Toward Low-Emission Agriculture: Synergistic Contribution of Inorganic Nitrogen and Organic Fertilizers to GHG Emissions and Strategies for Mitigation
Abstract
:1. Introduction
2. Methodology
3. Inorganic Nitrogen Fertilizer with Associated N Losses
3.1. Nitrogen Use Efficiency
3.2. Emissions Associated with Nitrogen
4. Straw Incorporation’s Impact on Greenhouse Gas Emissions
Management Practice | N2O Emission | CH4 Emission | CO2 Emission | References |
---|---|---|---|---|
Nitrogen (DN600) + (conv. N) + N-enriched | ↓21% to ↑90% | ↓21% to ↑90% | ↑10.6% to ↑40% | [133,134] |
Straw (crop residue) | ↑12.2% | ↑130.9% | ↑31.7% | [121] |
Biochar (obtained from sugarcane) + CS | ↓27.7% to ↓71% | ↑15% | ↑16% to ↑70% | [109,135,136] |
Manure (chicken and horse manures) + Am + cow manure (lactating and dry cow) + VRM + CRM | ↑25.8% | ↓25% to ↓85% | ↑45% | [137,138,139,140] |
5. Manure as a Substitute Approach
6. Biochar Amendment and Its Attributes Toward GHG Emissions
7. Strategies to Mitigate GHG Emissions
7.1. Agronomic Adaptation
7.2. Improvements in Irrigation and Nitrogen Fertilization
7.3. Rotation with Legume Crops
7.4. Organic Source Fertilization
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GHG | Greenhouse gas |
N2O | Nitrous oxide |
CH4 | Methane |
CO2 | Carbon dioxide |
SI | Straw incorporation |
N | Nitrogen |
NUE | Nitrogen use efficiency |
NF | Nitrification |
SOC | Soil organic carbon |
SOM | Soil organic matter |
DNF | Denitrification |
VLT | Volatilization |
SCF | Straw from the crop into the field |
OC | Organic carbon |
BCF | Incorporation of biochar from straw into the field |
CF | Incorporation of chemical fertilizer alone into the field |
CONV | Conventional urea |
CD20 | Cow manure at 20.00% |
CD50 | Cow manure 50.00% |
DN600 | Drip fertigation treatments, 600 kg N ha−1 yr−1 |
Biochar | Slow pyrolysis of sugarcane straw at 450 °C with heating rate of 10 °C min−1 and a retention time of 2 h. |
CS | Single application of 13.5 t/ha biochar (CS) |
AM | Animal manure (pig manure) application rate of 15 Mg ha−1 yr−1 |
CRM | Solid cattle manure at a constant, CRM; 45 Mg ha−1 |
VRM | Variable rate manure application, VRM; 0–72 Mg ha−1 |
N-enriched | 114 mL of liquid ammonium-based N-fertilizer (N-enriched) |
CsM | Solid cattle manure |
PM | Poultry manure |
References
- Nabuurs, G.-J.; Mrabet, R.; Hatab, A.A.; Bustamante, M.; Clark, H.; Havlík, P.; House, J.; Mbow, C.; Ninan, K.N.; Popp, A.; et al. Agriculture, Forestry and Other Land Uses (AFOLU). In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Sixth assessment report: Climate change 2021—The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 5 May 2025).
- Azadi, H.; Taheri, F.; Burkart, S.; Mahmoudi, H.; De Maeyer, P.; Witlox, F. Impact of agricultural land conversion on climate change. Environ. Dev. Sustain. 2020, 23, 3187–3198. [Google Scholar] [CrossRef]
- Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 2011, 109, 117–161. [Google Scholar] [CrossRef]
- Duxbury, J.M. The significance of agricultural sources of greenhouse gases. Nutr. Cycl. Agroecosyst. 1994, 38, 151–163. [Google Scholar] [CrossRef]
- Dong, N.; Liu, Z.; Luo, M.; Fang, C.; Lin, H. The Effects of Anthropogenic Land Use Changes on Climate in China Driven by Global Socioeconomic and Emission Scenarios. Earth’s Future 2019, 7, 784–804. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Stehfest, E.; van Meijl, H.; Witzke, P.; Pérez-Domínguez, I.; van Dijk, M.; Doelman, J.C.; Fellmann, T.; Koopman, J.F.L.; et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat. Clim. Change 2018, 9, 66–72. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Zhu, D. Global carbon budget 2017. Earth Syst. Sci. Data Discuss. 2018, 10, 405–448. [Google Scholar] [CrossRef]
- Chakraborti, R.; Davis, K.F.; DeFries, R.; Rao, N.D.; Joseph, J.; Ghosh, S. Crop switching for water sustainability in India’s food bowl yields co-benefits for food security and farmers’ profits. Nat. Water 2023, 1, 864–878. [Google Scholar] [CrossRef]
- Klimczyk, M.; Siczek, A.; Schimmelpfennig, L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total. Environ. 2021, 771, 145483. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Zheng, X. Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China. Biogeosciences 2012, 9, 839–850. [Google Scholar] [CrossRef]
- Kim, G.W.; Gutierrez-Suson, J.; Kim, P.J. Optimum N rate for grain yield coincides with minimum greenhouse gas intensity in flooded rice fields. Field Crop. Res. 2019, 237, 23–31. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Wuta, M.; Nyamangara, J.; Smith, J.L.; Rees, R.M. Nitrous oxide and methane emissions from cultivated seasonal wetland (dambo) soils with inorganic, organic and integrated nutrient management. Nutr. Cycl. Agroecosyst. 2014, 100, 161–175. [Google Scholar] [CrossRef]
- Niu, J.; Gui, H.; Iqbal, A.; Zhang, H.; Dong, Q.; Pang, N.; Wang, S.; Wang, Z.; Wang, X.; Yang, G.; et al. N-use efficiency and yield of cotton (G. hirsutumn L.) are improved through the combination of N-fertilizer reduction and N-efficient cultivar. Agronomy 2020, 11, 55. [Google Scholar] [CrossRef]
- Sundstrom, S.M.; Angeler, D.G.; Allen, C.R. Resilience theory and coerced resilience in agriculture. Agric. Syst. 2023, 206, 103612. [Google Scholar] [CrossRef]
- Beach, R.H.; Creason, J.; Ohrel, S.B.; Ragnauth, S.; Ogle, S.; Li, C.; Ingraham, P.; Salas, W. Global mitigation potential and costs of reducing agricultural non-CO2greenhouse gas emissions through 2030. J. Integr. Environ. Sci. 2015, 12, 87–105. [Google Scholar] [CrossRef]
- Gram, G.; Roobroeck, D.; Pypers, P.; Six, J.; Merckx, R.; Vanlauwe, B. Combining organic and mineral fertilizers as a climate-smart integrated soil fertility management practice in sub-Saharan Africa: A meta-analysis. PLoS ONE 2020, 15, e0239552. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.-D.; Gu, X.-B.; Wang, J.-W.; Niu, W.-Q. Yield and gas exchange of greenhouse tomato at different nitrogen levels under aerated irrigation. Sci. Total. Environ. 2019, 668, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Olaleye, A.; Peak, D.; Shorunke, A.; Dhillon, G.; Oyedele, D.; Adebooye, O.; Akponikpe, P.I. Effect of manure and urea fertilization on yield, carbon speciation and greenhouse gas emissions from vegetable production systems of Nigeria and Republic of Benin: A phytotron study. Agronomy 2020, 10, 400. [Google Scholar] [CrossRef]
- Chen, C.; Bao, Y.-X.; Lv, Q.; Tang, Q.; Nu, K. Simulation and Influence Factors of Nitrous Oxide (N2O) Gases Emission under Different Straw Retention Depths. J. Environ. Eng. 2020, 146. [Google Scholar] [CrossRef]
- Chen, Y.; Du, Z.; Weng, Z.; Sun, K.; Zhang, Y.; Liu, Q.; Yang, Y.; Li, Y.; Wang, Z.; Luo, Y.; et al. Formation of soil organic carbon pool is regulated by the structure of dissolved organic matter and microbial carbon pump efficacy: A decadal study comparing different carbon management strategies. Glob. Change Biol. 2023, 29, 5445–5459. [Google Scholar] [CrossRef]
- Reichel, R.; Kamau, C.W.; Kumar, A.; Li, Z.; Radl, V.; Temperton, V.M.; Schloter, M.; Brüggemann, N. Spring barley performance benefits from simultaneous shallow straw incorporation and top dressing as revealed by rhizotrons with resealable sampling ports. Biol. Fertil. Soils 2022, 58, 375–388. [Google Scholar] [CrossRef]
- Ma, J.; Ma, E.; Xu, H.; Yagi, K.; Cai, Z. Wheat straw management affects CH4 and N2O emissions from rice fields. Soil Biol. Biochem. 2009, 41, 1022–1028. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Gong, S.; Xu, D.; Juan, S.; Zhao, Y. Evapotranspiration, crop coefficient and yield for drip-irrigated winter wheat with straw mulching in North China Plain. Field Crop. Res. 2018, 217, 218–228. [Google Scholar] [CrossRef]
- Shi, W.; Fang, Y.R.; Chang, Y.; Xie, G.H. Toward sustainable utilization of crop straw: Greenhouse gas emissions and their reduction potential from 1950 to 2021 in China. Resour. Conserv. Recycl. 2022, 190, 106824. [Google Scholar] [CrossRef]
