Screening of Germplasm Resources with Low-Phosphorus Tolerance During the Seedling Stage of Rice
Abstract
:1. Introduction
2. Results
2.1. Effects of Low-Phosphorus Stress on Single Index of Rice Seedlings with Different Genotypes
2.2. Analysis of Low-Phosphorus Tolerance Coefficients for Various Indices in Different Rice Germplasms
2.3. Correlation Analysis of Low-Phosphorus Tolerance Index Among Different Genotypes of Rice Germplasm Indicators
2.4. Principal Component Analysis of Different Genotypes of Rice Germplasm
2.5. Comprehensive Analysis of Low Phosphorus Tolerance of Different Genotypes of Rice Germplasm
2.6. Cluster Analysis of Different Genotypes of Rice Germplasm
2.7. Comprehensive Value Analysis of Phosphorus Efficiency of Rice Germplasm at Seedling Stage with Different Phosphorus Concentrations
3. Discussion
4. Materials and Methods
4.1. Experimental Materials
4.2. Experimental Design
4.3. Determination of Related Indicators
- (1)
- After sampling the plant, the plant height and leaf area were measured. The total fresh weight of a single rice plant was measured by drying the water absorbed by its root system. The rice plants were then divided into aboveground and underground parts, and the fresh weights of the aboveground and underground portions were measured separately. Then, they were put into an oven and dried until the weight was constant; subsequently, the dry weight on the ground, the dry weight of the root, the total dry weight of the single plant, and the root–crown ratio were calculated. Three plants of each variety were randomly selected as biological replicates.
- (2)
- The root system was carefully scanned into images using a digital scanner and stored on a computer to quantitatively analyze the total root length, root surface area, root system volume, and root diameter. Three plants were randomly selected for each variety as replicates.
- (3)
- Determination of phosphorus content: After weighing and crushing the aboveground and underground parts of the plants, the plant samples were digested with concentrated H2SO4 and 30% H2O2, and the volume was fixed to 100 mL; the total phosphorus content in each part of the plant was determined by the molybdenum antimony colorimetric method [42].
- (4)
- Root acid phosphatase: This was measured by determining the acid phosphatase activity through colorimetry at a wavelength of 400 nm [43].
- (5)
- SPAD: Five leaves of rice plants were taken and measured on the upper, middle, and lower leaves with a SPAD 502 chlorophyll content analyzer.
- (6)
- Root-to-shoot ratio = underground dry weight/aboveground dry weight.
- (7)
- Phosphorus accumulation (mg/plant) = phosphorus content × dry weight.
- (8)
- Phosphorus accumulation per plant (mg/plant) = aboveground phosphorus accumulation + underground phosphorus accumulation.
- (9)
- Aboveground phosphorus utilization efficiency (g.g−1) = aboveground dry weight/aboveground phosphorus accumulation.
- (10)
- Utilization efficiency of underground phosphorus (g.g−1) = underground dry weight/underground phosphorus accumulation.
- (11)
- Phosphorus utilization efficiency per plant (g.g−1) = dry weight per plant/phosphorus accumulation per plant.
