthetic Genes Using a High-Efficiency Transient Transformation System in Cannabis sativa ‘Cheungsam’
by Sang-Cheol Baek, Sang-Yoon Jeon, Bo-Hyun Byun, Da-Hoon Kim, Ga-Ram Yu, Hyuck Kim and Dong-Woo Lim
Plants 2025, 14(10), 1460; https://doi.org/10.3390/plants14101460 - 14 May 2025
Abstract
Cannabis sativa produces pharmacologically valuable cannabinoids. In this study, we developed and optimized a transient transformation system using Cannabis sativa ‘Cheungsam’ to facilitate gene functional analysis. Various experimental conditions, including plant developmental stages, light conditions, Agrobacterium strains, tissue types, and physical treatments such [...] Read more.
Cannabis sativa produces pharmacologically valuable cannabinoids. In this study, we developed and optimized a transient transformation system using Cannabis sativa ‘Cheungsam’ to facilitate gene functional analysis. Various experimental conditions, including plant developmental stages, light conditions, Agrobacterium strains, tissue types, and physical treatments such as sonication and vacuum infiltration, were systematically evaluated using GUS histochemical staining and qPCR analysis. Among these, 7-day-old seedlings cultured under dark conditions and transformed with the GV3101 strain exhibited high transformation efficiency. Leaf tissue showed a higher GUS staining proportion and GUS staining area compared to hypocotyl and cotyledon tissues. The application of a combination of sonication and vacuum infiltration techniques resulted in the most intense GUS expression. Using the optimized protocol, we introduced a recombinant vector carrying CsCBDAS2, a key gene in cannabidiol (CBD) biosynthesis. qPCR analysis revealed that CsCBDAS2 overexpression led to significant upregulation of multiple upstream CBD biosynthetic genes (CsOAC, CsGOT, CsPT1, CsPT4, CsCBDAS1, and CsCBDAS2) and the transcription factor (TF) CsWRKY20, suggesting coordinated co-expression and potential involvement of a transcriptional feedback loop. These results demonstrate the effectiveness of our transient transformation system and provide insights into the regulatory mechanisms of cannabinoid biosynthesis in cannabis. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

22 pages, 3047 KiB  
Article
Stilbene Glycosides in Pinus cembra L. Bark: Isolation, Characterization, and Assessment of Antioxidant Potential and Antitumor Activity on HeLa Cells
by Cristina Lungu, Cosmin-Teodor Mihai, Gabriela Vochita, Daniela Gherghel, Ionel I. Mangalagiu, Mihaela Gafton, Sorin-Dan Miron, Camelia-Elena Iurciuc Tincu, Lutfun Nahar, Satyajit D. Sarker and Anca Miron
Plants 2025, 14(10), 1459; https://doi.org/10.3390/plants14101459 - 14 May 2025
Abstract
Stilbenes are plant secondary metabolites with remarkable antidiabetic, anti-inflammatory, antimicrobial, antioxidant, antitumor, and neuroprotective properties. As these compounds are valuable constituents in healthcare products and promising drug candidates, exploring new sources of stilbenes is essential for therapeutic advancement. The present study reports the [...] Read more.
Stilbenes are plant secondary metabolites with remarkable antidiabetic, anti-inflammatory, antimicrobial, antioxidant, antitumor, and neuroprotective properties. As these compounds are valuable constituents in healthcare products and promising drug candidates, exploring new sources of stilbenes is essential for therapeutic advancement. The present study reports the isolation of two stilbene glycosides, resveratroloside and pinostilbenoside, from Pinus cembra L. bark. Their antioxidant activity and cytotoxic effects against HeLa cells were evaluated in comparison to the raw bark extract. The structures of resveratroloside and pinostilbenoside were confirmed by nuclear magnetic resonance (NMR) and mass spectrometry (MS) data analyses. Antioxidant activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power assays. Cell viability, apoptosis, cell proliferation, and cell cycle assays were used to evaluate the cytotoxic potential against HeLa cells. Resveratroloside and pinostilbenoside exhibited lower activity as free radical scavengers and reducing agents. However, they showed greater efficacy in reducing viability and suppressing proliferation in human cervical carcinoma HeLa cells. Given the promising findings of our study, the therapeutic potential of resveratroloside and pinostilbenoside should be further investigated. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants—2nd Edition)
Show Figures