- Lu, F.; Wang, X.; Han, B.; Ouyang, Z.; Duan, X.; Zheng, H. Net mitigation potential of straw return to Chinese cropland: Estimation with a full greenhouse gas budget model. Ecol. Appl. 2010, 20, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, G.; Zhuang, H.; Wang, K. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues. Renew. Sustain. Energy Rev. 2008, 12, 1402–1418. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, P.; Mei, F.; Ling, Y.; Qiao, Y.; Liu, C.; Leghari, S.J.; Guan, X.; Wang, T. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. J. Environ. Manag. 2021, 288, 112391. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, L.; Liu, T.; Li, C.; Cao, C. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice–wheat cropping systems in central China. Atmos. Environ. 2015, 122, 636–644. [Google Scholar] [CrossRef]
- Gao, F.; Li, B.; Ren, B.; Zhao, B.; Liu, P.; Zhang, J. Effects of residue management strategies on greenhouse gases and yield under double cropping of winter wheat and summer maize. Sci. Total. Environ. 2019, 687, 1138–1146. [Google Scholar] [CrossRef]
- Wang, L.; Qin, T.; Liu, T.; Guo, L.; Li, C.; Zhai, Z. Inclusion of microbial inoculants with straw mulch enhances grain yields from rice fields in central China. Food Energy Secur. 2020, 9, e230. [Google Scholar] [CrossRef]
- Watanabe, A.; Satoh, Y.; Kimura, M. Estimation of the increase in CH4 emission from paddy soils by rice straw application. Plant Soil 1995, 173, 225–231. [Google Scholar] [CrossRef]
- Yang, L.; Muhammad, I.; Chi, Y.X.; Liu, Y.X.; Wang, G.Y.; Wang, Y.; Zhou, X.B. Straw return and nitrogen fertilization regulate soil greenhouse gas emissions and global warming potential in dual maize cropping system. Sci. Total. Environ. 2022, 853, 158370. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in climate change mitigation. Nat. Geosci. 2021, 14, 883. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, Y.; Liu, Y.; Zhang, S.; Yue, X.; Yao, B.; Xue, J.; Lv, W.; Zhang, L.; Xu, X.; et al. Factors shaping soil organic carbon stocks in grass covered orchards across China: A meta-analysis. Sci. Total. Environ. 2022, 807, 150632. [Google Scholar] [CrossRef]
- Zavalloni, C.; Alberti, G.; Biasiol, S.; Vedove, G.D.; Fornasier, F.; Liu, J.; Peressotti, A. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Appl. Soil Ecol. 2011, 50, 45–51. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, Y.; Dungait, J.A.J.; Kumar, A.; Wang, J.; Tiemann, L.K.; Zhang, F.; Kuzyakov, Y.; Tian, J. Microbial necromass in cropland soils: A global meta-analysis of management effects. Glob. Change Biol. 2023, 29, 1998–2014. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Cheng, K.; Pan, G. Comprehensive evaluation of environmental footprints of regional crop production: A case study of Chizhou City, China. Ecol. Econ. 2019, 164, 106360. [Google Scholar] [CrossRef]
- Bi, R.; Zhang, Q.; Zhan, L.; Xu, X.; Zhang, X.; Dong, Y.; Yan, X.; Xiong, Z. Biochar and organic substitution improved net ecosystem economic benefit in intensive vegetable production. Biochar 2022, 4, 46. [Google Scholar] [CrossRef]
- Sun, F.; Harrison, J.H.; Ndegwa, P.M.; Johnson, K. Effect of manure treatment on ammonia and greenhouse gases emissions following surface application. Water Air Soil Pollut. 2014, 225, 1923–1946. [Google Scholar] [CrossRef]
- Sejian, V.; Samal, L.; Bagath, M.; Suganthi, R.U.; Bhatta, R.; Lal, R. Gaseous emissions from manure management. In Encyclopedia of Soil Science; Lal, R., Ed.; Taylor & Francis: Abingdon, UK, 2015; p. 6. [Google Scholar]
- Graham, C.J.; van Es, H.M.; Melkonian, J.J. Nitrous oxide emissions are greater in silt loam soils with a legacy of manure application than without. Biol. Fertil. Soils 2013, 49, 1123–1129. [Google Scholar] [CrossRef]
- Davidson, E.A.; Verchot, L.V.; Cattanio, J.H.; Ackerman, I.L.; Carvalho, J.E.M. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 2000, 48, 53–69. [Google Scholar] [CrossRef]
- Toonsiri, P.; Del Grosso, S.J.; Sukor, A.; Davis, J.G. Greenhouse gas emissions from solid and liquid organic fertilizers applied to lettuce. J. Environ. Qual. 2016, 45, 1812–1821. [Google Scholar] [CrossRef]
- Ryan, M.G.; Law, B.E. Interpreting, measuring, and modeling soil respiration. Biogeochemistry 2005, 73, 3–27. [Google Scholar] [CrossRef]
- Gao, H.; Chen, X.; Wei, J.; Zhang, Y.; Zhang, L.; Chang, J.; Thompson, M.L. Decomposition dynamics and changes in chemical composition of wheat straw residue under anaerobic and aerobic conditions. PLoS ONE 2016, 11, e0158172. [Google Scholar] [CrossRef]
- Wang, Y.; Adnan, A.; Wang, X.; Shi, Y.; Yang, S.; Ding, Q.; Sun, G. Nutrient recycling, wheat straw decomposition, and the potential effect of straw shear strength on soil mechanical properties. Agronomy 2020, 10, 314. [Google Scholar] [CrossRef]
- Giosanu, D.; Bucura, F.; Constantinescu, M.; Zaharioiu, A.; Vîjan, L.; Mățăoanu, G. The nutrient potential of organic manure and its risk to the environment. Curr. Trends Nat. Sci. 2022, 11, 153–160. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock manure and the impacts on soil health: A review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Premalatha, R.P.; Bindu, J.P.; Nivetha, E.; Malarvizhi, P.; Manorama, K.; Parameswari, E.; Davamani, V. A review on biochar’s effect on soil properties and crop growth. Front. Energy Res. 2023, 11, 1092637. [Google Scholar] [CrossRef]
- Tusar, H.M.; Uddin, K.; Mia, S.; Suhi, A.A.; Wahid, S.B.A.; Kasim, S.; Sairi, N.A.; Alam, Z.; Anwar, F. Biochar-Acid Soil Interactions—A Review. Sustainability 2023, 15, 13366. [Google Scholar] [CrossRef]
- Haber, F.; Le Rossignol, R. Production of Ammonia. U.S. Patent No. 1,202,995, 31 October 1916. Washington, DC: U.S. Patent and Trademark Office. [Google Scholar]
- IFA. Statistics, IFADATA. Available online: https://www.ifastat.org/databases (accessed on 5 May 2025).
- Wang, F.; Liang, X.; Ding, F.; Ren, L.; Liang, M.; An, T.; Li, S.; Wang, J.; Liu, L. The active functional microbes contribute differently to soil nitrification and denitrification potential under long-term fertilizer regimes in North-East China. Front. Microbiol. 2022, 13, 1021080. [Google Scholar] [CrossRef]
- Biswas, B.; Gresshoff, P.M. The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int. J. Mol. Sci. 2014, 15, 7380–7397. [Google Scholar] [CrossRef]
- Garrido-Oter, R.; Nakano, R.T.; Dombrowski, N.; Ma, K.W.; McHardy, A.C.; Schulze-Lefert, P. Modular Traits of the Rhizo-biales Root Microbiota and Their Evolutionary Relationship with Symbiotic Rhizobia. Cell Host Microbe 2018, 24, 155–167. [Google Scholar] [CrossRef]
- Carvajal, A.; Vargas, R.; Alfaro, M. Abundance of denitrifying genes and microbial community structure in volcanic soils. J. Soil Sci. Plant Nutr. 2016, 18, 677–688. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; Sujayanand, G.K.; Vadivel, R.; Das, T.K.; et al. Nitrogen use efficiency—A key to enhance crop productivity under a changing climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef]
- Sainju, U.M.; Ghimire, R.; Pradhan, G.P. Nitrogen Fertilization I: Impact on Crop, Soil, and Environment; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Guo, C.; Liu, X.; He, X. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Sci. Total. Environ. 2022, 831, 154982. [Google Scholar] [CrossRef]
- Chen, X.; Wang, G.; Zhang, T.; Mao, T.; Wei, D.; Song, C.; Hu, Z.; Huang, K. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region. Sci. Total Environ. 2017, 601–602, 1389–1399. [Google Scholar] [CrossRef]
- Ai, H.-S.; Fan, B.; Zhou, Z.-Q.; Liu, J. The impact of nitrogen Fertilizer application on air Pollution: Evidence from China. J. Environ. Manag. 2024, 370, 122880. [Google Scholar] [CrossRef] [PubMed]
- Forte, A.; Fagnano, M.; Fierro, A. Potential role of compost and green manure amendment to mitigate soil GHGs emissions in Mediterranean drip irrigated maize production systems. J. Environ. Manag. 2017, 192, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, G.G.F.; Cantú, R.R.; Scherer, R.F.; Beltrame, A.B.; de Haro, M.M. Banana crop nutrition: Insights into different nutrient sources and soil fertilizer application strategies. Rev. Bras. Cienc. Solo 2020, 44, e0190104. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Zhang, J.; Wang, C.; Zhou, S. Long term comparison of GHG emissions and crop yields in response to direct straw or biochar incorporation in rice-wheat rotation systems: A 10-year field observation. Agric. Ecosyst. Environ. 2024, 374, 109188. [Google Scholar] [CrossRef]