4.4. Data Processing and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kale, R.R.; Anila, M.; Swamy, H.K.M.; Bhadana, V.P.; Rani, C.V.D.; Senguttuvel, P.; Subrahmanyam, D.; Hajira, S.K.; Rekha, G.; Ayyappadass, M.; et al. Morphological and molecular screening of rice germplasm lines for low soil P tolerance. J. Plant Biochem. Biotechnol. 2020, 30, 275–286. [Google Scholar] [CrossRef]
- Zhao, X.; Nie, G.; Yao, Y.; Ji, Z.; Gao, J.; Wang, X.; Jiang, Y. Natural variation and genomic prediction of growth, physiological traits, and nitrogen-use efficiency in perennial ryegrass under low-nitrogen stress. J. Exp. Bot. 2020, 71, 6670–6683. [Google Scholar] [CrossRef] [PubMed]
- Manschadi, A.M.; Kaul, H.-P.; Vollmann, J.; Eitzinger, J.; Wenzel, W. Developing phosphorus-efficient crop varieties—An interdisciplinary research framework. Field Crops Res. 2014, 162, 87–98. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Zhao, S.; Jiang, H.; Cai, Y.; Bai, J.; Shao, J.; Yu, H.; Chen, T. Comparative secretome and proteome analysis unveils the response mechanism in the phosphorus utilization of Alexandrium pacificum. Environ. Pollut. 2025, 373, 126135. [Google Scholar] [CrossRef]
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Zhang, D.; Song, H.; Cheng, H.; Hao, D.; Wang, H.; Kan, G.; Jin, H.; Yu, D. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress. PLoS Genet. 2014, 10, e1004061. [Google Scholar] [CrossRef]
- Nkrumah, P.N.; Echevarria, G.; Erskine, P.D.; Chaney, R.L.; Sumail, S.; van der Ent, A. Contrasting phosphorus (P) accumulation in response to soil P availability in ‘metal crops’ from P-impoverished soils. Plant Soil 2021, 467, 155–164. [Google Scholar] [CrossRef]
- Bai, Z.; Li, H.; Yang, X.; Zhou, B.; Shi, X.; Wang, B.; Li, D.; Shen, J.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27–37. [Google Scholar] [CrossRef]
- Bünemann, E.K. Assessment of gross and net mineralization rates of soil organic phosphorus—A review. Soil Biol. Biochem. 2015, 89, 82–98. [Google Scholar] [CrossRef]
- Ashley, K.; Cordell, D.; Mavinic, D. A brief history of phosphorus: From the philosopher’s stone to nutrient recovery and reuse. Chemosphere 2011, 84, 737–746. [Google Scholar] [CrossRef]
- Van Kauwenbergh, S.J. World Phosphate Reserves and Resources; International Fertilizer Development Centre (IFDC): Muscle Shoals, AL, USA, 2010. [Google Scholar]
- Yugandhar, P.; Veronica, N.; Panigrahy, M.; Rao, D.N.; Subrahmanyam, D.; Voleti, S.R.; Mangrauthia, S.K.; Sharma, R.P.; Sarla, N. Comparing Hydroponics, Sand, and Soil Medium To Evaluate Contrasting Rice Nagina 22 Mutants for Tolerance to Phosphorus Deficiency. Crop Sci. 2017, 57, 2089–2097. [Google Scholar] [CrossRef]
- Fageria, N.K.; de Morais, O.P.; dos Santos, A.B.; Vasconcelos, M.J. Phosphorus Use Efficiency in Upland Rice Genotypes Under Field Conditions. J. Plant Nutr. 2014, 37, 633–642. [Google Scholar] [CrossRef]
- Vejchasarn, P.; Lynch, J.P.; Brown, K.M. Genetic Variability in Phosphorus Responses of Rice Root Phenotypes. Rice 2016, 9, 29. [Google Scholar] [CrossRef]