Figure 1

20 pages, 6814 KiB  
Article
Characterization, Expression Profile Analysis, and Functional Prediction of UGP Gene Family in Dendrocalamus brandisii
by He Li, Chongyang Wu, Xiangyi Li, Junlei Xu, Zhanchao Cheng and Jian Gao
Plants 2025, 14(10), 1458; https://doi.org/10.3390/plants14101458 - 14 May 2025
Abstract
UDP-glucose pyrophosphorylase (UGPase) is essential for carbohydrate metabolism, catalyzing UDP-glucose synthesis, a precursor for sucrose and cellulose biosynthesis. While UGP genes have been widely studied in plants, their functions in Dendrocalamus brandisii remain unclear. This study identified and characterized the DbUGP gene family [...] Read more.
UDP-glucose pyrophosphorylase (UGPase) is essential for carbohydrate metabolism, catalyzing UDP-glucose synthesis, a precursor for sucrose and cellulose biosynthesis. While UGP genes have been widely studied in plants, their functions in Dendrocalamus brandisii remain unclear. This study identified and characterized the DbUGP gene family using the whole genome and transcriptome data of D. brandisii, in conjunction with whole genome data from 10 additional species through sequence alignment, phylogenetic analysis, gene structure and motif exploration, protein structure prediction, and expression profiling. Phylogenetic analysis showed eight identified DbUGPs clustered with two OsUGPs in two clades. Gene structure, motif, and collinearity analyses indicate conservation with other bamboo UGPs. The gene family exhibited segmental duplications. Expression profiling revealed DbUGP1/5 were highly expressed in flowers, while others were enriched in shoots, buds, and culms. DbUGP1/4/8 were significantly downregulated during culm maturation. Protein structure prediction indicated two conformations with catalytic sites in disordered coil regions. WGCNA identified co-expression modules and protein interaction networks centered on DbUGP1/4, while KEGG enrichment indicated their functions in metabolism, signal transduction, and stress adaptation. Promoter analysis identified cis-regulatory elements responsive to light, MeJA, and ABA. This study suggests that the evolutionarily conserved DbUGPs exhibit mutual coordination and dynamic expression during D. brandisii growth, providing fresh insights into their functional roles. Full article
(This article belongs to the Special Issue Unraveling Complex Traits and Developmental Pathways of Forest Trees)
Show Figures

Figure 1

17 pages, 11092 KiB  
Article
Estimation of Leaf Phosphorus Content in Cotton Using Fractional Order Differentially Optimized Spectral Indices
by Mamat Sawut, Xin Hu, Yierxiati Abulaiti, Rebiya Yimaer, Baidengsha Maimaitiaili, Shanshan Liu and Ran Pang
Plants 2025, 14(10), 1457; https://doi.org/10.3390/plants14101457 - 13 May 2025
Abstract
The accurate and timely detection of leaf phosphorus content (LPC) is extremely important for the fertilization management of crop growth and yield. This study aimed to establish an estimating model of LPC in cotton based on hyperspectral data. Under field experimental conditions with [...] Read more.
The accurate and timely detection of leaf phosphorus content (LPC) is extremely important for the fertilization management of crop growth and yield. This study aimed to establish an estimating model of LPC in cotton based on hyperspectral data. Under field experimental conditions with different phosphorus treatments, the spectral data and LPC were measured. The spectral characteristics of different cotton cultivars and leaves with varying phosphorus content were analyzed. Optimized spectral indices most correlated to phosphorus were calculated with combinations of arbitrary bands using the Fractional Differential Order (FOD) transform. Then, the random forest-based(RF) estimation model for cotton LPC was established. The research results indicated that (1) the spectral changes of 24 cotton cultivars were basically consistent, and spectral differences between the cultivars became more obvious within the 760–960 nm spectral region; (2) in the visible region, the reflectance of cotton under different phosphorus treatments did not show obvious regularity, while in NIR, the reflectance of cotton increased with the increase in phosphorus content, showing a certain difference in phosphorus; (3) the RF model using a difference spectral index (DSI) had the best performance for LPC estimations in calibration (R2 = 0.78) and validation (R2 = 0.85), which was superior to the other models based on two spectral indices (the NDSI and RSI). This study provides technical support for the hyperspectral estimation of LPC in cotton. Full article
Show Figures

