Plant Tissue Culture V

A special issue of Plants (ISSN 2223-7747).

Deadline for manuscript submissions: 31 May 2025 | Viewed by 1303

Special Issue Editor


E-Mail
Guest Editor
Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
Interests: plant tissue culture; secondary metabolites; hydroponics; environmental protection
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plant tissue culture has led to breakthroughs in understanding and applying the fundamental knowledge gained to harness more benefits from plants. It is an important technique that involves growing the cells, tissues, and organs of plants on artificial media in a controlled environment. Several in vitro culture methods have been used to study and improve our knowledge of basic and advanced areas of plant biology, such as biochemistry, cytology, embryology, molecular biology, and physiology. This Special Issue will cover various aspects of plant tissue culture, such as germplasm conservation, genetic manipulation, morphogenesis, somatic embryogenesis, nutrition, large-scale clonal propagation, and the production of disease-free plants and useful metabolites.

Dr. Iyyakkannu Sivanesan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant regeneration
  • shoot proliferation
  • somatic embryogenesis
  • germplasm conservation
  • genetic manipulation
  • clonal propagation
  • bioactive compounds
  • virus-free plants
  • cell suspension culture
  • hairy root culture

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2950 KiB  
Article
Evaluation of Cannabis sativa L. Callus Extract as a Novel Cosmetic Ingredient with Dual Anti-Inflammatory and Antioxidant Effects
by Ga-Ram Yu, Da-Hoon Kim, Hyuck Kim and Dong-Woo Lim
Plants 2025, 14(7), 1148; https://doi.org/10.3390/plants14071148 - 7 Apr 2025
Viewed by 444
Abstract
The plant callus culture technique is an emerging source of bioactive compounds with potential applications in cosmetics and pharmaceuticals. Callus-derived extracts contain high concentrations of secondary metabolites with significant antioxidant and anti-inflammatory properties when elicited. Cannabis sativa L. has been used for its [...] Read more.
The plant callus culture technique is an emerging source of bioactive compounds with potential applications in cosmetics and pharmaceuticals. Callus-derived extracts contain high concentrations of secondary metabolites with significant antioxidant and anti-inflammatory properties when elicited. Cannabis sativa L. has been used for its medicinal effects; however, the potential of its C. sativa callus extract (CCE) for cosmetic applications remains unexplored. Callus from C. sativa was induced in vitro using a Murashige and Skoog (MS) medium supplemented with Thidiazuron (TDZ) and naphthalene acetic acid (NAA). The extract was analyzed for its bioactive composition using high-performance liquid chromatography (HPLC). The antioxidant activity was assessed using the DPPH radical scavenging assay. The anti-inflammatory effects were evaluated in lipopolysaccharides (LPS)-stimulated RAW264.7 macrophages by measuring nitric oxide (NO) production, DAF-2 fluorescence intensity, released cytokine levels, and protein expression of inflammatory mediators via ELISA, Western blot, and immunofluorescence assays. CCE demonstrated significant radical scavenging activity. CCE effectively suppressed LPS-induced NO production and reduced pro-inflammatory cytokine levels. Western blot analysis revealed that CCE inhibited NF-κB nuclear translocation while upregulating NRF2-mediated antioxidant responses. Furthermore, HPLC analysis confirmed the presence of cannabinoids, which could potentially be associated with the modulation of inflammatory pathways through the endocannabinoid system. This study provides evidence that CCE possesses notable antioxidant and anti-inflammatory properties, making it a promising ingredient for cosmetic formulations targeting oxidative stress and inflammatory skin conditions. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

15 pages, 35428 KiB  
Article
Low Caffeine Concentrations Induce Callus and Direct Organogenesis in Tissue Cultures of Ornithogalum dubium
by Carloalberto Petti
Plants 2025, 14(7), 1127; https://doi.org/10.3390/plants14071127 - 5 Apr 2025
Viewed by 380
Abstract
Caffeine is a nitrogenous base that naturally occurs in coffee (Cafea arabica), tea (Thea sinensis), and cocoa (Theobroma cacao). Chemically, caffeine is 1,3,5-trimethylxanthine, a purine analogue. Due to significant human consumption, caffeine effects have been widely studied. [...] Read more.
Caffeine is a nitrogenous base that naturally occurs in coffee (Cafea arabica), tea (Thea sinensis), and cocoa (Theobroma cacao). Chemically, caffeine is 1,3,5-trimethylxanthine, a purine analogue. Due to significant human consumption, caffeine effects have been widely studied. Being a natural xanthine derivative, the key degradative enzyme is xanthine oxidase, converting caffeine into 1-methyluric acid. Ecologically, caffeine is believed to act as a repellent molecule against insect feeding behavior. Caffeine’s chemical similarity to purines and plant hormones motivated this study, establishing the potential for cellular de-differentiation and re-differentiation. For this, a highly hormone-responsive plant species, Ornithogalum dubium, was used. As caffeine has been shown to induce endoreplication, the potential for new germlines in O. dubium is attractive. Using tissue culture, a range of caffeine concentrations were used (0.0125 mg/L to 2.0 mg/L) without additional hormones. A significant difference (p > 0.05) was observed for intermediate concentrations of 0.0125, 0.025, and 0.05 mg/L when compared to the control (no hormones). The highest rates of callus induction were obtained at a concentration of 0.025 mg/mL. Higher concentrations were phytotoxic (1.0 mg/L or greater). To conclude, caffeine-regenerated plants were not dissimilar to those obtained from canonical hormones. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

Back to TopTop