- Gerloff, G.C. Intact-plant screening for tolerance of nutrient-deficiency stress. Plant Soil 1987, 99, 3–16. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, J.; Zhao, Y.; Fu, Y.; Yan, B.; Wan, X.; Cheng, G.; Zhang, W. Effects of different phosphorus and potassium supply on the root architecture, phosphorus and potassium uptake, and utilization efficiency of hydroponic rice. Sci. Rep. 2024, 14, 21178. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, H. Divergent Molecular and Physiological Response of Two Maize Breeding Lines Under Phosphate Deficiency. Plant Mol. Biol. Rep. 2022, 40, 197–207. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, R.; Zhou, P.; Pan, Y.; Shen, R.; Lan, P. Comparative physiological and proteomic response to phosphate deficiency between two wheat genotypes differing in phosphorus utilization efficiency. J. Proteom. 2023, 280, 104894. [Google Scholar] [CrossRef]
- Wu, A.; Fang, Y.; Liu, S.; Wang, H.; Xu, B.; Zhang, S.; Deng, X.; Palta, J.A.; Siddique, K.H.; Chen, Y. Root morphology and rhizosheath acid phosphatase activity in legume and graminoid species respond differently to low phosphorus supply. Rhizosphere 2021, 19, 100391. [Google Scholar] [CrossRef]
- O’Rourke, J.A.; Yang, S.S.; Miller, S.S.; Bucciarelli, B.; Liu, J.; Rydeen, A.; Bozsoki, Z.; Uhde-Stone, C.; Tu, Z.J.; Allan, D.; et al. An RNA-Seq Transcriptome Analysis of Orthophosphate-Deficient White Lupin Reveals Novel Insights into Phosphorus Acclimation in Plants. Plant Physiol. 2013, 161, 705–724. [Google Scholar] [CrossRef]
- Ciereszko, I.; Szczygła, A.; Żebrowska, E. Phosphate deficiency affects acid phosphatase activity and growth of two wheat varieties. J. Plant Nutr. 2011, 34, 815–829. [Google Scholar] [CrossRef]
- Magallon-Servin, P.; Antoun, H.; Taktek, S.; De-Bashan, L.E. Designing a multi-species inoculant of phosphate rock-solubilizing bacteria compatible with arbuscular mycorrhizae for plant growth promotion in low-P soil amended with PR. Biol. Fertil. Soils 2020, 56, 521–536. [Google Scholar] [CrossRef]
- Haran, S.; Logendra, S.; Seskar, M.; Bratanova, M.; Raskin, I. Characterization of Arabidopsis Acid Phosphatase Promoter and Regulation of Acid Phosphatase Expression. Plant Physiol. 2000, 124, 615–626. [Google Scholar] [CrossRef]
- Plaxton, W.C.; Tran, H.T. Metabolic Adaptations of Phosphate-Starved Plants. Plant Physiol. 2011, 156, 1006–1015. [Google Scholar] [CrossRef]
- Yao, Y.; Yuan, H.; Liu, D.; Cheng, L. Response of soybean root exudates and related metabolic pathways to low phosphorus stress. PLoS ONE 2024, 19, e0314256. [Google Scholar] [CrossRef]
- Luo, J.; Liu, Y.; Zhang, H.; Wang, J.; Chen, Z.; Luo, L.; Liu, G.; Liu, P. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. BMC Plant Biol. 2020, 20, 85. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.H.; Wang, R.X. Screening of low phosphorus tolerance indexes and identification of low phosphorus tolerance varieties of soybean. China Agric. Sci. Technol. Rev. 2015, 17, 30–41. (In Chinese) [Google Scholar]