Figure 1

18 pages, 3121 KiB  
Article
Regulatory Effects of Source–Sink Manipulations on Photosynthesis in Wheat with Different Source–Sink Relationships
by Siqi Zhang, Huimin Chai, Jiawei Sun, Yafang Zhang, Yanhua Lu, Dong Jiang, Tingbo Dai and Zhongwei Tian
Plants 2025, 14(10), 1456; https://doi.org/10.3390/plants14101456 - 13 May 2025
Abstract
Understanding the contributions of source–sink relationships to photosynthesis will help achieve high wheat grain yields. A single-factor field experiment was conducted to quantify the regulatory effects of different sink–source ratios on wheat photosynthetic characteristics, including two wheat cultivars with different source–sink relationships as [...] Read more.
Understanding the contributions of source–sink relationships to photosynthesis will help achieve high wheat grain yields. A single-factor field experiment was conducted to quantify the regulatory effects of different sink–source ratios on wheat photosynthetic characteristics, including two wheat cultivars with different source–sink relationships as materials for detailed source–sink manipulations through flag leaf removal (LR) and removal of spikelets on one side of each spike (SR). Compared with a control (CK), LR increased the sink–source ratio (23.84%) and significantly reduced the yield (16.17%), 1000-kernel weight (11.73%), and kernels per spike (7.33%). LR increased the leaves’ net photosynthetic rate (Pn) (4.27–15.82%), the electron transfer rate (3.97–14.93%), and the Rubisco activity (2.16–12.25%) in the short term, and LR increased sucrose synthesis-related enzyme activities (3.96–19.95%) and gene expressions (SPS1, SUS1, CIN1, and SUT1). Compared with CK, SR reduced the sink–source ratio (44.12%) and significantly increased the 1000-kernel weight (10.02%) but reduced the yield (43.93%) and kernels per spike (49.31%). SR reduced the leaves’ Pn (8.54–21.41%), the electron transfer rate (3.51–16.71%), and the Rubisco activity (5.96–21.51%), and the photosynthetic process was limited. SR decreased sucrose synthesis-related enzyme activities (5.12–29.09%) and gene expressions (SPS1, SUS1, CIN1, and SUT1). Therefore, a higher sink–source ratio is an important indicator of high photosynthetic efficiency, which can be used as a screening and judgment index in variety selection and cultivation regulation. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

