Next Issue
Volume 14, May-2
Previous Issue
Volume 14, April-2
 
 

Plants, Volume 14, Issue 9 (May-1 2025) – 137 articles

Cover Story (view full-size image): This study explores the impact of organic and conventional farming systems on soil microbial communities associated with common beans (Phaseolus vulgaris L.) in the fields of Northern Spain. This two-year field scale research reveals that organic farming fosters greater fungal richness, more beneficial microbes, such as mycorrhizae and biocontrol fungi, and stronger microbial network cooperation. In contrast, conventional farming supports higher prokaryotic abundance but also shows more complex and competitive microbial interactions. These findings highlight the potential of organic practices to enhance soil biodiversity and soil health. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 2754 KiB  
Article
The Impact of Seed Treatment with Cold Plasma on Antioxidants, Sugars, and Pigments in Needles of Norway Spruce Is Genotype-Dependent
by Ieva Čėsnienė, Vytautas Čėsna, Vida Mildažienė, Diana Miškelytė, Dorotėja Vaitiekūnaitė and Vaida Sirgedaitė-Šėžienė
Plants 2025, 14(9), 1404; https://doi.org/10.3390/plants14091404 - 7 May 2025
Viewed by 254
Abstract
Forests face increasing threats due to climate change and anthropogenic pressures, exacerbating plant stress and disease susceptibility. Norway spruce (Picea abies (L.) H. Karst.), a key conifer species in European forestry, is particularly vulnerable. Developing innovative seed treatments to enhance tree resilience [...] Read more.
Forests face increasing threats due to climate change and anthropogenic pressures, exacerbating plant stress and disease susceptibility. Norway spruce (Picea abies (L.) H. Karst.), a key conifer species in European forestry, is particularly vulnerable. Developing innovative seed treatments to enhance tree resilience is crucial for sustainable forest management. Despite the growing interest in cold plasma (CP) technology for seed treatment, research on its long-term effects on trees, particularly Norway spruce, remains scarce. This study aimed to investigate the effects of pre-sowing CP treatment on Norway spruce seeds from 10 half-sib families over two vegetation seasons. Results indicate that CP treatment influenced key physiological and biochemical parameters in a genotype-specific and treatment duration-dependent manner (1 or 2 min). In some cases, CP-treated seedlings exhibited increased chlorophyll levels (e.g., increased chlorophyll a by up to 49% in some genotypes treated with CP for 1 min, and by up to 35% in those treated with CP for 2 min), reduced malondialdehyde (MDA) content in second-year samples (by up to 52% in some genotypes), and enhanced production of phenolics (by up to 21% in some genotypes in both treatment groups), suggesting improved stress tolerance. The 541 half-sib family is particularly noteworthy, as first-year seedlings exhibited increased levels of chlorophylls, flavonoids, and total phenols following a 2 min treatment. In contrast, second-year seedlings of the same family showed an increase in flavonoids and a reduction in MDA levels compared to the control, indicating a sustained and possibly age-modulated physiological response to CP exposure (2 min). However, responses varied across genetic backgrounds, highlighting the importance of genotype in determining treatment efficacy. These findings underscore the potential of CP technology as a tool for improving Norway spruce resilience and inform future strategies for seed enhancement in forestry. Full article
(This article belongs to the Special Issue Development of Woody Plants)
Show Figures

Figure 1

12 pages, 5146 KiB  
Article
Overexpression of StTCP10 Alters Tuber Number and Size in Potato (Solanum tuberosum L.)
by Tingting Wang, Xinyue Chen, Shuangshuang Li, Ping Wang, Yongbin Wang and Binquan Huang
Plants 2025, 14(9), 1403; https://doi.org/10.3390/plants14091403 - 7 May 2025
Viewed by 306
Abstract
Potato (Solanum tuberosum L.), cultivated worldwide for its nutrient-rich underground tubers, represents a crucial staple crop whose yield is primarily determined by both tuber number and tuber size. TCP transcription factors, especially TCP containing miR319 binding sites, play pivotal roles in plant [...] Read more.
Potato (Solanum tuberosum L.), cultivated worldwide for its nutrient-rich underground tubers, represents a crucial staple crop whose yield is primarily determined by both tuber number and tuber size. TCP transcription factors, especially TCP containing miR319 binding sites, play pivotal roles in plant growth and development, yet their functions in potato tuber number and size remain largely unexplored. In this study, we systematically identified 32 TCP genes in potato harboring the conserved TCP domain, among which six were predicted to contain binding sites for Stu-miR319. Semi-quantitative experiments revealed that StTCP10 exhibited the highest expression levels in stolons, swollen stolons, and tuber tissues compared to other StTCP genes containing miR319 binding sites. To elucidate its biological function, we generated StTCP10-overexpressing transgenic potato lines through Agrobacterium-mediated genetic transformation. Phenotypic analysis demonstrated that overexpression of StTCP10 reduced tuber number per plant while enhancing tuber size, with no significant change in total yield. These findings reveal that StTCP10 with Stu-miR319 binding sites plays a critical role in tuber size and mediates the trade-off between tuber size and number, providing novel insights into the molecular breeding aimed at improving tuber size. Full article
(This article belongs to the Special Issue Solanaceae Plants Genetics)
Show Figures