- Pei, Y.; Chen, X.; Niu, Z.; Su, X.; Wang, Y.; Wang, X. Effects of nitrogen fertilizer substitution by cow manure on yield, net GHG emissions, carbon and nitrogen footprints in sweet maize farmland in the Pearl River Delta in China. J. Clean. Prod. 2023, 399, 136676. [Google Scholar] [CrossRef]
- Cayuela, M.; Jeffery, S.; van Zwieten, L. The molar H:Corg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agric. Ecosyst. Environ. 2015, 202, 135–138. [Google Scholar] [CrossRef]
- Thomazini, A.; Spokas, K.; Hall, K.; Ippolito, J.; Lentz, R.; Novak, J. GHG impacts of biochar: Predictability for the same biochar. Agric. Ecosyst. Environ. 2015, 207, 183–191. [Google Scholar] [CrossRef]
- Pan, S.-Y.; He, K.-H.; Lin, K.-T.; Fan, C.; Chang, C.-T. Addressing nitrogenous gases from croplands toward low-emission agriculture. npj Clim. Atmos. Sci. 2022, 5, 43. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability 2017, 10, 51. [Google Scholar] [CrossRef]
- Jia, X.; Li, F.; Miao, Z.; Li, X.; Sun, L.; Wei, Y.; Yang, K.; Guo, H.; Song, R.; Shang, H.; et al. Cultivar mixtures of maize enhance grain yield and nitrogen use efficiency by promoting canopy photosynthetically active radiation and root growth. J. Integr. Agric. 2024, in press. [Google Scholar] [CrossRef]
- The, S.V.; Snyder, R.; Tegeder, M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Front. Plant Sci. 2021, 11, 628366. [Google Scholar] [CrossRef] [PubMed]
- Theerawitaya, C.; Supaibulwatana, K.; Tisarum, R.; Samphumphuang, T.; Chungloo, D.; Singh, H.P.; Cha-Um, S. Expression levels of nitrogen assimilation-related genes, physiological responses, and morphological adaptations of three indica rice (Oryza sativa L. ssp. indica) genotypes subjected to nitrogen starvation conditions. Protoplasma 2022, 260, 691–705. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, J.; Wang, X.; Blackmer, A.M.; Zhang, F. Optimal rates of nitrogen fertilization for a winter wheat-corn cropping system in Northern China. Commun. Soil Sci. Plant Anal. 2004, 35, 583–597. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, X.; Zhang, F. Current nitrogen management status and measures to improve the intensive wheat–maize system in China. AMBIO 2010, 39, 376–384. [Google Scholar] [CrossRef]
- Wang, L.; He, D.; Wang, E.; Chen, G.; Li, Z.; Qian, X.; Gao, Y.; Zhang, H.; Liu, K. Nitrogen management to reduce GHG emissions while maintaining high crop productivity in temperate summer rainfall climate. Field Crop. Res. 2022, 290, 108761. [Google Scholar] [CrossRef]
- You, L.; Ros, G.H.; Chen, Y.; Yang, X.; Cui, Z.; Liu, X.; Jiang, R.; Zhang, F.; de Vries, W. Global meta-analysis of terrestrial nitrous oxide emissions and associated functional genes under nitrogen addition. Soil Biol. Biochem. 2022, 165, 108523. [Google Scholar] [CrossRef]
- Meng, Q.; Yue, S.; Hou, P.; Cui, Z.; Chen, X. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: A review. Pedosphere 2016, 26, 137–147. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiong, X.; Wu, C. Effects of deep placement of fertilizer on periphytic biofilm development and nitrogen cycling in paddy systems. Pedosphere 2021, 31, 125–133. [Google Scholar] [CrossRef]
- Lyu, Y.; Yang, X.; Pan, H.; Zhang, X.; Cao, H.; Ulgiati, S.; Wu, J.; Zhang, Y.; Wang, G.; Xiao, Y. Impact of fertilization schemes with different ratios of urea to controlled release nitrogen fertilizer on environmental sustainability, nitrogen use efficiency and economic benefit of rice production: A study case from Southwest China. J. Clean. Product. 2021, 293, 126198. [Google Scholar] [CrossRef]
- Puga, A.P.; Grutzmacher, P.; Cerri, C.E.P.; Ribeirinho, V.S.; de Andrade, C.A. Biochar-based nitrogen fertilizers: Greenhouse gas emissions, use efficiency, and maize yield in tropical soils. Sci. Total Environ. 2020, 704, 135375. [Google Scholar] [CrossRef]
- Shen, Y.; Jiao, S.; Ma, Z.; Lin, H.; Gao, W.; Chen, J. Humic acid-modified bentonite composite material enhances urea-nitrogen use efficiency. Chemosphere 2020, 255, 126976. [Google Scholar] [CrossRef]
- Yao, Z.; Yan, G.; Zheng, X.; Wang, R.; Liu, C.; Butterbach-Bahl, K. Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system. Environ. Pollut. 2017, 231, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, H.; Yan, B.; Chen, L.; Shutes, B.; Wang, M.; Lyu, J.; Zhang, F. Ammonia volatilization, greenhouse gas emissions and microbiological mechanisms following the application of nitrogen fertilizers in a saline-alkali paddy ecosystem. Geoderma 2023, 433, 116460. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Liu, H.B.; Zhu, H.; Lü, M.Q.; Chen, S.B.; Wang, Y.W.; Shen, Z.Y. New modeling framework for describing the pollutant transport and removal of ditch-pond system in an agricultural catchment. Water Resour. Res. 2021, 57, e2021WR031077. [Google Scholar] [CrossRef]
- Guo, J.; Fan, J.; Zhang, F.; Yan, S.; Zheng, J.; Wu, Y.; Li, J.; Wang, Y.; Sun, X.; Liu, X.; et al. Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization. Sci. Total. Environ. 2021, 790, 148058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Pan, Y.; He, Y.; Zhao, Y.; Zhu, L.; Zhang, X.; Xu, X.; Ji, D.; Gao, J.; Tian, S.; et al. Bias in ammonia emission inventory and implications on emission control of nitrogen oxides over North China Plain. Atmos. Environ. 2019, 214, 116869. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, G.; Wang, D.; Liu, Q.; Xu, M. Investigation into runoff nitrogen loss variations due to different crop residue retention modes and nitrogen fertilizer rates in rice-wheat cropping systems. Agric. Water Manag. 2021, 247, 106729. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Z.; Ma, Y.; Liu, Y.; Xiong, Z. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China. Atmos. Environ. 2018, 181, 97–105. [Google Scholar] [CrossRef]
- Zhan, X.; Adalibieke, W.; Cui, X.; Winiwarter, W.; Reis, S.; Zhang, L.; Bai, Z.; Wang, Q.; Huang, W.; Zhou, F. Improved estimates of ammonia emissions from global croplands. Environ. Sci. Technol. 2020, 55, 1329–1338. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, S.; Zhao, Y.; Zhang, L.; Zhu, X.; Gao, J.; Huang, W.; Zhou, Y.; Song, Y.; Zhang, Q.; et al. Identifying ammonia hotspots in China using a national observation network. Environ. Sci. Technol. 2018, 52, 3926–3934. [Google Scholar] [CrossRef]
- Shan, L.; He, Y.; Chen, J.; Huang, Q.; Wang, H. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. J. Environ. Sci. 2015, 38, 14–23. [Google Scholar] [CrossRef]
- Wang, B.; Li, R.; Wan, Y.; Li, Y.; Cai, W.; Guo, C.; Qin, X.; Song, C.; Wilkes, A. Air warming and CO2 enrichment cause more ammonia volatilization from rice paddies: An OTC field study. Sci. Total. Environ. 2021, 752, 142071. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, J.; Fan, J.; Zhang, F.; Huang, C. Grain yield and greenhouse gas emissions from maize and wheat fields under plastic film and straw mulching: A meta-analysis. Field Crop. Res. 2021, 270, 108210. [Google Scholar] [CrossRef]
- Riya, S.; Zhou, S.; Watanabe, Y.; Sagehashi, M.; Terada, A.; Hosomi, M. CH4 and N2O emissions from different varieties of forage rice (Oryza sativa L.) treating liquid cattle waste. Sci. Total. Environ. 2012, 419, 178–186. [Google Scholar] [CrossRef]
- Yang, X.; Shang, Q.; Wu, P.; Liu, J.; Shen, Q.; Guo, S.; Xiong, Z. Methane emissions from double rice agriculture under long-term fertilizing systems in Hunan, China. Agric. Ecosyst. Environ. 2010, 137, 308–316. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change Contribution of Working Group III to the Sixth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023. [Google Scholar]
- Liu, X.-J.A.; Finley, B.K.; Mau, R.L.; Schwartz, E.; Dijkstra, P.; Bowker, M.A.; Hungate, B.A. The soil priming effect: Consistent across ecosystems, elusive mechanisms. Soil Biol. Biochem. 2020, 140, 107617. [Google Scholar] [CrossRef]
- Iqbal, A.; Ali, I.; Zhao, Q.; Yuan, P.; Huang, M.; Liang, H.; Zeeshan, M.; Muhammad, I.; Wei, S.; Jiang, L. Effect of integrated organic–inorganic amendments on leaf physiological and grain starch viscosity (Rapid Visco-Analyzer Profile) characteristics of rice and Ultisols soil quality. Agronomy 2022, 12, 863. [Google Scholar] [CrossRef]