17 pages, 7653 KiB  
Article
Generation and Functional Characteristics of CRISPR/Cas9-Edited PtrPHOTs Triple-Gene Mutants in Poplar
by Hongtao Yao, Jiyao Cheng, Yuning Jing, Siran Zhu, Chong Wang and Yuxiang Cheng
Plants 2025, 14(10), 1455; https://doi.org/10.3390/plants14101455 - 13 May 2025
Abstract
Phototropins (PHOTs), as blue light receptors, play a pivotal role in plant light signal perception and adaptive regulation, yet their functional characteristics in trees remain poorly understood. In this study, the PHOT gene family was identified in Populus trichocarpa, and it included [...] Read more.
Phototropins (PHOTs), as blue light receptors, play a pivotal role in plant light signal perception and adaptive regulation, yet their functional characteristics in trees remain poorly understood. In this study, the PHOT gene family was identified in Populus trichocarpa, and it included three members, PtrPHOT1, PtrPHOT2.1, and PtrPHOT2.2, all of which were highly expressed in mature leaves. Using CRISPR/Cas9 gene editing technology, triple-gene mutations in the PtrPHOT1/2.1/2.2 (PtrPHOTs) were generated, providing initial insights into the functions of PHOTs in trees. Compared to the wild type (WT), triple-gene ptrphots mutants displayed curved and wrinkled leaves, reduced leaf area, and delayed phototropic responses, indicating the central role of PHOTs in blue light signal perception. The stomatal aperture recovery rate in mutants was only 40% of that observed in WT, accompanied by significant downregulation of the BLUS1 gene transcription levels, confirming the conservation of the PHOT-BLUS1-H⁺-ATPase signaling axis in stomatal regulation. Transcriptome of triple-gene ptrphots mutants revealed 1413 differentially expressed genes, of which were enriched in auxin response (upregulation of SAUR family genes), jasmonic acid (downregulation of JAZ genes), and light signaling pathways, suggesting that PHOTs could regulate plant adaptability by integrating light signals and hormone homeostasis. Overall, this study achieved the knockouts of three PtrPHOTs family genes, and characteristics of triple-gene ptrphots mutants elucidated the multifunctional roles of PHOTs in leaf development, phototropism, and stomatal movement in poplar. Our work provides a foundation for deciphering light signaling networks and molecular breeding in woody plants. Full article
(This article belongs to the Special Issue Molecular, Genetic, and Physiological Mechanisms in Trees)
Show Figures

Figure 1

21 pages, 6526 KiB  
Article
Integrative Analysis of Transcriptomic and Metabolomic Profiles Uncovers the Mechanism of Color Variation in the Tea Plant Callus
by Mengna Xiao, Yingju Tian, Ya Wang, Yunfang Guan, Ying Zhang, Yuan Zhang, Yanlan Tao, Zengquan Lan and Dexin Wang
Plants 2025, 14(10), 1454; https://doi.org/10.3390/plants14101454 - 13 May 2025
Abstract
Tea plants (Camellia sinensis) are among the world’s most significant economic tree species. Tissue culture serves as a crucial method in commercial breeding by facilitating the rapid propagation of valuable genotypes and the generation of disease-free clones. However, callus browning represents [...] Read more.
Tea plants (Camellia sinensis) are among the world’s most significant economic tree species. Tissue culture serves as a crucial method in commercial breeding by facilitating the rapid propagation of valuable genotypes and the generation of disease-free clones. However, callus browning represents a prevalent challenge in tea plant tissue culture, and may adversely affect explant growth and development. Our research demonstrates that although anti-browning agents can effectively suppress browning, they induce distinct color changes in the callus. These color variations could significantly influence callus induction and subsequent growth patterns. In this study, callus tissues from C. sinensis var. Assamica cv. Mengku were employed as experimental materials and treated with three commonly used anti-browning agents: ascorbic acid (VC), activated carbon (AC), and polyvinylpyrrolidone (PVP). The results demonstrated that while these three reagents effectively inhibited browning, they also induced distinct color changes in the explants, which appeared red, green, and white, respectively. Furthermore, this study investigated the molecular mechanisms underlying callus color changes using transcriptomic and metabolomic approaches. Based on transcriptome analysis, it was revealed that photosynthesis and flavonoid biosynthesis pathways were significantly enriched. Metabolome analysis identified 14 phenolic acids, which exhibited significant variation in accumulation across calluses of different colors. The differential expression of genes involved in flavonoid biosynthesis pathways, coupled with the distinct accumulation patterns of metabolites, can effectively alleviate photooxidative damage and enhance the resistance of callus to browning. AC activates the photosynthesis of callus by regulating carbon source allocation and upregulating the expression of key genes in the psa, psb, and pet families within the photosynthetic system. This process promotes chlorophyll biosynthesis, thereby enabling the callus to grow green, while VC activates the expression of key genes such as CHS, F3H, C4H, CYP75B1, and ANR in the flavonoid pathway, which are involved in the regulation of pigment synthesis in red callus. This study elucidated the molecular mechanisms underlying the effects of anti-browning agents on color variations in C. sinensis callus, thereby providing a robust theoretical foundation for optimization, the establishment of tea plant tissue culture systems, and enhancing cultivar quality. Full article
(This article belongs to the Special Issue Genetic Breeding and Quality Improvement of Tea)
Show Figures

