Manganese Nanomaterials: A Green Solution to Suppress Xanthomonas oryzae in Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Mn-Based NMs
2.2. Cultivation of Rice Seedlings
2.3. In Vitro Experiments on Xoo
2.4. In Vitro Experiments on Xoo-Infected Rice Leaves
2.5. In Vivo Investigation of Antibacterial Activity of MnO2 and Mn3O4 NMs
2.6. Leaf Contact Angle Measurement
2.7. Antioxidant System of Rice After Exposure to MnO2 and Mn3O4 NMs
2.8. The Transfer and Transformation of MnO2 and Mn3O4 NMs in Rice
2.9. Statistical Analysis
3. Results
3.1. Characterization of Mn-Based NMs
3.2. Physiological Indicators of In Vivo Inoculated Rice Treated with Mn-Based NMs
3.3. Effect of Mn-Based NMs Treatment on Rice Infected by Xoo
3.4. Antioxidant System of Rice Infected by Xoo
3.5. Accumulation of Mn-Based NMs and Ionic Mn Revealed by Sp-ICP-MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhattacharya, D.; Gupta, R.K. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 2005, 25, 199–204. [Google Scholar] [CrossRef]
- Yadi, M.; Mostafavi, E.; Saleh, B.; Davaran, S.; Aliyeva, I.; Khalilov, R.; Nikzamir, M.; Nikzamir, N.; Akbarzadeh, A.; Panahi, Y.; et al. Current developments in green synthesis of metallic nanoparticles using plant extracts: A review. Artif. Cells Nanomed. Biotechnol. 2018, 46, S336–S343. [Google Scholar] [CrossRef] [PubMed]
- Shantharaj, D.; Naranjo, E.; Merfa, M.V.; Cobine, P.A.; Santra, S.; De La Fuente, L. Zinc oxide-based nanoformulation zinkicide mitigates the xylem-limited pathogen Xylella fastidiosa in tobacco and southern highbush blueberry. Plant Dis. 2023, 107, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Tan, W.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L.; Ji, R.; Yin, Y.; Guo, H. Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiol. Biochem. 2017, 110, 210–225. [Google Scholar] [CrossRef]
- Schiavi, D.; Ronchetti, R.; Di Lorenzo, V.; Vivani, R.; Giovagnoli, S.; Camaioni, E.; Balestra, G.M. Sustainable protocols for cellulose nanocrystals synthesis from tomato waste and their antimicrobial properties against Pseudomonas syringae pv. tomato. Plants 2023, 12, 939. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, K.; Dixit, S.; Mishra, K.; Srivastava, S. A review on positive and negative impacts of nanotechnology in agriculture. Int. J. Environ. Sci. Technol. 2019, 16, 2175–2184. [Google Scholar] [CrossRef]
- Gao, M.; Sheng, M.; Fu, J. Effects of Nanomaterials on Plant Growth and Development. Biotechnol. Bull. 2019, 35, 172–180. [Google Scholar]
- Jiang, Y.; Zhou, P.; Zhang, P.; Adeel, M.; Shakoor, N.; Li, Y.; Li, M.; Guo, M.; Zhao, W.; Lou, B.; et al. Green synthesis of metal-based nanoparticles for sustainable agriculture. Environ. Pollut. 2022, 309, 119755. [Google Scholar] [CrossRef]
- Verdier, V.; Cruz, C.V.; Leach, J.E. Controlling rice bacterial blight in Africa: Needs and prospects. J. Biotechnol. 2012, 159, 320–328. [Google Scholar] [CrossRef]
- Cao, C.; Xiao, Y. Effects of Xanthomonas campestris pv. oryzae on some enzymes activity of hybrid rice seedlings. Acta Phytopathol. Sin. 2002, 32, 187. [Google Scholar]
- He, C.; Wu, M. Functional genomic approaches towards rice-Xanthomonas oryzae pv. oryzae interactions. Plant Prot. 2007, 33, 95–96. [Google Scholar]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. New York Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Naeem, M.; Iqbal, M. Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. Eur. J. Plant Pathol. 2014, 139, 27–37. [Google Scholar] [CrossRef]
- Shin, M.; Shin, H.; Jun, B.; Choi, B. Effects of inoculation of compatible and incompatible bacterial blight races on grain yield and quality of two rice cultivars. Korean J. Breed. 1992, 24, 264–267. [Google Scholar]