- Mazuecos-Aguilera, I.; Salazar, S.; Hidalgo-Castellanos, J.; Ortiz-Liébana, N.; López-Bornay, P.; González-Andrés, F. Combined application of N-fixing PGPB and rice straw mulch compensates N immobilization by straw, improving crop growth. Chem. Biol. Technol. Agric. 2024, 11, 31. [Google Scholar] [CrossRef]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure management: Implications for greenhouse gas emissions. Anim. Feed. Sci. Technol. 2011, 166–167, 514–531. [Google Scholar] [CrossRef]
- Jien, S.-H.; Wang, C.-C.; Lee, C.-H.; Lee, T.-Y. Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures. Sustainability 2015, 7, 13317–13333. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Méndez, A.; Gascó, G. Application of biochar for soil biological improvement. In SSSA Special Publications; Guo, M., He, Z., Uchimiya, S.M., Eds.; Soil Science Society of America: Madison, WI, USA, 2015; Volume 63, pp. 41–54. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Xue, J.; Zhang, L. Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: A global meta-analysis. Sustainability 2020, 12, 3436. [Google Scholar] [CrossRef]
- Conrad, R. Methane production in soil environments—Anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 2020, 8, 881. [Google Scholar] [CrossRef]
- Hefting, M.M.; Bobbink, R.; de Caluwe, H. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. J. Environ. Qual. 2003, 32, 1194–1203. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Change Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Liu, N.; Liao, P.; Zhang, J.; Zhou, Y.; Luo, L.; Huang, H.; Zhang, L. Characteristics of denitrification genes and relevant enzyme activities in heavy-metal polluted soils remediated by biochar and compost. Sci. Total. Environ. 2020, 739, 139987. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.; Wei, T.; Yang, Z.; Jia, Z.; Yang, B.; Han, Q.; Ren, X. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Tillage Res. 2016, 160, 65–72. [Google Scholar] [CrossRef]
- Mulumba, L.N.; Lal, R. Mulching effects on selected soil physical properties. Soil Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Islam, M.U.; Guo, Z.; Jiang, F.; Peng, X. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crop. Res. 2022, 279, 108447. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Yang, Z.; Fang, Y.; Li, C.; Shi, Y.; Lin, N.; Dong, Q.; Siddique, K.H.; Feng, H.; et al. Ammoniated straw incorporation increases maize grain yield while decreasing net greenhouse gas budget on the Loess Plateau, China. Agric. Ecosyst. Environ. 2023, 352, 108503. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Zhao, Y.; Yang, B.; Ding, R.; Wang, J.; Nie, J. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop. Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- Zhao, H.; Shar, A.G.; Li, S.; Chen, Y.; Shi, J.; Zhang, X.; Tian, X. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, L.; Liu, L.; Sheng, F.; Cao, C.; Li, C. Effects of long-term no tillage and straw return on greenhouse gas emissions and crop yields from a rice-wheat system in central China. Agric. Ecosyst. Environ. 2021, 322, 107650. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, B.Y.; Liu, S.L.; Qi, J.; Wang, X.; Pu, C.; Li, S.; Zhang, X.; Yang, X.; Lal, R.; et al. Sustaining crop production in China’s cropland by crop residue retention: A meta-analysis. Land Degrad. Dev. 2019, 31, 694–709. [Google Scholar] [CrossRef]
- Zhang, W.; Qiao, Y.; Lakshmanan, P.; Yuan, L.; Liu, J.; Zhong, C.; Chen, X. Combing public-private partnership and large-scale farming increased net ecosystem carbon budget and reduced carbon footprint of maize production. Resour. Conserv. Recycl. 2022, 184, 106411. [Google Scholar] [CrossRef]
- Wu, G.; Ling, J.; Xu, Y.-P.; Zhao, D.-Q.; Liu, Z.-X.; Wen, Y.; Zhou, S.-L. Effects of soil warming and straw return on soil organic matter and greenhouse gas fluxes in winter wheat seasons in the North China Plain. J. Clean. Prod. 2022, 356, 131810. [Google Scholar] [CrossRef]
- Zheng, X.; Xie, B.; Liu, C.; Zhou, Z.; Yao, Z.; Wang, Y.; Wang, Y.; Yang, L.; Zhu, J.; Huang, Y.; et al. Quantifying net ecosystem carbon dioxide exchange of a short-plant cropland with intermittent chamber measurements. Glob. Biogeochem. Cycles 2008, 22, GB3031. [Google Scholar] [CrossRef]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.; Shen, Q.; Zou, J.; Guo, S. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Change Biol. 2010, 17, 2196–2210. [Google Scholar] [CrossRef]
- Yang, B.; Xiong, Z.; Wang, J.; Xu, X.; Huang, Q.; Shen, Q. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice–wheat annual rotation systems in China: A 3-year field experiment. Ecol. Eng. 2015, 81, 289–297. [Google Scholar] [CrossRef]
- Jia, J.; Ma, Y.; Xiong, Z. Net ecosystem carbon budget, net global warming potential and greenhouse gas intensity in intensive vegetable ecosystems in China. Agric. Ecosyst. Environ. 2012, 150, 27–37. [Google Scholar] [CrossRef]
- Qian, R.; Guo, R.; Liu, Y.; Naseer, M.A.; Hussain, S.; Liu, D.; Zhang, P.; Chen, X.; Ren, X. Biodegradable film mulching combined with straw incorporation can significantly reduce global warming potential with higher spring maize yield. Agric. Ecosyst. Environ. 2022, 340, 108181. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Woodwell, G.M.; Randerson, J.T.; Rastetter, E.B.; Lovett, G.M.; Baldocchi, D.D.; Clark, D.A.; Harmon, M.E.; Schimel, D.S.; Valentini, R.; et al. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 2006, 9, 1041–1050. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, G.; Xiao, R.; Hou, K.; Liu, X.; Liu, X.; Yuan, P.; Tian, F.; Yin, L.; Zhu, H.; et al. An appropriate amount of straw replaced chemical fertilizers returning reduced net greenhouse gas emissions and improved net ecological economic benefits. J. Clean. Prod. 2023, 434, 140236. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, C.; Ming, H.; Zhang, Y.; Li, X.; Dong, W.; Oenema, O. Concentration profiles of CH4, CO2 and N2O in soils of a wheat–maize rotation ecosystem in North China Plain, measured weekly over a whole year. Agric. Ecosyst. Environ. 2013, 164, 260–272. [Google Scholar] [CrossRef]
- van Groenigen, K.J.; van Kessel, C.; Hungate, B.A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Change 2012, 3, 288–291. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, G.; Li, H.; Wang, L.; Wu, S.; Wu, W.; Meng, F. Mitigation of greenhouse gas emissions through optimized irrigation and nitrogen fertilization in intensively managed wheat–maize production. Sci. Rep. 2020, 10, 62434. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar]
- Abbruzzini, T.F.; Davies, C.A.; Toledo, F.H.; Cerri, C.E.P. Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical wheat-growing season. J. Environ. Manag. 2019, 252, 109638. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Zhang, A.; Rahaman, A.; Yang, Z. Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheat-maize rotation system in North China. Sci. Total. Environ. 2020, 721, 137636. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Nesic, Z.; Grant, N.; Thompson, B.; Smukler, S.M. Greater nitrogen availability, nitrous oxide emissions, and vegetable yields with fall-applied chicken relative to horse manure. Agronomy 2019, 9, 444. [Google Scholar] [CrossRef]
- Dong, D.; Yang, W.; Sun, H.; Kong, S.; Xu, H. Effects of animal manure and nitrification inhibitor on N2O emissions and soil carbon stocks of a maize cropping system in Northeast China. Sci. Rep. 2022, 12, 15202. [Google Scholar] [CrossRef]
- Maldaner, L.; Wagner-Riddle, C.; VanderZaag, A.C.; Gordon, R.; Duke, C. Methane emissions from storage of digestate at a dairy manure biogas facility. Agric. For. Meteorol. 2018, 258, 96–107. [Google Scholar] [CrossRef]
- Hangs, R.D.; Schoenau, J.J.; Knight, J.; Farrell, R.E. Variable rate precision application of feedlot cattle manure mitigates soil greenhouse gas emissions. Geoderma 2025, 454, 117172. [Google Scholar] [CrossRef]
- Paul, J.W.; Beauchamp, E.G.; Zhang, X. Nitrous and nitric oxide emissions during nitrification and denitrification from manure-amended soil in the laboratory. Can. J. Soil Sci. 1993, 73, 539–553. [Google Scholar] [CrossRef]
- Møller, H.; Sommer, S.; Ahring, B. Methane productivity of manure, straw and solid fractions of manure. Biomass-Bioenergy 2004, 26, 485–495. [Google Scholar] [CrossRef]
- Anon. Fertiliser Manual (RB209), 8th ed.; The Stationary Office: London, UK, 2010; 256p. Available online: https://www.gov.uk/government/publications/fertiliser-manual-rb209--2 (accessed on 5 May 2025).