Figure 1

20 pages, 9099 KiB  
Article
Comprehensive Genome-Wide Investigation and Transcriptional Regulation of the bZIP Gene Family in Litchi Fruit Development
by Jiaxuan Liu, Saimire Silaiyiman, Jiaxin Wu, Lejun Ouyang, Zheng Cao and Chao Shen
Plants 2025, 14(10), 1453; https://doi.org/10.3390/plants14101453 - 13 May 2025
Abstract
Litchi chinensis, a crucial tropical and subtropical fruit tree in southern China, is widely appreciated for its distinctive flavor, high nutritional value, and significant economic impact. The bZIP (basic leucine zipper) gene family plays an essential role in regulating key biological functions [...] Read more.
Litchi chinensis, a crucial tropical and subtropical fruit tree in southern China, is widely appreciated for its distinctive flavor, high nutritional value, and significant economic impact. The bZIP (basic leucine zipper) gene family plays an essential role in regulating key biological functions during plant growth and development. In this study, we performed a comprehensive bioinformatics analysis of the bZIP gene family in litchi to systematically elucidate its molecular characteristics and functional properties. A total of 55 bZIP gene family members were identified, with the encoded proteins containing between 129 and 845 amino acid residues and theoretical isoelectric points (pI) ranging from 4.85 to 10.23. Protein–protein interaction network analysis revealed that 46 proteins exhibited interaction relationships. Phylogenetic analysis classified these genes into 13 distinct subgroups (A–K, M, and S). Chromosomal localization analysis indicated that bZIP gene family members were successfully mapped to 15 chromosomes. Intraspecific collinearity analysis identified 39 segmental duplication events, while interspecific and single-gene collinearity analyses suggested evolutionary conservation, with only a few genes exhibiting duplication or loss events. Cis-acting element analysis revealed a total of 213 elements associated with growth and development, which may play an important role in fruit development regulation. The results of differential gene expression, related to fruit development across different litchi cultivars, tissues, and flowering stages, combined with qRT-PCR validation, suggest that LITCHI017015.m1 and LITCHI004463.m1 may be involved in the early regulation of fruit development, while LITCHI018843.m1 may play a regulatory role during the later stages of fruit development. These findings provide a strong theoretical foundation for understanding the roles of bZIP genes in litchi fruit growth and development, and lay the groundwork for further functional studies. This study has potential application value in litchi fruit development and genetic improvement. Full article
(This article belongs to the Special Issue Recent Advances in Horticultural Plant Genomics)
Show Figures

Figure 1

20 pages, 9735 KiB  
Article
Spraying Effects of UAV Application on Droplet Effectiveness in Two Vine Trellis Systems of High-Slope Terrace Vineyards
by Zhao Le, Gastón Gutiérrez-Gamboa, Mengde Dong, Wei Zheng and Baoshan Sun
Plants 2025, 14(10), 1452; https://doi.org/10.3390/plants14101452 - 13 May 2025
Abstract
The application of unmanned aerial vehicles (UAVs) in viticulture is becoming increasingly popular. To the best of our knowledge, there are no studies comparing the effects of UAV spraying to manual spraying in high-slope vineyards. The goal of this study was to evaluate [...] Read more.
The application of unmanned aerial vehicles (UAVs) in viticulture is becoming increasingly popular. To the best of our knowledge, there are no studies comparing the effects of UAV spraying to manual spraying in high-slope vineyards. The goal of this study was to evaluate the effects of UAV spraying on droplet average diameter, droplet area percentage, and droplet density for vines grown using vertical shoot positioning (VSP) and Y-shaped trellis systems and to compare them with the effects of manual spraying via an electric knapsack sprayer. The results showed that manual spraying led to the greatest area of droplets for the VSP trellis system, and the uniformity and penetration of droplets with the UAV spraying method were higher than those for manual spraying for this trellis system. Regarding the Y-shaped trellis system, the UAV spraying method yielded lower droplet diameters, higher droplet density, and better uniformity and penetration than manual spraying. Moreover, conducting UAV spraying twice showed no statistical differences in droplet area percentage compared to manual spraying, and the effect of UAV spraying even once was similar to that of manual spraying on the abaxial sides of the leaves in this respect. Our research indicates that UAV spraying was not very suitable for VSP trellis systems, but it could be a good alternative for Y-shaped trellis systems since it is safe and cost-effective by reducing labor, time, and the dosages of the solutions applied. Full article
Show Figures