Figure 1

33 pages, 688 KiB  
Review
The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response
by Tangying Wang, Kaiyuan Meng, Zilin Zhu, Linxuan Pan, Thomas W. Okita, Laining Zhang and Li Tian
Plants 2025, 14(9), 1402; https://doi.org/10.3390/plants14091402 - 7 May 2025
Viewed by 533
Abstract
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of [...] Read more.
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of control through sophisticated molecular machinery. RBPs interact with both RNA molecules and protein partners to coordinate RNA metabolism and, thus, fine-tune the expression of salt-responsive genes, enabling plants to rapidly adapt to ionic challenges. This review systematically evaluates the functional roles of RBPs localized in distinct subcellular compartments, including nuclear, cytoplasmic, chloroplastic, and mitochondrial systems, in mediating post-transcriptional regulatory networks under salinity challenges. Specific classes of RBPs are discussed in detail, including glycine-rich RNA-binding proteins (GR-RBPs), serine/arginine-rich splicing factors (SR proteins), zinc finger domain-containing proteins, DEAD-box RNA helicases (DBRHs), KH domain-containing proteins, Pumilio domain-containing proteins (PUMs), pentatricopeptide repeat proteins (PPRs), and RBPs involved in cytoplasmic RNA granule formation. By integrating their subcellular localization and current mechanistic insights, this review concludes by summarizing the current knowledge and highlighting potential future research directions, aiming to inspire further investigations into the complex network of RBPs in modulating plant responses to salt stress and facilitating the development of strategies to enhance plant salt tolerance. Full article
Show Figures

Figure 1

18 pages, 3113 KiB  
Article
Assessment of the N-Alkylamide Content and Volatile Profiles in Two Cultivars of Acmella oleracea (L.) R.K. Jansen Grown in Aquaponics
by Marta Ferrati, Beatrice Bartolini, Giulio Lupidi, Lorenzo Freddi, Valentina Bolletta, Marco Cespi, Rita Giovannetti, Marco Zannotti, Riccardo Petrelli, Filippo Maggi and Eleonora Spinozzi
Plants 2025, 14(9), 1401; https://doi.org/10.3390/plants14091401 - 7 May 2025
Viewed by 469
Abstract
Acmella oleracea (L.) R.K. Jansen, also called jambù, is a medicinal and aromatic plant native to the Brazilian Amazon rainforest and phytochemically characterized by N-alkylamides with spilanthol as the main active compound. Jambù recently attracted the interest of many companies because of [...] Read more.
Acmella oleracea (L.) R.K. Jansen, also called jambù, is a medicinal and aromatic plant native to the Brazilian Amazon rainforest and phytochemically characterized by N-alkylamides with spilanthol as the main active compound. Jambù recently attracted the interest of many companies because of its wide range of pharmaceutical, nutraceutical, and cosmetic applications. In this context, it is desirable to identify eco-friendly cultivation methods that not only minimize the environmental footprint but also support the biosynthesis of the plant’s valuable bioactive compounds. The zero-discharge approach of aquaponics makes this growing system an eco-friendly and sustainable production strategy for crops. Thus, a greenhouse experiment was conducted on two jambù cultivars, i.e., cv ‘purple’ and cv ‘yellow’, grown in aquaponic and hydroponic systems. The objective was to compare their contents of N-alkylamides, their numbers of capitula, which are the main source of these bioactives, and their volatile profiles. The results highlighted differences between the two cultivars and among plants harvested at different periods. Interestingly, aquaponics yielded plants with a high N-alkylamide content, which was comparable to that obtained with hydroponics. Overall, this study highlighted the feasibility of adopting aquaponics to grow A. oleracea, paving the way for circular economy-based and sustainable agricultural practices. Full article
(This article belongs to the Special Issue Plant-Derived Natural Products: Development and Utilization)
Show Figures