- Bremner, J.M.; Blackmer, S.M. Nitrous oxide emissions from soils during nitrification of fertiliser nitrogen. Science 1978, 199, 295–296. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbial basis of NO and N2O production and consumption in soil. In Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere; Andreae, M.O., Schimel, D.S., Eds.; Wiley: New York, NY, USA, 1989; pp. 7–21. [Google Scholar]
- Chadwick, D.R.; Pain, B.F.; Brookman, S.K.E. Nitrous oxide and methane emissions following application of animal manures to grassland. J. Environ. Qual. 2000, 29, 277–287. [Google Scholar] [CrossRef]
- Singurindy, O.; Molodovskaya, M.; Richards, B.K.; Steenhuis, T.S. Nitrous oxide emission at low temperatures from manure-amended soils under corn (Zea mays L.). Agric. Ecosyst. Environ. 2009, 132, 74–81. [Google Scholar] [CrossRef]
- Chadwick, D. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: Effect of compaction and covering. Atmos. Environ. 2005, 39, 787–799. [Google Scholar] [CrossRef]
- Hassouna, M.; Espagnol, S.; Robin, P.; Paillat, J.M.; Levasseur, P.; Li, Y. Monitoring NH3, N2O, CO2 and CH4 emissions during pig solid manure storage and effect of turning. Compost Sci. Util. 2008, 16, 267–274. [Google Scholar] [CrossRef]
- Sommer, S.G.; Petersen, S.O.; Søgaard, H.T. Greenhouse gas emission from stored livestock slurry. J. Environ. Qual. 2000, 29, 744–751. [Google Scholar] [CrossRef]
- Hellmann, B.; Zelles, L.; Palojärvi, A.; Bai, Q. Emission of climate-relevant trace gases and succession of microbial communities during open-windrow composting. Appl. Environ. Microbiol. 1997, 63, 1011–1018. [Google Scholar] [CrossRef]
- Møller, H.B.; Sommer, S.G.; Ahring, B.K. Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. J. Environ. Qual. 2004, 33, 27–36. [Google Scholar] [CrossRef]
- Sommer, S.G.; Petersen, S.O.; Sørensen, P.; Poulsen, H.D.; Møller, H.B. Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutr. Cycl. Agroecosyst. 2007, 78, 27–36. [Google Scholar] [CrossRef]
- Ni, J.; Heber, A.J.; Lim, T.T.; Tao, P.C.; Schmidt, A.M. Methane and carbon dioxide emission from two pig finishing barns. J. Environ. Qual. 2008, 37, 2001–2011. [Google Scholar] [CrossRef]
- Benedet, L.; Wilbert Ferreira, G.; Brunetto, G.; Loss, A.; Emílio Lovato, P.; Rog’ erio Lourenzi, C.; Henrique Godinho Silva, S.; Curi, N.; Jos’ e Comin, J. Use of swine manure in agriculture in Southern Brazil: Fertility or potential contamination? In Soil Contamination—Threats and Sustainable Solutions; IntechOpen: London, UK, 2021. [Google Scholar]
- Gross, A.; Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 2021, 11, 5516. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hossain, A.; Sarkar, M.; Jahiruddin, M.; da Silva, J.A.T. Productivity and soil fertility of the rice–wheat system in the High Ganges River Floodplain of Bangladesh is influenced by the inclusion of legumes and manure. Agric. Ecosyst. Environ. 2016, 218, 40–52. [Google Scholar] [CrossRef]
- Ali, B.; Traore, B.; Shah, S.A.A.; Shah, S.-U.; Al-Solaimani, S.G.M.; Hussain, Q.; Ali, N.; Shahzad, K.; Shahzad, T.; Ahmad, A.; et al. Manure storage operations mitigate nutrient losses and their products can sustain soil fertility and enhance wheat productivity. J. Environ. Manag. 2019, 241, 468–478. [Google Scholar] [CrossRef]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Maillard, É.; Angers, D.A. Animal manure application and soil organic carbon stocks: A meta-analysis. Glob. Change Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
- Li, B.; Song, H.; Cao, W.; Wang, Y.; Chen, J.; Guo, J. Responses of soil organic carbon stock to animal manure application: A new global synthesis integrating the impacts of agricultural managements and environmental conditions. Glob. Change Biol. 2021, 27, 5356–5367. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C.; Clayton, G.W.; Carefoot, J.P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Q.; Yang, R.; Zhuang, S.; Lin, W.; Li, Y. Evaluating microbial role in reducing N2O emission by dual isotopocule mapping following substitution of inorganic fertilizer for organic fertilizer. J. Clean. Prod. 2021, 326, 129442. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, J.; Almøy, T.; Bakken, L.R. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Glob. Change Biol. 2014, 20, 1685–1698. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, J.; Wang, J.; Cai, Z.; Wang, S. Soil pH is a good predictor of the dominating N2O production processes under aerobic conditions. J. Plant Nutr. Soil Sci. 2015, 178, 370–373. [Google Scholar] [CrossRef]
- Žurovec, O.; Wall, D.P.; Brennan, F.P.; Krol, D.J.; Forrestal, P.J.; Richards, K.G. Increasing soil pH reduces fertiliser derived N2O emissions in intensively managed temperate grassland. Agric. Ecosyst. Environ. 2021, 311, 107319. [Google Scholar] [CrossRef]
- Esteves, C.; Costa, E.; Mota, M.; Martins, M.; Ribeiro, H.; Fangueiro, D. Partial replacement of mineral fertilisers with animal manures in an apple orchard: Effects on GHG emission. J. Environ. Manag. 2024, 356, 120552. [Google Scholar] [CrossRef]
- Selim, M.M. Introduction to the integrated nutrient management strategies and their contribution to yield and soil properties. Int. J. Agron. 2020, 2020, 2821678. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Li, X.; Zheng, Y.; Feng, S.; Jiang, G. Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland. Sci. Bull. 2015, 60, 598–606. [Google Scholar] [CrossRef]
- Gautam, A.; Sekaran, U.; Guzman, J.; Kovács, P.; Hernandez, J.L.G.; Kumar, S. Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure. Environ. Sustain. Indic. 2020, 8, 100073. [Google Scholar] [CrossRef]
- Calleja-Cervantes, M.; Aparicio-Tejo, P.; Villadas, P.; Irigoyen, I.; Irañeta, J.; Fernández-González, A.; Fernández-López, M.; Menéndez, S. Rational application of treated sewage sludge with urea increases GHG mitigation opportunities in Mediterranean soils. Agric. Ecosyst. Environ. 2017, 238, 114–127. [Google Scholar] [CrossRef]
- Francaviglia, R.; Di Bene, C.; Farina, R.; Salvati, L.; Vicente-Vicente, J.L. Assessing “4 per 1000” soil organic carbon storage rates under Mediterranean climate: A comprehensive data analysis. Mitig. Adapt. Strat. Glob. Change 2019, 24, 795–818. [Google Scholar] [CrossRef]
- Hendriks, C.M.J.; Shrivastava, V.; Sigurnjak, I.; Lesschen, J.P.; Meers, E.; van Noort, R.; Yang, Z.; Rietra, R.P.J.J. Replacing mineral fertilisers for bio-based fertilisers in potato growing on sandy soil: A case study. Appl. Sci. 2021, 12, 341. [Google Scholar] [CrossRef]
- Ruangcharus, C.; Kim, S.U.; Yoo, G.-Y.; Choi, E.-J.; Kumar, S.; Kang, N.; Hong, C.O. Nitrous oxide emission and sweet potato yield in upland soil: Effects of different type and application rate of composted animal manures. Environ. Pollut. 2021, 279, 116892. [Google Scholar] [CrossRef]
- Yoro, K.O.; Daramola, M.O. CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture; Rahimpour, M.R., Farsi, M., Makerem, M.A., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 3–28. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 829–833. [Google Scholar]
- Cornelissen, G.; Rutherford, D.W.; Arp, H.P.H.; Dörsch, P.; Kelly, C.N.; Rostad, C.E. Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions. Environ. Sci. Technol. 2013, 47, 7704–7712. [Google Scholar] [CrossRef]
- Arunrat, N.; Uttarotai, T.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Bacterial community structure in soils with fire-deposited charcoal under rotational shifting cultivation of upland rice in Northern Thailand. Ecol. Evol. 2025, 15, e70851. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Bogomolova, I.; Glaser, B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 2014, 70, 229–236. [Google Scholar] [CrossRef]
- Jaffé, R.; Ding, Y.; Niggemann, J.; Vähätalo, A.V.; Stubbins, A.; Spencer, R.G.M.; Campbell, J.; Dittmar, T. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 2013, 340, 345–347. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total. Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
- Cayuela, M.; van Zwieten, L.; Singh, B.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Edwards, J.D.; Pittelkow, C.M.; Kent, A.D.; Yang, W.H. Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biol. Biochem. 2018, 122, 81–90. [Google Scholar] [CrossRef]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Huang, M.; Fan, L.; Chen, J.; Jiang, L.; Zou, Y. Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization. Sci. Rep. 2018, 8, 11461. [Google Scholar] [CrossRef]