Figure 1

17 pages, 1803 KiB  
Review
Hypericum hircinum L.: Botany, Traditional Uses, Phytochemistry, and Pharmacological Properties
by Noemi Tocci, Manuel Pramsohler, Lorenza Conterno and Tobias Weil
Plants 2025, 14(10), 1451; https://doi.org/10.3390/plants14101451 - 13 May 2025
Abstract
Hypericum hircinum L., commonly known as goat St. John’s wort or stinking tutsan, is a medicinal plant native to the Mediterranean basin and widespread across Europe and parts of the Middle East. It has a long history of traditional uses in folk medicine [...] Read more.
Hypericum hircinum L., commonly known as goat St. John’s wort or stinking tutsan, is a medicinal plant native to the Mediterranean basin and widespread across Europe and parts of the Middle East. It has a long history of traditional uses in folk medicine to treat respiratory diseases, wounds, and burns and to relieve migraine, rheumatism, and muscular pains. Despite numerous scientific studies shading light on the phytochemical profile and on the beneficial properties of the plant extracts, a comprehensive overview of the current knowledge is missing. In this paper, we summarized the available information on botany, traditional uses, phytochemistry, and pharmacological properties of Hypericum hircinum from peer-reviewed articles published till March 2025 in PubMed, ScienceDirect, Wiley, Springer, ACS, Scielo, and Web of Science databases. The presence of numerous valuable compounds, including terpenes, phenolic acids, flavonoids, and phloroglucinols, is reported as well as the wide range of pharmacological properties, such as antimicrobial, antifungal, antiviral, antidepressant, anti-collagenase, anti-α-glucosidase, and antioxidant activities, together with non-pharmacological properties. The data reported in this review contribute to a deeper understanding of the biological properties of the species and pave the way for further investigation of its potential applications. Full article
Show Figures

Figure 1

12 pages, 1068 KiB  
Article
Enhancing Transplanting Success in Restoration of Degraded Areas Using Peat-Free Substrates
by Silvia Traversari, Sara Di Lonardo, Simone Orsenigo, Daniele Massa, Beatrice Nesi, Lino Zubani and Sonia Cacini
Plants 2025, 14(10), 1450; https://doi.org/10.3390/plants14101450 - 13 May 2025
Abstract
Native plant species used for ecological restoration in urban and degraded areas are typically cultivated by ornamental and forestry nurseries. In the face of climate change, it is crucial to produce plants that can withstand transplant stress while promoting the use of sustainable [...] Read more.
Native plant species used for ecological restoration in urban and degraded areas are typically cultivated by ornamental and forestry nurseries. In the face of climate change, it is crucial to produce plants that can withstand transplant stress while promoting the use of sustainable materials, such as peat-free substrates. Replacing peat with locally sourced organic materials offers a promising strategy to enhance plant resilience to abiotic stress while improving sustainability. This study evaluated the effects of alternative growing media on the growth and post-transplant performance of Viburnum lantana L. under standard nursery conditions. Three substrate mixtures were tested: (i) peat:pumice 70:30 v:v (PP); (ii) coconut coir dust:pumice 70:30 v:v (CP); (iii) coconut coir dust:green compost 55:45 v:v (CGC). After one year in the nursery, half of the plants were sampled in late spring for biometric, eco-physiological, and nutrient analyses, while the remaining plants were transplanted into a degraded area providing only a single irrigation event during the trial. Approximately 100 days after transplant, biometric and eco-physiological parameters were assessed. Plants grown on CGC demonstrated the highest transplant success, while those grown on PP and CP exhibited greater leaf necrosis, with PP plants also showing significant defoliation. These findings highlight CGC as a viable and sustainable alternative to peat-based substrates, particularly for post-transplant survival in degraded areas prone to drought stress. Full article
(This article belongs to the Special Issue Effect of Growing Media on Plant Performance)
Show Figures