- Aluwihare, Y.; Ishan, M.; Chamikara, M.; Weebadde, C.; Sirisena, D.; Samarasinghe, W.; Sooriyapathirana, S. Characterization and Selection of Phosphorus Deficiency Tolerant Rice Genotypes in Sri Lanka. Rice Sci. 2016, 23, 184–195. [Google Scholar] [CrossRef]
- Yu, R.; Wang, G.; Yu, X.; Li, L.; Li, C.; Song, Y.; Xu, Z.; Zhang, J.; Guan, C. Assessing alfalfa (Medicago sativa L.) tolerance to salinity at seedling stage and screening of the salinity tolerance traits. Plant Biol. 2021, 23, 664–674. [Google Scholar] [CrossRef]
- Upadhyaya, H.D. Variability for Drought Resistance Related Traits in the Mini Core Collection of Peanut. Crop Sci. 2005, 45, 1432–1440. [Google Scholar] [CrossRef]
- Wei, X.; Cang, B.; Yu, K.; Li, W.; Tian, P.; Han, X.; Wang, G.; Di, Y.; Wu, Z.; Yang, M. Physiological Characterization of Drought Responses and Screening of Rice Varieties under Dry Cultivation. Agronomy 2022, 12, 2849. [Google Scholar] [CrossRef]
- Rose, T.J.; Mori, A.; Julia, C.C.; Wissuwa, M. Screening for internal phosphorus utilisation efficiency: Comparison of genotypes at equal shoot P content is critical. Plant Soil 2016, 401, 79–91. [Google Scholar] [CrossRef]
- Panigrahy, M.; Rao, D.N.; Yugandhar, P.; Raju, N.S.; Krishnamurthy, P.; Voleti, S.; Reddy, G.A.; Mohapatra, T.; Robin, S.; Singh, A.; et al. Hydroponic experiment for identification of tolerance traits developed by rice Nagina 22 mutants to low-phosphorus in field condition. Arch. Agron. Soil Sci. 2013, 60, 565–576. [Google Scholar] [CrossRef]
- Fageria, N.K.; Wright, R.J.; Baligar, V.C. Rice cultivar evaluation for phosphorus use efficiency. Plant Soil 1988, 111, 105–109. [Google Scholar] [CrossRef]
- Gupta, A.; Shaw, B.P. Field- and laboratory-based methods of screening salt tolerant genotypes in rice. Crop Pasture Sci. 2021, 72, 85–94. [Google Scholar] [CrossRef]
- Nirubana, V.; Vanniarajan, C.; Aananthi, N.; Ramalingam, J. Screening tolerance to phosphorus starvation and haplotype analysis using phosphorus uptake 1 (Pup1) QTL linked markers in rice genotypes. Physiol. Mol. Biol. Plants 2020, 26, 2355–2369. [Google Scholar] [CrossRef]
- Deng, Y.; Qiao, S.; Wang, W.; Zhang, W.; Gu, J.; Liu, L.; Zhang, H.; Wang, Z.; Yang, J. Tolerance to low phosphorus was enhanced by an alternate wetting and drying regime in rice. Food Energy Secur. 2021, 10, e294. [Google Scholar] [CrossRef]
- Prathap, V.; Tyagi, A.; Kumar, S.; Mohapatra, T. Integrated transcriptome and proteome analysis of near-isogenic line provides insights on regulatory function of Pup1 QTL in rice under phosphorus-starvation stress. Environ. Exp. Bot. 2024, 221, 105726. [Google Scholar] [CrossRef]
- Adem, G.D.; Ueda, Y.; Hayes, P.E.; Wissuwa, M. Genetic and physiological traits for internal phosphorus utilization efficiency in rice. PLoS ONE 2020, 15, e0241842. [Google Scholar] [CrossRef]
- Chen, Z.; Song, J.; Li, X.; Arango, J.; Cardoso, J.A.; Rao, I.; Schultze-Kraft, R.; Peters, M.; Mo, X.; Liu, G. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. BMC Plant Biol. 2021, 21, 466. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huan, Q.; Li, K.; Qian, W. Single-cell transcriptome atlas of the leaf and root of rice seedlings. J. Genet. Genom. 2021, 48, 881–898. [Google Scholar] [CrossRef]