- Ermini, M.L.; Voliani, V. Antimicrobial nano-agents: The copper age. ACS Nano 2021, 15, 6008–6029. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.W.; Lali, N.S.; Sabei, F.Y.; Irfan, M.I.; Naeem-ul-Hassan, M.; Sher, M.; Safhi, A.Y.; Alsalhi, A.; Albariqi, A.H.; Kamli, F. Sunlight-assisted green synthesis of gold nanocubes using horsetail leaf extract: A highly selective colorimetric sensor for Pb2+, photocatalytic and antimicrobial agent. J. Environ. Chem. Eng. 2024, 12, 112576. [Google Scholar] [CrossRef]
- Chen, S.; Pan, Z.; Zhao, W.; Zhou, Y.; Rui, Y.; Jiang, C.; Wang, Y.; White, J.C.; Zhao, L. Engineering Climate-Resilient Rice Using a Nanobiostimulant-Based “Stress Training” Strategy. ACS Nano 2023, 17, 10760–10773. [Google Scholar] [CrossRef]
- Thakur, S.; Shandilya, M.; Thakur, S.; Sharma, D.K. Growth mechanism and characterization of CuO nanostructure as a potent Antimicrobial agent. Surf. Interfaces 2020, 20, 100551. [Google Scholar] [CrossRef]
- Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014, 6, 1879–1889. [Google Scholar] [CrossRef]
- Tian, Y.; Luo, J.; Wang, H.; Zaki, H.E.M.; Yu, S.; Wang, X.; Ahmed, T.; Shahid, M.S.; Yan, C.; Chen, J.; et al. Bioinspired Green Synthesis of Silver Nanoparticles Using Three Plant Extracts and Their Antibacterial Activity against Rice Bacterial Leaf Blight Pathogen Xanthomonas oryzae pv. oryzae. Plants 2022, 11, 2892. [Google Scholar] [CrossRef]
- Chauhan, H.; Patel, M.; Patel, P.; Tiwari, S.; Jinal, H.N.; Amaresan, N. Assessment of copper (Cu) nanoparticle for their biocontrol activity against Xanthomonas oryzae pv. oryzae, growth promotion, and physiology of rice (Oryza sativa L.) plants. Lett Appl Microbiol 2023, 76, ovac066. [Google Scholar] [CrossRef] [PubMed]
- Cheema, A.I.; Ahmed, T.; Abbas, A.; Noman, M.; Zubair, M.; Shahid, M. Antimicrobial activity of the biologically synthesized zinc oxide nanoparticles against important rice pathogens. Physiol. Mol. Biol. Plants 2022, 28, 1955–1967. [Google Scholar] [CrossRef]
- Elsharkawy, M.; Derbalah, A.; Hamza, A.; El-Shaer, A. Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environ. Sci. Pollut. Res. 2020, 27, 19049–19057. [Google Scholar] [CrossRef]
- Tatulli, G.; Baldassarre, F.; Schiavi, D.; Tacconi, S.; Cognigni, F.; Costantini, F.; Balestra, G.M.; Dini, L.; Pucci, N.; Rossi, M. Chitosan-Coated Fosetyl-Al Nanocrystals’ Efficacy on Nicotiana tabacum Colonized by Xylella fastidiosa. Phytopathology 2024, 114, 1466–1479. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Liao, Y.-Y.; Huang, Z.; Pereira, J.; Santra, S.; Da Silva, S.; Parajuli, A.; Freeman, J.H.; Jones, J.B.; Paret, M.L. Novel Magnesium-Copper Hybrid Nanomaterials for Management of Bacterial Spot of Tomato. Plant Dis. 2024, 108, 3234–3242. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Nickelsen, J.; Rengstl, B. Photosystem II assembly: From cyanobacteria to plants. Annu. Rev. Plant Biol. 2013, 64, 609–635. [Google Scholar] [CrossRef]
- Chowdhury, A.-N.; Azam, M.S.; Aktaruzzaman, M.; Rahim, A. Oxidative and antibacterial activity of Mn3O4. J. Hazard. Mater. 2009, 172, 1229–1235. [Google Scholar] [CrossRef]
- Kunkalekar, R.K.; Prabhu, M.S.; Naik, M.M.; Salker, A.V. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both Gram positive and Gram negative pathogenic bacteria. Colloids Surf. B Biointerfaces 2014, 113, 429–434. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Singh, U.; Adisa, I.O.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy 2018, 8, 158. [Google Scholar] [CrossRef]
- Kasote, D.M.; Lee, J.H.; Jayaprakasha, G.K.; Patil, B.S. Manganese oxide nanoparticles as safer seed priming agent to improve chlorophyll and antioxidant profiles in watermelon seedlings. Nanomaterials 2021, 11, 1016. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Patra, P.; Das, S.; Chandra, S.; Mitra, S.; Dey, K.K.; Akbar, S.; Palit, P.; Goswami, A. Photochemical Modulation of Biosafe Manganese Nanoparticles on Vigna radiata: A Detailed Molecular, Biochemical, and Biophysical Study. Environ. Sci. Technol. 2013, 47, 13122–13131. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Yang, D.; Jin, Q.; Wu, C.; Cui, J. Multifunctional molybdenum disulfide-copper nanocomposite that enhances the antibacterial activity, promotes rice growth and induces rice resistance. J. Hazard. Mater. 2020, 394, 122551. [Google Scholar] [CrossRef]