- Karan, S.K.; Woolf, D.; Azzi, E.S.; Sundberg, C.; Wood, S.A. Potential for biochar carbon sequestration from crop residues: A global spatially explicit assessment. GCB Bioenergy 2023, 15, 1424–1436. [Google Scholar] [CrossRef]
- Woolf, D.; Lehmann, J.; Ogle, S.; Kishimoto-Mo, A.W.; McConkey, B.; Baldock, J. Greenhouse Gas Inventory Model for Biochar Additions to Soil. Environ. Sci. Technol. 2021, 55, 14795–14805. [Google Scholar] [CrossRef]
- Losacco, D.; Tumolo, M.; Cotugno, P.; Leone, N.; Massarelli, C.; Convertini, S.; Tursi, A.; Uricchio, V.F.; Ancona, V. Use of biochar to improve the sustainable crop production of cauliflower (Brassica oleracea L.). Plants 2022, 11, 1182. [Google Scholar] [CrossRef]
- Ericsson, N.; Sundberg, C.; Nordberg, Å.; Ahlgren, S.; Hansson, P. Time-dependent climate impact and energy efficiency of combined heat and power production from short-rotation coppice willow using pyrolysis or direct combustion. GCB Bioenergy 2016, 9, 876–890. [Google Scholar] [CrossRef]
- Goldberg, E.D. Black Carbon in the Environment: Properties and Distribution; John Wiley & Sons Inc.: New York, NY, USA, 1985. [Google Scholar]
- Cayuela, M.L.; Oenema, O.; Kuikman, P.J.; Bakker, R.R.; Van Groenigen, J.W. Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. GCB Bioenergy 2010, 2, 201–213. [Google Scholar] [CrossRef]
- Lentz, R.D.; Ippolito, J.A.; Spokas, K.A. Biochar and manure effects on net nitrogen mineralization and greenhouse gas emissions from calcareous soil under corn. Soil Sci. Soc. Am. J. 2014, 78, 1641–1655. [Google Scholar] [CrossRef]
- Spokas, K.; Reicosky, D. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci. 2009, 3, 179–193. [Google Scholar]
- Lin, Y.; Yi, S.; Zhang, Z.; Wang, M.; Nie, T. Effect of CH4 emission reduction of water, fertilizer and biochar regulation method on a rice field in the northeastern cold area of China. Appl. Ecol. Environ. Res. 2020, 18, 4929–4939. [Google Scholar] [CrossRef]
- Smith, D.M.; Welch, W.F.; Graham, S.M.; Chughtai, A.R.; Wicke, B.G.; Grady, K.A. Reaction of nitrogen oxides with black carbon: An FT-IR study. Appl. Spectrosc. 1988, 42, 674–680. [Google Scholar] [CrossRef]
- Hilscher, A.; Knicker, H. Carbon and nitrogen degradation on molecular scale of grass-derived pyrogenic organic material during 28 months of incubation in soil. Soil Biol. Biochem. 2010, 43, 261–270. [Google Scholar] [CrossRef]
- Huang, Y.; Zou, J.; Zheng, X.; Wang, Y.; Xu, X. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biol. Biochem. 2004, 36, 973–981. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.Q.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sánchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci. Rep. 2013, 3, 1732. [Google Scholar] [CrossRef]
- Mészáros, E.; Jakab, E.; Várhegyi, G.; Bourke, J.; Manley-Harris, M.; Nunoura, T.; Antal, M.J. Do all carbonized charcoals have the same chemical structure? 1. Implications of thermogravimetry−mass spectrometry measurements. Ind. Eng. Chem. Res. 2007, 46, 5943–5953. [Google Scholar] [CrossRef]
- Harris, K.; Gaskin, J.; Cabrera, M.; Miller, W.; Das, K. Characterization and Mineralization rates of low temperature peanut hull and pine chip biochars. Agronomy 2013, 3, 294–312. [Google Scholar] [CrossRef]
- Valverde, P.; Serralheiro, R.; de Carvalho, M.; Maia, R.; Oliveira, B.; Ramos, V. Climate change impacts on irrigated agriculture in the Guadiana river basin (Portugal). Agric. Water Manag. 2015, 152, 17–30. [Google Scholar] [CrossRef]
- Majiwa, E.; Lee, B.L.; Wilson, C. Increasing agricultural productivity while reducing greenhouse gas emissions in sub-Saharan Africa: Myth or reality? Agric. Econ. 2017, 49, 183–192. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014—Mitigation of Climate Change: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Asgedom, H.; Kebreab, E. Beneficial management practices and mitigation of greenhouse gas emissions in the agriculture of the Canadian Prairie: A review. Agron. Sustain. Dev. 2011, 31, 433–451. [Google Scholar] [CrossRef]
- Ozlu, E.; Arriaga, F.J.; Bilen, S.; Gozukara, G.; Babur, E. Carbon footprint management by agricultural practices. Biology 2022, 11, 1453. [Google Scholar] [CrossRef]
- Snyder, C.; Bruulsema, T.; Jensen, T.; Fixen, P. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, F.; Maucieri, C.; Zhang, Y. Efficient irrigation methods and optimal nitrogen dose to enhance wheat yield, inputs efficiency and economic benefits in the North China plain. Agronomy 2022, 12, 273. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Kavvadias, V.; Sotiropoulos, T.; Papadakis, I.E. Organic fertilization and tree orchards. Agriculture 2021, 11, 692. [Google Scholar] [CrossRef]
- Müller, C.; Waha, K.; Bondeau, A.; Heinke, J. Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development. Glob. Change Biol. 2014, 20, 2505–2517. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Wakatsuki, H.; Ju, H.; Nelson, G.C.; Farrell, A.D.; Deryng, D.; Meza, F.; Hasegawa, T. Research trends and gaps in climate change impacts and adaptation potentials in major crops. Curr. Opin. Environ. Sustain. 2023, 60, 101249. [Google Scholar] [CrossRef]
- Dobor, L.; Barcza, Z.; Hlásny, T.; Árendás, T.; Spitkó, T.; Fodor, N. Crop planting date matters: Estimation methods and effect on future yields. Agric. For. Meteorol. 2016, 223, 103–115. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rotter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.J.; Girousse, C.; Motzo, R.; Giunta, F.; Ali Babar, M.; et al. Climate change impact and adaptation for wheat protein. Glob. Change Biol. 2019, 25, 155–173. [Google Scholar] [CrossRef]
- Grados, D.; Kraus, D.; Haas, E.; Butterbach-Bahl, K.; Olesen, J.E.; Abalos, D. Common agronomic adaptation strategies to climate change may increase soil greenhouse gas emission in Northern Europe. Agric. For. Meteorol. 2024, 349, 109966. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Aurich, A.; Ellmer, F.; Baumecker, M. Irrigation, soil organic carbon and N2O emissions. A review. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef]
- Barton, L.; Murphy, D.V.; Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 2013, 167, 23–32. [Google Scholar] [CrossRef]
- Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W. Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements. Agric. Syst. 2017, 157, 81–92. [Google Scholar] [CrossRef]
- Ma, Y.; Schwenke, G.; Sun, L.; Liu, D.L.; Wang, B.; Yang, B. Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios. Sci. Total. Environ. 2018, 630, 1544–1552. [Google Scholar] [CrossRef]
- Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W. IPCC Fifth Assessment Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Cabangon, R.J.; Tuong, T.P.; Castillo, E.G.; Bao, L.X.; Lu, G.; Wang, G.; Cui, Y.; Bouman, B.A.M.; Li, Y.; Chen, C.; et al. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ. 2004, 2, 195–206. [Google Scholar] [CrossRef]
- Ku, H.-H.; Hayashi, K.; Agbisit, R.; Villegas-Pangga, G. Evaluation of fertilizer and water management effect on rice performance and greenhouse gas intensity in different seasonal weather of tropical climate. Sci. Total. Environ. 2017, 601–602, 1254–1262. [Google Scholar] [CrossRef]
- Tahmasebi, M.; Feike, T.; Soltani, A.; Ramroudi, M.; Ha, N. Trade-off between productivity and environmental sustainability in irrigated vs. rainfed wheat production in Iran. J. Clean. Prod. 2018, 174, 367–379. [Google Scholar] [CrossRef]
- Xu, M.; Bai, X.; Pei, L.; Pan, H. A research on application of water treatment technology for reclaimed water irrigation. Int. J. Hydrogen Energy 2016, 41, 15930–15937. [Google Scholar] [CrossRef]
- Abalos, D.; Sanchez-Martin, L.; Garcia-Torres, L.; Van Groenigen, J.W.; Vallejo, A. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops. Sci. Total. Environ. 2014, 490, 880–888. [Google Scholar] [CrossRef]
- Chi, Y.; Yang, P.; Ren, S.; Yang, J. Finding the optimal fertilizer type and rate to balance yield and soil GHG emissions under reclaimed water irrigation. Sci. Total. Environ. 2020, 729, 138954. [Google Scholar] [CrossRef]
- Massey, R.; McClure, H.; Schneider, R. Agriculture and Greenhouse Gas Emissions; University of Missouri Extension: Columbia, MI, USA, 2019. [Google Scholar]
- Moradi, R.; Moghaddam, P.R.; Mansoori, H. Energy use and economical analysis of seedy watermelon production for different irrigation systems in Iran. Energy Rep. 2015, 1, 36–42. [Google Scholar] [CrossRef]
- Department of Agriculture. Australian Agriculture: Reducing Emissions and Adapting to a Changing Climate Key Findings of the Climate Change Research Program; Australian Government: Canberra, Australia, 2013.