- Song, A.M.; Huang, X.P.; Sun, S.B. Screening and identification of low phosphorus tolerant germplasm of nitrogen efficient rice varieties at seedling stage. Chin. J. Rice Sci. 2017, 24, 479–486. (In Chinese) [Google Scholar]
- Mehra, P.; Pandey, B.K.; Giri, J. Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnol. J. 2017, 15, 1054–1067. [Google Scholar] [CrossRef]
Relative Traits of Rice | Variation Range | Average | Coefficient of Variation (%) |
---|---|---|---|
Relative plant height | 0.481–0.919 | 0.611 | 13.59 |
Relative leaf area | 0.702–1.023 | 0.914 | 8.50 |
Relative SPAD | 0.536–0.87 | 0.726 | 6.83 |
Relative fresh weight above ground | 0.397–0.892 | 0.649 | 39.45 |
Relative underground fresh weight | 0.539–1.08 | 0.859 | 10.71 |
Relative total fresh weight per plant | 0.497–1.24 | 0.906 | 21.29 |
Relative above ground dry weight | 0.427–0.893 | 0.759 | 36.1 |
Relative underground dry weight | 0.269–0.854 | 0.608 | 36.36 |
Relative total dry weight per plant | 0.293–0.863 | 0.604 | 38.48 |
Relative aboveground phosphorus content | 0.05–0.265 | 0.175 | 12.69 |
Relative underground phosphorus content | 0.163–0.879 | 0.547 | 22.96 |
Relative aboveground phosphorus accumulation | 0.32–0.565 | 0.424 | 14.79 |
Relative underground phosphorus accumulation | 0.08–0.564 | 0.473 | 16.39 |
Relative phosphorus accumulation per plant | 0.119–0.863 | 0.629 | 29.66 |
Relative aboveground phosphorus use efficiency | 0.05–0.438 | 0.235 | 20.57 |
Relative underground phosphorus utilization efficiency | 0.163–0.583 | 0.352 | 9.37 |
Relative phosphorus utilization efficiency per plant | 0.147–0.845 | 0.563 | 39.97 |
Relative root–shoot ratio | 0.299–1.252 | 0.899 | 6.08 |
Relative acid phosphatase | 0.319–1.36 | 0.916 | 36.48 |
Relative root length | 0.314–1.027 | 1.084 | 32.24 |
Relative root surface area | 0.284–1.288 | 1.08 | 9.32 |
Relative root volume | 0.162–1.26 | 1.163 | 5.02 |
Relative mean diameter | 0.108–0.124 | 0.0703 | 9.03 |
Principal Component | Eigenvalue | Contributive Ratio (%) | Cumulative Contributive Ratio (%) |
---|---|---|---|
1 | 6.78 | 42.377 | 42.377 |
2 | 2.781 | 17.384 | 59.761 |
3 | 1.843 | 11.521 | 71.282 |
4 | 1.313 | 8.207 | 79.488 |
5 | 1.193 | 7.458 | 86.947 |
Low-P-Tolerant Index | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Plant height | 0.141 | −0.024 | 0.002 | 0.049 | −0.118 |
Fresh weight above ground | 0.056 | −0.013 | 0.337 | −0.011 | −0.379 |
Fresh underground weight | 0.045 | −0.112 | 0.306 | −0.05 | 0.55 |
Total fresh weight per plant | 0.069 | −0.103 | 0.418 | −0.032 | 0.245 |
Aboveground dry weight | 0.138 | −0.028 | −0.012 | 0.068 | −0.161 |
Underground dry weight | 0.004 | 0.338 | 0.135 | 0.001 | −0.013 |
Total dry weight per plant | 0.122 | 0.144 | 0.08 | 0.066 | −0.097 |
The amount of phosphorus in the ground | 0.121 | −0.015 | −0.196 | −0.031 | 0.145 |