- Yue, L.; Feng, Y.; Ma, C.; Wang, C.; Chen, F.; Cao, X.; Wang, J.; White, J.C.; Wang, Z.; Xing, B. Molecular Mechanisms of Early Flowering in Tomatoes Induced by Manganese Ferrite (MnFe2O4) Nanomaterials. ACS Nano 2022, 16, 5636–5646. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, H. An improved technique for evaluat-ing resistance of rice varieties to Xanthomonas oryzae. Plant Dis. Rep. 1973, 57, 537–541. [Google Scholar]
- Ogunyemi, S.O.; Chen, J.; Zhang, M.; Wang, L.; Masum, M.; Islam, M.; Yan, C.; An, Q.; Li, B.; Chen, J. Identification and characterization of five new OP2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae. J. Plant Pathol. 2019, 101, 263–273. [Google Scholar] [CrossRef]
- Yasmin, S.; Hafeez, F.Y.; Mirza, M.S.; Rasul, M.; Arshad, H.M.; Zubair, M.; Iqbal, M. Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 2017, 8, 1895. [Google Scholar] [CrossRef]
- Tan, Z.; Guo, X.; Yin, Y.; Wang, B.; Bai, Q.; Li, X.; Liu, J.; Jiang, G. Freezing facilitates formation of silver nanoparticles under natural and simulated sunlight conditions. Environ. Sci. Technol. 2019, 53, 13802–13811. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Y.; Zhang, P.; Zhou, P.; Wang, Q.; Zhu, G.; Zhao, W.; Li, Y.; Wang, Q.; Rui, Y. Investigation of the effects and mechanisms of manganese-based NMs on rice growth. Environ. Sci. Pollut. Res. 2024, 31, 34368–34380. [Google Scholar] [CrossRef]
- Cai, L.; Chen, J.; Liu, Z.; Wang, H.; Yang, H.; Ding, W. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum. Front. Microbiol. 2018, 9, 790. [Google Scholar] [CrossRef]
- Ocsoy, I.; Paret, M.L.; Ocsoy, M.A.; Kunwar, S.; Chen, T.; You, M.X.; Tan, W.H. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. ACS NANO 2013, 7, 8972–8980. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Keller, A.A. Redesigning Water Disinfection Using Recyclable Nanomaterials and Metal Ions: Evaluation with Escherichia coli. ACS EST Water 2021, 1, 185–194. [Google Scholar] [CrossRef]
- Li, X.; Chen, D.; Xie, S. Current progress and prospects of organic nanoparticles against bacterial biofilm. Adv. Colloid Interface Sci. 2021, 294, 102475. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, Y.; Kim, E.-J.; Gu, S.; Sohn, E.J.; Seo, Y.S.; An, H.J.; Chang, Y.-S. Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ. Sci. Technol. 2014, 48, 3477–3485. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, R.L.; Hammerschmidt, R. Phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathol. 1992, 30, 369–389. [Google Scholar] [CrossRef]
- Ma, C.; Li, Q.; Jia, W.; Shang, H.; Zhao, J.; Hao, Y.; Li, C.; Tomko, M.; Zuverza-Mena, N.; Elmer, W.; et al. Role of Nanoscale Hydroxyapatite in Disease Suppression of Fusarium-Infected Tomato. Environ. Sci. Technol. 2021, 55, 13465–13476. [Google Scholar] [CrossRef]
- Dos Santos Silva, M.; da Hora Góes, N.; Dos Santos-Serejo, J.A.; Ferreira, C.F.; Amorim, E.P. Phenolic Compounds and Oxidative Enzymes Involved in Female Fertility in Banana Plants of the Cavendish Subgroup. Plants 2021, 10, 2790. [Google Scholar] [CrossRef]
- Ahmed, T.; Noman, M.; Jiang, H.; Shahid, M.; Ma, C.; Wu, Z.; Nazir, M.M.; Ali, M.A.; White, J.C.; Chen, J.; et al. Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight disease by modulating plant defense response and nutritional status of rice (Oryza sativa L.). Nano Today 2022, 45, 101547. [Google Scholar] [CrossRef]
- He, W.; Wamer, W.; Xia, Q.; Yin, J.J.; Fu, P.P. Enzyme-like activity of nanomaterials. J. Environ. Sci. Health. Part C Environ. Carcinog. Ecotoxicol. Rev. 2014, 32, 186–211. [Google Scholar] [CrossRef]
