Molecular Approaches for Plant Resistance to Rust Diseases

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Molecular Biology".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 3101

Special Issue Editors


E-Mail Website
Guest Editor
Plant Breeding Institute, University of Sydney, Private Bag 4011 Narellan, Sydney, NSW, 2567, Australia
Interests: cereal crop pathology; host–pathogen interaction studies; genetic analysis; marker-assisted selection; genotyping; field trials; high-throughput phenotyping of wheat rust diseases

E-Mail Website
Guest Editor
Plant Breeding Institute, Faculty of Science, School of Life & Environmental Science, The University of Sydney, Cobbitty, NSW 2570, Australia
Interests: plant genetics and breeding
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Rust diseases, caused by various fungal pathogens, can cause substantial yield losses in many crops such as wheat, barley, maize, oat, rye, cotton, soybeans, vegetables (e.g., beans and asparagus), and trees (e.g., apple, coffee, eucalyptus, guava, pine, etc.). Rust diseases are particularly destructive to winter cereal crops and are considered to be the most feared plant diseases by the growers. Myrtle rust (Austropuccinia psidii), recently detected in Australia, Florida, Hawaii, Indonesia, New Caledonia, and New Zealand, can infect hundreds of plant species of the family Myrtaceae.

Plant resistance to rust diseases is crucial for agricultural productivity and sustainability. Molecular approaches, including genetic analysis of resistance and marker development, cloning and maker assisted selections, etc., have significantly advanced our ability to understand and enhance plant resistance to rust diseases. Overall, molecular approaches provide powerful tools to dissect the genetic basis of rust resistance, accelerate breeding efforts, and develop sustainable strategies for managing rust diseases in agriculture. These technologies continue to evolve, offering new opportunities to enhance plant resilience against rust pathogens in the face of changing environmental and pathogenic pressures. Moreover, in the absence of genetic resistance, increased chemical control of rust diseases can lead to environmental contamination, potential harm to non-target organisms, and the development of pathogen isolates with resistance to fungicides. Thus, considering the high interest in plant resistance to rust diseases, this Special Issue will cover a range of molecular approaches conducted by scientists for achieving genetic resistance

Dr. Karanjeet Sandhu
Dr. Davinder Singh
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Pucciniales
  • rust diseases
  • rust resistance
  • mechanisms of genetic resistance
  • genetic mapping
  • cloning, transgenic and gene editing techniques
  • marker assisted selection
  • gene pyramiding

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 9259 KiB  
Article
Characterization of a New Stripe Rust Resistance Gene on Chromosome 2StS from Thinopyrum intermedium in Wheat
by Chengzhi Jiang, Yujie Luo, Doudou Huang, Meiling Chen, Ennian Yang, Guangrong Li and Zujun Yang
Plants 2025, 14(10), 1538; https://doi.org/10.3390/plants14101538 - 20 May 2025
Viewed by 188
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a highly destructive disease prevalent across most wheat-growing regions globally. The most effective strategy for combating this disease is through the exploitation of durable and robust resistance genes from the relatives of wheat. [...] Read more.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a highly destructive disease prevalent across most wheat-growing regions globally. The most effective strategy for combating this disease is through the exploitation of durable and robust resistance genes from the relatives of wheat. Thinopyrum intermedium (Host) Barkworth and D.R. Dewey has been widely hybridized with common wheat and has been shown to be a valuable source of genes, conferring resistance and tolerance against both the biotic and abiotic stresses affecting wheat. In this study, a novel wheat–Th. intermedium 2StS.2JSL addition line, named Th93-1-6, which originated from wheat–Th. intermedium partial amphidiploid line, Th24-19-5, was comprehensively characterized using nondenaturing-fluorescence in situ hybridization (ND-FISH) and Oligo-FISH painting techniques. To detect plants with the transfer of resistance genes from Th93-1-6 to wheat chromosomes, 2384 M1-M3 plants from the cross between Th93-1-6 and the susceptible wheat cultivar MY11 were studied by ND-FISH using multiple probes. A total of 37 types of 2StS.2JSL chromosomal aberrations were identified. Subsequently, 12 homozygous lines were developed to construct a cytological bin map. Ten chromosomal bins on the 2StS.2JSL chromosome were constructed based on 84 specific molecular markers. Among them, eight alien chromosome aberration lines, which all contained the bin 2StS-3, showed enhanced stripe rust resistance. Consequently, the gene(s) for stripe rust resistance was physically mapped to the 92.88-155.32 Mb region of 2StS in Thinopyrum intermedium reference genome sequences v2.1. Moreover, these newly developed wheat–Th. intermedium 2StS.2JSL translocation lines are expected to serve as valuable genetic resources in the breeding of rust-resistant wheat cultivars. Full article
(This article belongs to the Special Issue Molecular Approaches for Plant Resistance to Rust Diseases)
Show Figures