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and soil organic matter decomposition rates—Synthesis of current knowledge and a way forward. Glob. Change Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Smith, K.A.; Ball, T.; Conen, F.; Dobbie, K.E.; Massheder, J.; Rey, A. Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 2018, 69, 10–20. [Google Scholar] [CrossRef]
- Abalos, D.; Rittl, T.F.; Recous, S.; Thiébeau, P.; Topp, C.F.; van Groenigen, K.J.; Butterbach-Bahl, K.; Thorman, R.E.; Smith, K.E.; Ahuja, I.; et al. Predicting field N2O emissions from crop residues based on their biochemical composition: A meta-analytical approach. Sci. Total. Environ. 2022, 812, 152532. [Google Scholar] [CrossRef]
- Olesen, J.E.; Rubæk, G.H.; Heidmann, T.; Hansen, S.; Børgensen, C.D. Effect of climate change on greenhouse gas emissions from arable crop rotations. Nutr. Cycl. Agroecosyst. 2004, 70, 147–160. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, J.; Xiong, H. Effect of deficit irrigation on soil CO2 and N2O emissions and winter wheat yield. J. Clean. Prod. 2021, 279, 123718. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Siddique, K.H.; Shayakhmetova, A.; Jia, Z.; Han, Q. Increasing maize production and preventing water deficits in semi-arid areas: A study matching fertilization with regional precipitation under mulch planting. Agric. Water Manag. 2020, 241, 106347. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Dong, H.; Wang, R.; Mei, B.; Zhu, J. A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric. Ecosyst. Environ. 2012, 152, 1–9. [Google Scholar] [CrossRef]
- Lv, J.; Yin, X.; Dorich, C.; Olave, R.; Wang, X.; Kou, C.; Song, X. Net field global warming potential and greenhouse gas intensity in typical arid cropping systems of China: A 3-year field measurement from long-term fertilizer experiments. Soil Tillage Res. 2021, 212, 105053. [Google Scholar] [CrossRef]
- Jia, S.; Wang, X.; Yang, Y.; Dai, K.; Meng, C.; Zhao, Q.; Zhang, X.; Zhang, D.; Feng, Z.; Sun, Y.; et al. Fate of labeled urea-15N as basal and topdressing applications in an irrigated wheat–maize rotation system in North China Plain: I winter wheat. Nutr. Cycl. Agroecosyst. 2011, 90, 331–346. [Google Scholar] [CrossRef]
- Li, J.; Wang, E.; Wang, Y.; Xing, H.; Wang, D.; Wang, L.; Gao, C. Reducing greenhouse gas emissions from a wheat–maize rotation system while still maintaining productivity. Agric. Syst. 2016, 145, 90–98. [Google Scholar] [CrossRef]
- Fan, Y.; Hao, X.; Carswell, A.; Misselbrook, T.; Ding, R.; Li, S.; Kang, S. Inorganic nitrogen fertilizer and high N application rate promote N2O emission and suppress CH4 uptake in a rotational vegetable system. Soil Tillage Res. 2021, 206, 104848. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Huang, Q.; Xu, X.; Huang, G. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. J. Clean. Prod. 2020, 259, 120873. [Google Scholar] [CrossRef]
- Gao, Z.; Zhao, J.; Wang, C.; Wang, Y.; Shang, M.; Zhang, Z.; Chen, F.; Chu, Q. A six-year record of greenhouse gas emissions in different growth stages of summer maize influenced by irrigation and nitrogen management. Field Crop. Res. 2022, 290, 108744. [Google Scholar] [CrossRef]
- Scheer, C.; Grace, P.R.; Rowlings, D.W.; Payero, J. Nitrous oxide emissions from irrigated wheat in Australia: Impact of irrigation management. Plant Soil 2012, 359, 351–362. [Google Scholar] [CrossRef]
- Li, S.-X.; Wang, Z.-H.; Malhi, S.; Li, S.-Q.; Gao, Y.-J.; Tian, X.-H. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Adv. Agron. 2009, 102, 223–265. [Google Scholar] [CrossRef]
- Mishra, J.; Poonia, S.; Kumar, R.; Dubey, R.; Kumar, V.; Mondal, S.; Dwivedi, S.; Rao, K.; Kumar, R.; Tamta, M.; et al. An impact of agronomic practices of sustainable rice-wheat crop intensification on food security, economic adaptability, and environmental mitigation across eastern Indo-Gangetic Plains. Field Crop. Res. 2021, 267, 108164. [Google Scholar] [CrossRef]
- Roberts, M.; Hawes, C.; Young, M. Environmental management on agricultural land: Cost benefit analysis of an integrated cropping system for provision of environmental public goods. J. Environ. Manag. 2023, 331, 117306. [Google Scholar] [CrossRef] [PubMed]
- Boone, L.; Dewulf, J.; Ruysschaert, G.; D’hose, T.; Muylle, H.; Roldán-Ruiz, I.; Van Linden, V. Assessing the consequences of policy measures on long-term agricultural productivity—Quantification for Flanders. J. Clean. Prod. 2020, 246, 119000. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Malézieux, E.; Seufert, V.; Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef]
- Wen, Y.; Zang, H. Crop rotation boosts yields and soil quality. Nat. Food 2025, 6, 130–131. [Google Scholar] [CrossRef] [PubMed]
- Snapp, S.S.; Blackie, M.J.; Gilbert, R.A.; Bezner-Kerr, R.; Kanyama-Phiri, G.Y. Biodiversity can support a greener revolution in Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 20840–20845. [Google Scholar] [CrossRef]
- Yan, Z.; Chu, J.; Nie, J.; Qu, X.; Sánchez-Rodríguez, A.R.; Yang, Y.; Pavinato, P.S.; Zeng, Z.; Zang, H. Legume-based crop diversification with optimal nitrogen fertilization benefits subsequent wheat yield and soil quality. Agric. Ecosyst. Environ. 2024, 374, 109171. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nielsen, H.; Alves, B.J.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron. Sustain. Dev. 2011, 32, 329–364. [Google Scholar] [CrossRef]
- Liu, C.; Feng, X.; Xu, Y.; Kumar, A.; Yan, Z.; Zhou, J.; Yang, Y.; Peixoto, L.; Zeng, Z.; Zang, H. Legume-based rotation enhances subsequent wheat yield and maintains soil carbon storage. Agron. Sustain. Dev. 2023, 43, 64. [Google Scholar] [CrossRef]
- Qiao, M.; Sun, R.; Wang, Z.; Dumack, K.; Xie, X.; Dai, C.; Wang, E.; Zhou, J.; Sun, B.; Peng, X.; et al. Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification. Nat. Commun. 2024, 15, 2924. [Google Scholar] [CrossRef] [PubMed]
- Cernay, C.; Makowski, D.; Pelzer, E. Preceding cultivation of grain legumes increases cereal yields under low nitrogen input conditions. Environ. Chem. Lett. 2017, 16, 631–636. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, Y.; Chu, J.; Guillaume, T.; Bragazza, L.; Li, H.; Shen, Y.; Yang, Y.; Zeng, Z.; Zang, H. Long-term diversified cropping promotes wheat yield and sustainability across contrasting climates: Evidence from China and Switzerland. Field Crop. Res. 2025, 322, 109764. [Google Scholar] [CrossRef]
- Liu, C.; Plaza-Bonilla, D.; Coulter, J.A.; Kutcher, H.R.; Beckie, H.J.; Wang, L.; Floc’H, J.-B.; Hamel, C.; Siddique, K.H.; Li, L.; et al. Diversifying crop rotations enhances agroecosystem services and resilience. Adv. Agron. 2022, 173, 299–335. [Google Scholar]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Preissel, S.; Reckling, M.; Schläfke, N.; Zander, P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crop. Res. 2015, 175, 64–79. [Google Scholar] [CrossRef]
- Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.C.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, J.; Huang, W.; Manevski, K.; Olesen, J.E.; Rees, R.M.; Hu, S.; Li, W.; Kersebaum, K.-C.; Louarn, G.; et al. Farm-scale practical strategies to increase nitrogen use efficiency and reduce nitrogen footprint in crop production across the North China Plain. Field Crop. Res. 2022, 283, 108526. [Google Scholar] [CrossRef]
- Zou, J.; Yang, Y.; Shi, S.; Li, W.; Zhao, X.; Huang, J.; Zhang, H.; Liu, K.; Harrison, M.T.; Chen, F.; et al. Farm-scale practical strategies to reduce carbon footprint and emergy while increasing economic benefits in crop production in the North China plain. J. Clean. Prod. 2022, 359, 131996. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Xu, R.; Tian, H.; Pan, S.; Prior, S.A.; Feng, Y.; Batchelor, W.D.; Chen, J.; Yang, J. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Glob. Change Biol. 2019, 25, 314–326. [Google Scholar] [CrossRef]
- Barton, L.; Thamo, T.; Engelbrecht, D.; Biswas, W.K. Does growing grain legumes or applying lime cost effectively lower greenhouse gas emissions from wheat production in a semi-arid climate? J. Clean. Prod. 2014, 83, 194–203. [Google Scholar] [CrossRef]
- Costa, M.P.; Reckling, M.; Chadwick, D.; Rees, R.M.; Saget, S.; Williams, M.; Styles, D. Legume-modified rotations deliver nutrition with lower environmental impact. Front. Sustain. Food Syst. 2021, 5, 656005. [Google Scholar] [CrossRef]
- Quemada, M.; Lassaletta, L.; Leip, A.; Jones, A.; Lugato, E. Integrated management for sustainable cropping systems: Looking beyond the greenhouse balance at the field scale. Glob. Change Biol. 2020, 26, 2584–2598. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-S.; Park, H.-J.; Hao, X.; Lee, S.-I.; Jeon, B.-J.; Kwak, J.-H.; Choi, W.-J. Nitrogen, carbon, and dry matter losses during composting of livestock manure with two bulking agents as affected by co-amendments of phosphogypsum and zeolite. Ecol. Eng. 2017, 102, 280–290. [Google Scholar] [CrossRef]
- Meng, X.; Sørensen, P.; Møller, H.B.; Petersen, S.O. Greenhouse gas balances and yield-scaled emissions for storage and field application of organic fertilizers derived from cattle manure. Agric. Ecosyst. Environ. 2023, 345, 108327. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Yu, R.; Li, F.; Li, K.; Cao, H.; Yang, N.; Li, M.; Dai, J.; Zan, Y.; et al. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agric. Ecosyst. Environ. 2016, 224, 1–11. [Google Scholar] [CrossRef]
- Li, F.-M.; Wang, P.; Wang, J.; Xu, J.-Z. Effects of irrigation before sowing and plastic film mulching on yield and water uptake of spring wheat in semiarid Loess Plateau of China. Agric. Water Manag. 2004, 67, 77–88. [Google Scholar] [CrossRef]