Graphical abstract

26 pages, 6832 KiB  
Article
Identification of Indigenous Thai Phlegmariurus Genotypic Population by Integrating Morphological and Molecular Studies
by Nusanisa Chedao, Avinash Chandra Pandey and Potjamarn Suraninpong
Plants 2025, 14(9), 1400; https://doi.org/10.3390/plants14091400 - 7 May 2025
Viewed by 211
Abstract
Phlegmariurus, a diverse genus within the Lycopodiaceae family, has wide diversity in tropical regions, including Thailand. Accurate species delimitation in the tropical clubmoss genus Phlegmariurus is challenged by high morphological plasticity and genetic complexity. This study applied an integrative multilocus approach combining [...] Read more.
Phlegmariurus, a diverse genus within the Lycopodiaceae family, has wide diversity in tropical regions, including Thailand. Accurate species delimitation in the tropical clubmoss genus Phlegmariurus is challenged by high morphological plasticity and genetic complexity. This study applied an integrative multilocus approach combining morphometric analysis of 27 complete specimens, 35 Phlegmariurus and one Lycopodiella accessions for AFLP genotyping (926 loci; PIC 0.32), SSR profiling (44 loci; PIC 0.57; expected heterozygosity 0.35), and chloroplast barcoding using rbcL (1308 bp; bootstrap 89–99%) and the psbA-trnH intergenic spacer (308 bp; bootstrap ≥ 94%). A total of 13 were identified as belonging to seven known species, including P. nummulariifolius (NST01, NST15, NST36), P. goebelii (JP04), P. phlegmaria (NST13), P. verticillatus (PHI16), P. squarrosus (NST21, NST22, MY31), P. tetrastichus (NST30), and P. carinatus (MY32, MY33, NST34). Morphological clustering and molecular markers consistently distinguished Phlegmariurus accessions from the Lycopodiella outgroup. Additionally, 19 previously unclassified Phlegmariurus accessions were successfully identified as belonging to the species P. nummulariifolius (NST23), P. goebelii (NST03, JP05, STN12, PNA14, SKA25, CPN26, KRB27, PNA28), P. phlegmaria (NWT07, STN08, NST09, NST10, PHI29), P. squarrosus (NST17), and P. carinatus (PNA06, STN18, CPN19, JP24). Moreover, this study identified three novel lineages (NST02, STN11, NST20) with strong support across datasets. The combination of broad genomic coverage (AFLP), fine-scale allelic resolution (SSR), deep-branch backbone (rbcL), and terminal-branch discrimination (psbA-trnH) yields a robust framework for species identification. These results define clear operational units for conservation prioritization and establish a foundation for marker-assisted development of ornamental Phlegmariurus cultivars. Full article
(This article belongs to the Special Issue Genetic Diversity and Population Structure of Plants)
Show Figures

Figure 1

22 pages, 1457 KiB  
Review
A Systematic Review of the Advances and New Insights into Copy Number Variations in Plant Genomes
by Saimire Silaiyiman, Jiaxuan Liu, Jiaxin Wu, Lejun Ouyang, Zheng Cao and Chao Shen
Plants 2025, 14(9), 1399; https://doi.org/10.3390/plants14091399 - 6 May 2025
Viewed by 401
Abstract
Copy number variations (CNVs), as an important structural variant in genomes, are widely present in plants, affecting their phenotype and adaptability. In recent years, CNV research has not only focused on changes in gene copy numbers but has also been linked to complex [...] Read more.
Copy number variations (CNVs), as an important structural variant in genomes, are widely present in plants, affecting their phenotype and adaptability. In recent years, CNV research has not only focused on changes in gene copy numbers but has also been linked to complex mechanisms such as genome rearrangements, transposon activity, and environmental adaptation. The advancement in sequencing technologies has made the detection and analysis of CNVs more efficient, not only revealing their crucial roles in plant disease resistance, adaptability, and growth development, but also demonstrating broad application potential in crop improvement, particularly in selective breeding and genomic selection. By studying CNV changes during the domestication process, researchers have gradually recognized the important role of CNVs in plant domestication and evolution. This article reviews the formation mechanisms of CNVs in plants, methods for their detection, their relationship with plant traits, and their applications in crop improvement. It emphasizes future research directions involving the integration of multi-omics to provide new perspectives on the structure and function of plant genomes. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