Phosphorus content per plant | 0.098 | 0.038 | −0.224 | −0.151 | 0.307 |
Ground phosphorus accumulation | 0.139 | −0.02 | −0.099 | 0.019 | −0.028 |
Underground phosphorus accumulation | 0.032 | 0.302 | −0.022 | −0.11 | 0.202 |
Phosphorus accumulation per plant | 0.142 | 0.083 | −0.091 | −0.039 | 0.096 |
Aboveground phosphorus utilization efficiency | 0.021 | 0.048 | −0.008 | 0.586 | 0.171 |
Utilization efficiency per plant | −0.012 | 0.012 | −0.01 | 0.603 | 0.048 |
Root–shoot ratio | −0.054 | 0.311 | 0.144 | −0.032 | −0.005 |
Acid phosphatase | 0.126 | −0.025 | 0.087 | −0.008 | −0.29 |
Variety Number | NP | LP | Variety Number | NP | LP | Variety Number | NP | LP | Variety Number | NP | LP |
---|---|---|---|---|---|---|---|---|---|---|---|
V1 | 0.4702 | 0.4065 | V40 | 0.3004 | 0.1378 | V79 | 0.3459 | 0.3076 | V118 | 0.3373 | 0.1531 |
V2 | 0.3503 | 0.3205 | V41 | 0.4762 | 0.3771 | V80 | 0.7149 | 0.5023 | V119 | 0.2059 | 0.1222 |
V3 | 0.2304 | 0.1633 | V42 | 0.4679 | 0.2906 | V81 | 0.3335 | 0.3760 | V120 | 0.1949 | 0.1213 |
V4 | 0.3623 | 0.4004 | V43 | 0.3606 | 0.3040 | V82 | 0.3089 | 0.2711 | V121 | 0.4542 | 0.4766 |
V5 | 0.3088 | 0.2257 | V44 | 0.5800 | 0.5105 | V83 | 0.4451 | 0.4679 | V122 | 0.6159 | 0.4481 |
V6 | 0.5343 | 0.5664 | V45 | 0.5785 | 0.2948 | V84 | 0.4686 | 0.3000 | V123 | 0.6625 | 0.3183 |
V7 | 0.2343 | 0.3957 | V46 | 0.5397 | 0.2906 | V85 | 0.4714 | 0.3743 | V124 | 0.3383 | 0.1554 |
V8 | 0.4507 | 0.5685 | V47 | 0.4849 | 0.2896 | V86 | 0.4665 | 0.3776 | V125 | 0.5239 | 0.4561 |
V9 | 0.3493 | 0.2740 | V48 | 0.5880 | 0.2927 | V87 | 0.4601 | 0.2905 | V126 | 0.5448 | 0.3014 |
V10 | 0.4732 | 0.4969 | V49 | 0.3889 | 0.2839 | V88 | 0.4738 | 0.2756 | V127 | 0.5555 | 0.3879 |
V11 | 0.3568 | 0.3671 | V50 | 0.5234 | 0.2955 | V89 | 0.6300 | 0.3662 | V128 | 0.4553 | 0.3609 |
V12 | 0.4114 | 0.2974 | V51 | 0.2988 | 0.2720 | V90 | 0.6652 | 0.2915 | V129 | 0.3094 | 0.3034 |
V13 | 0.3264 | 0.3366 | V52 | 0.3061 | 0.1693 | V91 | 0.4380 | 0.3770 | V130 | 0.2295 | 0.1266 |
V14 | 0.3575 | 0.3980 | V53 | 0.4159 | 0.3387 | V92 | 0.3020 | 0.1439 | V131 | 0.7073 | 0.4475 |
V15 | 0.3633 | 0.2710 | V54 | 0.5380 | 0.3061 | V93 | 0.2084 | 0.1527 | V132 | 0.4627 | 0.3136 |
V16 | 0.4560 | 0.4716 | V55 | 0.4702 | 0.3746 | V94 | 0.5240 | 0.4896 | V133 | 0.4815 | 0.1400 |
V17 | 0.4549 | 0.4383 | V56 | 0.2834 | 0.1080 | V95 | 0.3255 | 0.2234 | V134 | 0.4391 | 0.2886 |
V18 | 0.3548 | 0.2941 | V57 | 0.4893 | 0.3625 | V96 | 0.4830 | 0.2781 | V135 | 0.3900 | 0.2745 |
V19 | 0.5363 | 0.4290 | V58 | 0.3516 | 0.3734 | V97 | 0.4002 | 0.3276 | V136 | 0.2326 | 0.1488 |
V20 | 0.4473 | 0.3971 | V59 | 0.2952 | 0.1568 | V98 | 0.3611 | 0.4038 | V137 | 0.4618 | 0.3033 |
V21 | 0.4811 | 0.3773 | V60 | 0.4156 | 0.1140 | V99 | 0.3048 | 0.1544 | V138 | 0.2885 | 0.2263 |
V22 | 0.4758 | 0.2892 | V61 | 0.5317 | 0.2264 | V100 | 0.4470 | 0.2235 | V139 | 0.3298 | 0.2817 |
V23 | 0.5196 | 0.4428 | V62 | 0.3344 | 0.2883 | V101 | 0.6929 | 0.4817 | V140 | 0.1945 | 0.3009 |
V24 | 0.3340 | 0.2776 | V63 | 0.3327 | 0.3138 | V102 | 0.4560 | 0.2863 | V141 | 0.2829 | 0.1430 |