- Guo, L.; Wang, X.; Wang, S.; Tan, D.; Han, H.; Ning, T.; Li, Q. Tillage and irrigation effects on carbon emissions and water use of summer maize in North China Plains. Agric. Water Manag. 2019, 223, 105729. [Google Scholar] [CrossRef]
- Lemke, R.L.; Zhong, Z.; Campbell, C.A.; Zentner, R. Can pulse crops play a role in mitigating greenhouse gases from north american agriculture? Agron. J. 2007, 99, 1719–1725. [Google Scholar] [CrossRef]
- Lemke, R.; Liu, L.; Baron, V.; Malhi, S.; Farrell, R. Effect of crop and residue type on nitrous oxide emissions from rotations in the semi-arid Canadian prairies. Can. J. Soil Sci. 2018, 98, 508–518. [Google Scholar] [CrossRef]
- Ruisi, P.; Amato, G.; Badagliacca, G.; Frenda, A.S.; Giambalvo, D.; Di Miceli, G. Agro-ecological benefits of faba bean for rainfed Mediterranean cropping Systems. Ital. J. Agron. 2017, 12, 233–245. [Google Scholar] [CrossRef]
- Jeuffroy, M.H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P. Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas. Biogeosciences 2013, 10, 1787–1797. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C.; Hatano, R. Carbon, nitrogen and water footprints of organic rice and conventional rice production over 4 years of cultivation: A case study in the lower north of Thailand. Agronomy 2022, 12, 380. [Google Scholar] [CrossRef]
- Hu, Y.; Li, D.; Wu, Y.; Liu, S.; Li, L.; Chen, W.; Wu, S.; Meng, Q.; Feng, H.; Siddique, K.H. Mitigating greenhouse gas emissions by replacing inorganic fertilizer with organic fertilizer in wheat–maize rotation systems in China. J. Environ. Manag. 2023, 344, 118494. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Sun, A.; Dong, E.; Wang, Y.; Huang, X.; Hu, H.-W.; Jiao, X. Long-term low-rate biochar application enhances soil organic carbon without affecting sorghum yield in a calcaric cambisol. Agronomy 2025, 15, 995. [Google Scholar] [CrossRef]
- He, D.; Ma, H.; Hu, D.; Wang, X.; Dong, Z.; Zhu, B. Biochar for sustainable agriculture: Improved soil carbon storage and reduced emissions on cropland. J. Environ. Manag. 2024, 371, 123147. [Google Scholar] [CrossRef] [PubMed]
- Mairura, F.S.; Musafiri, C.M.; Macharia, J.M.; Kiboi, M.N.; Ng’Etich, O.K.; Shisanya, C.A.; Okeyo, J.M.; Okwuosa, E.A.; Ngetich, F.K. Yield-scaled and area-scaled greenhouse gas emissions from common soil fertility management practices under smallholder maize fields in Kenya. Sustain. Prod. Consum. 2023, 36, 292–307. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Yang, L. Continuous straw returning enhances the carbon sequestration potential of soil aggregates by altering the quality and stability of organic carbon. J. Environ. Manag. 2024, 358, 120903. [Google Scholar] [CrossRef]
- Zhang, S.; Xue, L.; Liu, J.; Xia, L.; Jia, P.; Feng, Y.; Hao, X.; Zhao, X. Biochar application reduced carbon footprint of maize production in the saline−alkali soils. Agric. Ecosyst. Environ. 2024, 368, 109001. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, R.; Yang, Y.; Ji, W.; Zhang, X.; Zhang, D.; Wang, L.; Qu, Z. Evaluation of net carbon sequestration and ecological benefits from single biochar-incorporated sorghum farmland systems in saline-alkali areas of Inner Mongolia, China. J. Environ. Manag. 2024, 351, 119979. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; Zhang, H.; Wei, G.; Li, Z. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiol. 2020, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total. Environ. 2018, 613–614, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Davidson, D.; Gu, F.X. Materials for Sustained and Controlled Release of Nutrients and Molecules to Support Plant Growth. J. Agric. Food Chem. 2012, 60, 870–876. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Shi, J.; Tian, X.; Li, X.; Li, Y.; Zhao, H. Impact of straw return on soil carbon indices, enzyme activity, and grain production. Soil Sci. Soc. Am. J. 2017, 81, 1475–1485. [Google Scholar] [CrossRef]
- Mitchell, D.C.; Castellano, M.J.; Sawyer, J.E.; Pantoja, J. Cover crop effects on nitrous oxide emissions: Role of mineralizable carbon. Soil Sci. Soc. Am. J. 2013, 77, 1765–1773. [Google Scholar] [CrossRef]
- Muhammad, I.; Lv, J.Z.; Wang, J.; Ahmad, S.; Farooq, S.; Ali, S.; Zhou, X.B. Regulation of soil microbial community structure and biomass to mitigate soil greenhouse gas emission. Front. Microbiol. 2022, 13, 868862. [Google Scholar] [CrossRef]
- Sparrow, A.D.; Gregorich, E.G.; Hopkins, D.W.; Novis, P.; Elberling, B.; Greenfield, L.G. Resource limitations on soil microbial activity in an antarctic dry valley. Soil Sci. Soc. Am. J. 2011, 75, 2188–2197. [Google Scholar] [CrossRef]
- Hassan, M.U.; Aamer, M.; Mahmood, A.; Awan, M.I.; Barbanti, L.; Seleiman, M.F.; Bakhsh, G.; Alkharabsheh, H.M.; Babur, E.; Shao, J.; et al. Management strategies to mitigate N2O emissions in agriculture. Life 2022, 12, 439. [Google Scholar] [CrossRef] [PubMed]
- Insam, H.; Wett, B. Control of GHG emission at the microbial community level. Waste Manag. 2008, 28, 699–706. [Google Scholar] [CrossRef]
- Singh, B.; Rengel, Z. The role of crop residues in improving soil fertility. In Nutrient Cycling in Terrestrial Ecosystems; Marschner, P., Rengel, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 183–214. [Google Scholar] [CrossRef]
Category | Abbreviation | Type | Constituent/Active Ingredient | Basic Characteristics | References |
---|---|---|---|---|---|
Straw | S | Crop Residue | Cellulose, Hemicellulose, Lignin, Ash, Protein, Lipids | Carbon Rich, Slowly Decomposes, Improves Soil Structure | [50,51] |
Manure | M | Animal Waste | N, P, K, Organic Carbon, Microbial Biomass, Trace Element | Nutrient Rich, High Moisture Content, Improves Soil Fertility | [52,53] |
Biochar | BC | Pyrolyzed Organic Matter | Carbon, Ash Content, Microspores, Mesopores | Raises pH in Acidic Soil, Enhances Microbial Activity | [54,55] |
Treatment | CO2 Emissions (Mg CO2-C ha−1) | N2O Emissions (kg N2O-N ha−1) | CH4 Emissions | Global Warming Potential (GWP) | Other Key Findings | References |
---|---|---|---|---|---|---|
Nitrogen (Conv. urea 130 kg N ha−1 y−1) | 2.2 (maize) | 0.24 (maize) | - | 194 kg CO2-eq ha−1 yr−1 | Baseline with conventional urea fertilization. | [68] |
Straw Incorporation + CF + compost (SCF, BCF, CF), (CD20, CD50, Conv. N) | 0.77 (fallow) | 0.25 (fallow) | 144% higher than Conv. | 80% higher GWP than conv. | Significant CH4 increase during fallow period, but reduced N2O emissions in maize. | [68,70] |
Biochar + Straw (SCF, BCF, CF) | 2.1 (rice–wheat) | 0.085 (rice–wheat) | 58% reduction in CH4 | 51% lower GWP compared to SCF | Biochar reduces N2O and CH4 emissions, with enhanced nutrient availability. | [70] |
Cow Manure (20% N substitution), Cow Manure (50% N substitution) | 2.2 (rice), 2.4 (rice) | 0.14 (maize), 0.18 (maize) | - | 36.44% higher GWP than conv., 74.58% higher GWP than conv. | Reduces N2O emissions by 6.65%, lowers yield by 8.77% | [71] |
Biochar (hardwood biochar, fast pyrolysis at 550 °C) | Varies (increase/decrease CO2) | 63% reduction | Varies (reduction/increase) | - | Reduces N2O by up to 63%, with varied impacts on CO2 and CH4 based on biochar type | [72,73] |
Emission Reduction Strategy | Influencing Mechanism | Factors | References |
---|---|---|---|
Optimization of fertilizer applications | Denitrification reduction by decreasing excess nitrogen in soil resultantly reduces N2O emissions | Crop growth stages Nitrogen levels | [133,244,245] |
Manure management | Reduction of methane (CH4) and N2O emissions by manure via controlling storage and application. | Manure treatment (composting, anaerobic digestion) | [98,274,275] |
Conservation tillage | Reducing soil disturbance, improving the storage of soil organic carbon, and lowering N2O emissions. | Intensity of tillage (conventional tillage, reduced tillage) | [32,276] |
Legume–cereal crop rotation | Improves nitrogen fixation from legumes, which raises nitrogen usage efficiency (NUE). | Crop rotation (soybean–wheat, soybean–maize) | [267,268] |
Irrigation | Decreases N2O emissions and increases N availability by raising soil moisture. | Irrigation type (deficit irrigation, conventional irrigation) | [249,277,278] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, S.; Song, J.; Bai, J.; Wang, X.; Ren, G.; Bai, Y.; Huang, Y.; Shah, T.; Feng, Y. Toward Low-Emission Agriculture: Synergistic Contribution of Inorganic Nitrogen and Organic Fertilizers to GHG Emissions and Strategies for Mitigation. Plants 2025, 14, 1551. https://doi.org/10.3390/plants14101551
Haider S, Song J, Bai J, Wang X, Ren G, Bai Y, Huang Y, Shah T, Feng Y. Toward Low-Emission Agriculture: Synergistic Contribution of Inorganic Nitrogen and Organic Fertilizers to GHG Emissions and Strategies for Mitigation. Plants. 2025; 14(10):1551. https://doi.org/10.3390/plants14101551
Chicago/Turabian StyleHaider, Shahzad, Jiajie Song, Jinze Bai, Xing Wang, Guangxin Ren, Yuxin Bai, Yuming Huang, Tahir Shah, and Yongzhong Feng. 2025. "Toward Low-Emission Agriculture: Synergistic Contribution of Inorganic Nitrogen and Organic Fertilizers to GHG Emissions and Strategies for Mitigation" Plants 14, no. 10: 1551. https://doi.org/10.3390/plants14101551
APA StyleHaider, S., Song, J., Bai, J., Wang, X., Ren, G., Bai, Y., Huang, Y., Shah, T., & Feng, Y. (2025). Toward Low-Emission Agriculture: Synergistic Contribution of Inorganic Nitrogen and Organic Fertilizers to GHG Emissions and Strategies for Mitigation. Plants, 14(10), 1551. https://doi.org/10.3390/plants14101551