Figure 1

13 pages, 1923 KiB  
Article
Identification of Genomic Regions Associated with Peanut Rust Resistance by Genome-Wide Association Studies
by Xinlong Shi, Ziqi Sun, Feiyan Qi, Suoyi Han, Yixiong Zheng, Wenzhao Dong, Maoning Zhang and Xinyou Zhang
Plants 2025, 14(8), 1219; https://doi.org/10.3390/plants14081219 - 16 Apr 2025
Viewed by 497
Abstract
Peanut rust, caused by Puccinia arachidis Speg., is one of the most significant leaf diseases globally, and has a severe impact on peanut yield and quality. The development of disease-resistant varieties is recognized as an effective strategy to mitigate the damage caused by [...] Read more.
Peanut rust, caused by Puccinia arachidis Speg., is one of the most significant leaf diseases globally, and has a severe impact on peanut yield and quality. The development of disease-resistant varieties is recognized as an effective strategy to mitigate the damage caused by peanut rust. However, the research foundation for understanding peanut rust remains relatively limited. In this study, we identified significant single nucleotide polymorphisms (SNPs) associated with peanut rust resistance using a natural population consisting of 353 peanut germplasm accessions. These accessions were analyzed based on resequencing data and rust disease phenotypes across one laboratory test and three field trials. A total of 18 significant SNPs were identified on chromosomes A05 (5 SNPs), A08 (7 SNPs), and A12 (6 SNPs). Notably, three SNPs—Arahy.05_93085395, Arahy.05_93114354, and Arahy.12_4097252—were consistently detected across multiple environments. Within their confidence intervals, 48 genes were annotated, including 9 NLR domain-containing genes functionally related to plant disease resistance, which may serve as candidate genes for peanut rust resistance. This study provides insights into the regulatory mechanisms underlying peanut rust resistance. Full article
(This article belongs to the Special Issue Molecular Approaches for Plant Resistance to Rust Diseases)
Show Figures