- Wu, H.H.; Tito, N.; Giraldo, J.P. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species. ACS Nano 2017, 11, 11283–11297. [Google Scholar] [CrossRef]
- Zhao, L.; Bai, T.; Wei, H.; Gardea-Torresdey, J.L.; Keller, A.; White, J.C. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 2022, 3, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Rebora, M.; Del Buono, D.; Piersanti, S.; Salerno, G. Reduction in insect attachment ability by biogenic and non-biogenic ZnO nanoparticles. Environ. Sci. Nano 2023, 10, 3062–3071. [Google Scholar] [CrossRef]
- Abdallah, Y.; Liu, M.; Ogunyemi, S.O.; Ahmed, T.; Fouad, H.; Abdelazez, A.; Yan, C.; Yang, Y.; Chen, J.; Li, B. Bioinspired Green Synthesis of Chitosan and Zinc Oxide Nanoparticles with Strong Antibacterial Activity against Rice Pathogen Xanthomonas oryzae pv. oryzae. Molecules 2020, 25, 4795. [Google Scholar] [CrossRef]
- Schiavi, D.; Taddei, A.R.; Balestra, G.M. Investigating Cellulose Nanocrystals’ Biocompatibility and Their Effects on Pseudomonas syringae pv. tomato Epiphytic Survival for Sustainable Crop Protection. Horticulturae 2023, 9, 525. [Google Scholar] [CrossRef]
- Choudhary, M.; Jones, J.B.; Paret, M.L. Natural or green synthesis nanomaterials and impact on plant pathogens. In Nanotechnology-Based Sustainable Alternatives for the Management of Plant Diseases; Elsevier: Amsterdam, The Netherlands, 2022; pp. 5–29. [Google Scholar]
- Dimkpa, C.O.; McLean, J.E.; Britt, D.W.; Anderson, A.J. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 2013, 26, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Hoseinzadeh, E.; Makhdoumi, P.; Taha, P.; Hossini, H.; Stelling, J.; Amjad Kamal, M.; Ashraf, G. A review on nano-antimicrobials: Metal nanoparticles, methods and mechanisms. Curr. Drug Metab. 2017, 18, 120–128. [Google Scholar] [CrossRef]
- López-Moreno, M.L.; Cedeño-Mattei, Y.; Bailón-Ruiz, S.J.; Vazquez-Nuñez, E.; Hernandez-Viezcas, J.A.; Perales-Pérez, O.J.; De la Rosa, G.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Environmental behavior of coated NMs: Physicochemical aspects and plant interactions. J. Hazard. Mater. 2018, 347, 196–217. [Google Scholar] [CrossRef]
- Dinesh, R.; Anandaraj, M.; Srinivasan, V.; Hamza, S. Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 2012, 173, 19–27. [Google Scholar] [CrossRef]
- Sieprawska, A.; Rudolphi-Szydło, E.; Skórka, M.; Telk, A.; Filek, M. Assessment of the oxidative stress intensity and the integrity of cell membranes under the manganese nanoparticles toxicity in wheat seedlings. Sci. Rep. 2024, 14, 3121. [Google Scholar] [CrossRef]
- Yang, J.; Weidong, C.; Rui, Y. Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms. J. Plant Interact. 2017, 12, 158–169. [Google Scholar] [CrossRef]
- Omran, B.A.; Baek, K.-H. Control of phytopathogens using sustainable biogenic nanomaterials: Recent perspectives, ecological safety, and challenging gaps. J. Clean. Prod. 2022, 372, 133729. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Sun, Y.; Zhou, P.; Tian, M.; Rui, Y. Manganese Nanomaterials: A Green Solution to Suppress Xanthomonas oryzae in Rice. Plants 2025, 14, 1540. https://doi.org/10.3390/plants14101540
Jiang Y, Sun Y, Zhou P, Tian M, Rui Y. Manganese Nanomaterials: A Green Solution to Suppress Xanthomonas oryzae in Rice. Plants. 2025; 14(10):1540. https://doi.org/10.3390/plants14101540
Chicago/Turabian StyleJiang, Yaqi, Yi Sun, Pingfan Zhou, Meng Tian, and Yukui Rui. 2025. "Manganese Nanomaterials: A Green Solution to Suppress Xanthomonas oryzae in Rice" Plants 14, no. 10: 1540. https://doi.org/10.3390/plants14101540
APA StyleJiang, Y., Sun, Y., Zhou, P., Tian, M., & Rui, Y. (2025). Manganese Nanomaterials: A Green Solution to Suppress Xanthomonas oryzae in Rice. Plants, 14(10), 1540. https://doi.org/10.3390/plants14101540