V25 | 0.3233 | 0.3691 | V64 | 0.3503 | 0.2992 | V103 | 0.4552 | 0.2794 | V142 | 0.2102 | 0.1307 |
V26 | 0.3631 | 0.3759 | V65 | 0.2338 | 0.3195 | V104 | 0.5584 | 0.3640 | V143 | 0.2353 | 0.1697 |
V27 | 0.3430 | 0.2871 | V66 | 0.4563 | 0.2258 | V105 | 0.3938 | 0.3621 | V144 | 0.3021 | 0.2958 |
V28 | 0.4109 | 0.2214 | V67 | 0.4491 | 0.4643 | V106 | 0.5258 | 0.4808 | V145 | 0.3425 | 0.2215 |
V29 | 0.4548 | 0.3946 | V68 | 0.3954 | 0.3625 | V107 | 0.5811 | 0.4671 | V146 | 0.3950 | 0.3203 |
V30 | 0.6714 | 0.4561 | V69 | 0.4124 | 0.4432 | V108 | 0.5298 | 0.4354 | V147 | 0.3163 | 0.3197 |
V31 | 0.3100 | 0.2900 | V70 | 0.5227 | 0.2878 | V109 | 0.6123 | 0.5342 | V148 | 0.4392 | 0.5041 |
V32 | 0.3232 | 0.2883 | V71 | 0.4568 | 0.4653 | V110 | 0.4626 | 0.4704 | V149 | 0.4157 | 0.4469 |
V33 | 0.5882 | 0.4472 | V72 | 0.3510 | 0.4475 | V111 | 0.3062 | 0.2820 | V150 | 0.4503 | 0.4968 |
V34 | 0.6015 | 0.4950 | V73 | 0.3922 | 0.4805 | V112 | 0.2790 | 0.2861 | V151 | 0.5835 | 0.4959 |
V35 | 0.3671 | 0.2908 | V74 | 0.2994 | 0.2257 | V113 | 0.2974 | 0.2982 | V152 | 0.4795 | 0.4400 |
V36 | 0.4002 | 0.2907 | V75 | 0.4749 | 0.4804 | V114 | 0.2360 | 0.1520 | V153 | 0.3886 | 0.4501 |
V37 | 0.3884 | 0.2842 | V76 | 0.4741 | 0.2708 | V115 | 0.3051 | 0.2847 | V154 | 0.4541 | 0.3173 |
V38 | 0.3232 | 0.1424 | V77 | 0.3032 | 0.3071 | V116 | 0.3133 | 0.3020 | V155 | 0.5964 | 0.3868 |
V39 | 0.3409 | 0.3048 | V78 | 0.6850 | 0.4478 | V117 | 0.1875 | 0.1104 | V156 | 0.4378 | 0.2898 |
Chemical | Mother Liquor (mmol/L) | Experimental Concentration (mmol/L) |
---|---|---|
(NH4)2SO4 | 364.8 | 0.3648 |
KH2PO4 | 182.2 | 0.1822 |
KNO3 | 183.0 | 0.1830 |
K2SO4 | 91.2 | 0.0912 |
Ca (NO3)2/Ca (NO3)2·4H2O | 365.0/349.7 | 0.3650/0.3497 |
MgSO4/MgSO4·7H2O | 547.5/547.0 | 0.5475/0.5470 |
H3BO3 | 30.1 | 0.0301 |
CuSO4·5H2O | 0.3 | 0.0003 |
ZnSO4·7H2O | 0.8 | 0.0008 |
MnCl2·4H2O | 9.1 | 0.0091 |
(NH4) 2MoO4·4H2O | 0.5 | 0.0005 |
Na2·EDTA | 22.2 | 0.0222 |
FeSO4·7H2O | 20.0 | 0.0200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wang, Y.; Qi, Z.; Zhang, Q.; Wang, H.; Guan, C.; Sun, W.; Ling, F.; Zhang, Z.; Xu, C. Screening of Germplasm Resources with Low-Phosphorus Tolerance During the Seedling Stage of Rice. Plants 2025, 14, 1543. https://doi.org/10.3390/plants14101543
Zhang M, Wang Y, Qi Z, Zhang Q, Wang H, Guan C, Sun W, Ling F, Zhang Z, Xu C. Screening of Germplasm Resources with Low-Phosphorus Tolerance During the Seedling Stage of Rice. Plants. 2025; 14(10):1543. https://doi.org/10.3390/plants14101543
Chicago/Turabian StyleZhang, Mengru, Ye Wang, Zexin Qi, Qiang Zhang, Huan Wang, Chenglong Guan, Wenzheng Sun, Fenglou Ling, Zhian Zhang, and Chen Xu. 2025. "Screening of Germplasm Resources with Low-Phosphorus Tolerance During the Seedling Stage of Rice" Plants 14, no. 10: 1543. https://doi.org/10.3390/plants14101543
APA StyleZhang, M., Wang, Y., Qi, Z., Zhang, Q., Wang, H., Guan, C., Sun, W., Ling, F., Zhang, Z., & Xu, C. (2025). Screening of Germplasm Resources with Low-Phosphorus Tolerance During the Seedling Stage of Rice. Plants, 14(10), 1543. https://doi.org/10.3390/plants14101543