Figure 1

25 pages, 3972 KiB  
Article
Genetic Dissection of Triple Rust Resistance (Leaf, Yellow, and Stem Rust) in Kenyan Wheat Cultivar, “Kasuku”
by Naeela Qureshi, Ravi Prakash Singh and Sridhar Bhavani
Plants 2025, 14(7), 1007; https://doi.org/10.3390/plants14071007 - 23 Mar 2025
Viewed by 671
Abstract
Climate change is driving the spread of transboundary wheat diseases, necessitating the development of resilient wheat varieties for sustainable agriculture. Wheat rusts, including leaf rust (LR), yellow rust (YR), and stem rust (SR), remain among the most economically significant diseases, causing substantial yield [...] Read more.
Climate change is driving the spread of transboundary wheat diseases, necessitating the development of resilient wheat varieties for sustainable agriculture. Wheat rusts, including leaf rust (LR), yellow rust (YR), and stem rust (SR), remain among the most economically significant diseases, causing substantial yield losses worldwide. Enhancing genetic diversity by identifying and deploying rust resistance genes is crucial for durable resistance in wheat breeding programs. This study aimed to identify quantitative trait loci (QTL) associated with rust resistance in the CIMMYT wheat line Kasuku, released in Kenya in 2018. A recombinant inbred line (RIL) population (181 lines) derived from Kasuku (triple rust-resistant) and Apav#1 (triple rust-susceptible) was evaluated under artificial LR and YR epidemics in Mexico and YR and SR in Kenya. QTL mapping using genotyping-by-sequencing (DArTSeq) and phenotypic data identified four major loci: QLrYrSr.cim-1BL (Lr46/Yr29/Sr58) on 1BL, conferring resistance to LR, YR, and SR; QLrYr.cim-2AS (Yr17/Lr37) on 2AS, providing LR and YR resistance; QLrYr.cim-3AL on 3AL; and QLrYrSr.cim-6AL on 6AL, representing novel loci associated with multiple rust resistances. Additionally, minor QTL were also identified: for LR (QLr.cim-2DS on 2DS, QLr.cim-6DS on 6DS), for YR (QYrKen.cim-3DS on 3DS, QYrKen.cim-6BS on 6BS), and for SR (QSr.cim-2BS on 2BS, QSr.cim-5AL on 5AL, QSr.cim-6AS on 6AS). RILs carrying these QTL combinations exhibited significant reductions in rust severity. Flanking markers for these loci are being used to develop Kompetitive Allele-Specific PCR (KASP) markers for fine mapping and marker-assisted selection (MAS). These findings contribute to the strategic deployment of rust resistance genes in wheat breeding programs, facilitating durable resistance to multiple rust pathogens. Full article
(This article belongs to the Special Issue Molecular Approaches for Plant Resistance to Rust Diseases)
Show Figures

Figure 1

20 pages, 1634 KiB  
Article
Exploring the Genetic Potential for Multi-Resistance to Rust and Other Coffee Phytopathogens in Breeding Programs
by Bruna Lopes Mariz, Eveline Teixeira Caixeta, Marcos Deon Vilela de Resende, Antônio Carlos Baião de Oliveira, Dênia Pires de Almeida and Danúbia Rodrigues Alves
Plants 2025, 14(3), 391; https://doi.org/10.3390/plants14030391 - 28 Jan 2025
Viewed by 1112
Abstract
The application of marker-assisted selection in coffee breeding programs accelerates the identification and concentration of target alleles, being essential for developing cultivars resistant to multiple diseases. In this study, a population was developed from artificial crossings between Timor Hybrid and Tupi Amarelo, with [...] Read more.
The application of marker-assisted selection in coffee breeding programs accelerates the identification and concentration of target alleles, being essential for developing cultivars resistant to multiple diseases. In this study, a population was developed from artificial crossings between Timor Hybrid and Tupi Amarelo, with the aim of promoting the pyramiding of resistance genes to the main diseases and pests of Coffea arabica: coffee leaf rust (CLR), coffee berry disease (CBD), cercospora, and leaf miner. Resistance was confirmed by nine molecular markers at loci associated with CLR (genes SH3, CC-NBS-LRR, RLK, QTL-GL2, and GL5) and with CBD (gene Ck-1). The resistance to CLR, cercospora, and leaf miner was evaluated using phenotypic diagrammatic scales. Mixed models estimated population superiority in 16 morphoagronomic traits over four agricultural years. The introgression of resistance alleles to CLR and CBD was identified in 98.6% of the population, with 29% showing pyramiding of five resistance genes. These pyramiding genotypes showed 100% resistance to the leaf miner and 90% to cercospora. The traits were grouped into univariate, bivariate, and trivariate repeatability models, with 11 significant ones. These results are indicative of genetic variability to be explored in the development of cultivars with multiple resistances and high agronomic potential. Full article
(This article belongs to the Special Issue Molecular Approaches for Plant Resistance to Rust Diseases)
Show Figures

Figure 1

Back to TopTop