Graphical abstract

18 pages, 4298 KiB  
Article
Functional Characterization of Anthocyanin Biosynthesis-Related Dihydroflavonol 4-reductase (DFR) Genes in Blueberries (Vaccinium corymbosum)
by Yongyan Zhang, Sijian Guo, Zening Zhang, Ruide Li, Shitao Du, Siyi Hao and Chunzhen Cheng
Plants 2025, 14(10), 1449; https://doi.org/10.3390/plants14101449 - 13 May 2025
Abstract
Dihydroflavonol 4-reductase (DFR) genes contribute greatly to anthocyanin biosynthesis in plants. Up to now, however, research on the DFR gene family and the key anthocyanin-related DFR members in blueberries (Vaccinium corymbosum) has been limited. In this study, we performed [...] Read more.
Dihydroflavonol 4-reductase (DFR) genes contribute greatly to anthocyanin biosynthesis in plants. Up to now, however, research on the DFR gene family and the key anthocyanin-related DFR members in blueberries (Vaccinium corymbosum) has been limited. In this study, we performed a genome-wide identification of the blueberry DFR gene family, identifying 36 VcDFR genes categorized into five subfamilies. Gene expression analysis showed that three Subfamily III members (VcDFR11/29/34) and four Subfamily V members (VcDFR4/7/30/33) are highly expressed in blueberry fruits, particularly at late ripening stages. Transient overexpression analysis in apple fruits verified the contributions of VcDFR11 and VcDFR30 to anthocyanin biosynthesis, with VcDFR11 showing better promoting effects. Blueberry fruit-based transient overexpression further confirmed the promoting effects of VcDFR11 on anthocyanin accumulation and the expression of anthocyanin-related structural genes (especially its downstream anthocyanindin synthase (ANS) and UDP-glucose: flavonoid 3-O-glycosyltransferase (UFGT) genes). The VcDFR11 promoter contains binding sites for both bHLH and MYB transcription factors (TFs). Consistently, yeast one-hybrid and dual-luciferase assays confirmed that anthocyanin-related VcMYB-1 and VcbHLHs can bind to and activate the VcDFR11 promoter. Furthermore, co-overexpressing VcMYB-1/VcbHLHs with VcDFR11 led to much higher anthocyanin accumulation than overexpressing VcDFR11 alone, indicating that these TFs positively regulate anthocyanin biosynthesis by upregulating VcDFR11. In summary, our study characterized the blueberry DFR gene family and demonstrated the role of VcDFR11 in anthocyanin biosynthesis. Full article
Show Figures

Figure 1

19 pages, 346 KiB  
Article
Integrated Biochar–Compost Amendment for Zea mays L. Phytoremediation in Soils Contaminated with Mining Tailings of Quiulacocha, Peru
by Paul Virú-Vasquez, Alex Pilco-Nuñez, Freddy Tineo-Cordova, César Toribio Madueño-Sulca, Teodosio Celso Quispe-Ojeda, Antonio Arroyo-Paz, Ruby Alvarez-Arteaga, Yessenia Velasquez-Zuñiga, Luis Lizardo Oscanoa-Gamarra, Juan Saldivar-Villarroel, Mary Flor Césare-Coral and Ever Nuñez-Bustamante
Plants 2025, 14(10), 1448; https://doi.org/10.3390/plants14101448 - 12 May 2025
Viewed by 54
Abstract
This study evaluated the phytoremediation of mine tailing-contaminated soils in Quiulacocha, Peru, using the combined application of biochar and compost, with Zea mays L. (maize) serving as the phytoremediator due to its high biomass production and stress tolerance. A factorial experimental design [...] Read more.
This study evaluated the phytoremediation of mine tailing-contaminated soils in Quiulacocha, Peru, using the combined application of biochar and compost, with Zea mays L. (maize) serving as the phytoremediator due to its high biomass production and stress tolerance. A factorial experimental design was implemented, varying two main factors: the mining tailings dose (30% and 60% w/w) and the biochar pyrolysis temperature (300 °C and 500 °C). The mine tailings were characterized by high concentrations of heavy metals and unfavourable physico-chemical properties (pH, low organic matter), whereas the biochar, produced from pine forest residues, and the compost, derived from urban organic waste, exhibited attributes that enhance soil quality. During the pot experiment, response variables including the Bioconcentration Factor (BCF) and Translocation Factor (TF) for various metals were evaluated to assess the capacity for contaminant immobilization and their distribution between plant roots and aerial tissues. The results demonstrated that the incorporation of biochar and compost significantly improved soil quality by increasing pH, cation exchange capacity, and nutrient retention, while simultaneously reducing the bioavailability of heavy metals and limiting their translocation to the aerial parts of maize. Factorial analysis further indicated that both the tailings dose and biochar pyrolysis temperature significantly influenced the efficacy of the phytoremediation process. In conclusion, the combined application of biochar and compost presents an effective and sustainable strategy for rehabilitating mine tailing-contaminated soils by stabilizing heavy metals and promoting the safe growth of Zea mays L. Full article
(This article belongs to the Section Plant Ecology)
15 pages, 4324 KiB  
Article
QTL-Seq and Fine-Mapping Analyses Identify QTL and Candidate Genes Controlling Snake-like Pod Surface Trait in Vegetable Cowpea Yardlong Bean
by Khwanruedee Thepphomwong, Makawan Srichan, Artitaya Deeroum, Kularb Laosatit and Prakit Somta
Plants 2025, 14(10), 1447; https://doi.org/10.3390/plants14101447 - 12 May 2025
Viewed by 40
Abstract
Yardlong bean is a vegetable type of cowpea grown for fresh and immature pods. “Thua Ngu” is a specialty yardlong bean cultivar with its unique snake-like pod surface and highly crispy pods that may be useful for the breeding of a new cultivar(s). [...] Read more.
Yardlong bean is a vegetable type of cowpea grown for fresh and immature pods. “Thua Ngu” is a specialty yardlong bean cultivar with its unique snake-like pod surface and highly crispy pods that may be useful for the breeding of a new cultivar(s). The objectives of this study were to determine the mode of inheritance of the snake-like pod trait and locate the genome region controlling this trait in Thua Ngu. Microscopic observation revealed that the shape, size, and organization of cells of immature and mature pods of Thua Ngu were clearly different from those of “Raya” (normal yardlong bean). Fiber analysis showed that lignin content in immature and mature pods of Thua Ngu was 2.05- and 3.45-fold higher than that in Raya. Segregation analysis using F2 and F2:3 populations of the cross Thua Ngu × Raya demonstrated that a single gene controls the snake-like pod trait. QTL-seq analysis using the F2 population revealed a major locus, qSlp4.1, for the snake-like pod trait. Fine-mapping using F2 and F2:3 populations delimited qSlp4.1 to a 152.88 Kbp region containing nine genes. Genes with functions involved in cell morphology and/or lignin formation, including Vigun04g163400, Vigun04g163600, and Vigun04g163700, were identified as candidate genes for the snake-like pod trait. Full article
(This article belongs to the Special Issue Recent Advances in Plant Genetics and Genomics)
Show Figures

Figure 1

Previous Issue
Back to TopTop