19 pages, 8378 KiB  
Article
Melatonin Mitigates Cd-Induced Growth Repression and RNA m6A Hypermethylation by Triggering MMR-Mediated DNA Damage Response
by Zihan Tang, Hetong Wang, Xianpeng Wang, Richard A. Ludlow, Zhouli Liu, Min Zhang, Qijiang Cao, Wan Liu and Qiang Zhao
Plants 2025, 14(9), 1398; https://doi.org/10.3390/plants14091398 - 6 May 2025
Viewed by 359
Abstract
Melatonin (MT) has been found to mitigate cadmium (Cd) toxicity with negligible environmental risks. It remains poorly understood as to how MT mitigates Cd-induced growth repression and regulates RNA m6A methylation. We aimed to elucidate the effect of MT on growth [...] Read more.
Melatonin (MT) has been found to mitigate cadmium (Cd) toxicity with negligible environmental risks. It remains poorly understood as to how MT mitigates Cd-induced growth repression and regulates RNA m6A methylation. We aimed to elucidate the effect of MT on growth repression and RNA m6A methylation in Arabidopsis (Arabidopsis thaliana) exposed to Cd stress. MT mitigated, on average, 13.96% and 8.42% of growth repression resulting from Cd and mismatch repair (MMR) deficiency. The ameliorative effect on Cd stress was reduced by 70.56% and 34.23% in msh2 and msh6 mutants, respectively. With distinct dose–effect relationships, m6A hypermethylation responded to Cd stress rather than Cu stress, which was further elevated in MMR-deficient seedlings. MT reduced m6A levels by 22.98% even without stress induction, whereas the depressed m6A levels in MMR-deficient seedlings, greatly exceeding those in the WT. The “writer” and “eraser” gene expression responsible for m6A methylation was reduced with the concentration of stresses due to MT, but VIR and ALKBH9B no longer responded to Cd stress in msh2 and msh6. Despite the remarkable repression, MMR gene expression was regularly promoted by MT under Cd and Cu stress. Our study provides novel insights into the molecular mechanisms underlying the restorative effects of MT on growth repression and m6A methylation regulation, which shed light on Cd phytoremediation. Full article
(This article belongs to the Special Issue Application of Melatonin to Abiotic Stress in Horticultural Crops)
Show Figures

Figure 1

13 pages, 5827 KiB  
Article
Identification and Characterization of a Male Sterile Rapeseed (Brassica napus) Line for Hybrid Seed Production
by Jianghua Shi, Huasheng Yu, Renhu Liu, Yaofeng Zhang, Ying Fu, Tanliu Wang, Xiyuan Ni, Tao Zheng and Jianyi Zhao
Plants 2025, 14(9), 1397; https://doi.org/10.3390/plants14091397 - 6 May 2025
Viewed by 272
Abstract
A male sterile mutant, S201, was identified in Brassica napus. Genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, male sterility (MS), which was stably inherited. The results of microscopy showed that the main [...] Read more.
A male sterile mutant, S201, was identified in Brassica napus. Genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, male sterility (MS), which was stably inherited. The results of microscopy showed that the main reason for male sterility was a defect in microspore development, resulting in the absence of typical exine and mature microspores. Bulked segregant analysis (BSA) and genotyping of an F2 population showed that the MS gene was located in a 1.4 Mb region. Sequence analysis showed that the CYP704B1 gene in this region contained two non-synonymous SNPs, leading to substitutions of two amino acids. A high-throughput KASP marker was characterized to detect the presence of the ms gene in the breeding population. The data presented here indicate that the male sterile mutant S201 can be applied in rapeseed breeding by producing the male sterile line and that the KASP marker developed for male sterility will be useful in marker-assisted selection of male sterile individuals in rapeseed-breeding programs. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

21 pages, 4530 KiB  
Article
Leaf Morpho-Anatomy of Twelve Cymbidium (Orchidaceae) Species from China and Their Taxonomic Significance
by Xiangke Hu, Lei Tao, Jialin Huang, Kaifeng Tao, Dong Ma and Lu Li
Plants 2025, 14(9), 1396; https://doi.org/10.3390/plants14091396 - 6 May 2025
Viewed by 226
Abstract
Cymbidium are endangered and ornamental orchids, and the taxonomy and species identification of this genus have been debated due to some overlapping morphological features between taxa and limited data being available. The leaf morpho-anatomy of 12 Cymbidium species from China was investigated using [...] Read more.
Cymbidium are endangered and ornamental orchids, and the taxonomy and species identification of this genus have been debated due to some overlapping morphological features between taxa and limited data being available. The leaf morpho-anatomy of 12 Cymbidium species from China was investigated using light microscopy and paraffin sectioning. Based on a comparative analysis, some leaf morphological features that varied between species were selected and used for taxonomic differentiation as follows: (1) The shape and structure of leaves were varied and could be used for species delimitation. (2) Microscopic characteristics show that the leaves lacked trichomes and displayed polygonal to rectangular epidermal cells on both surfaces, with larger adaxial cells and more abaxial stigmata. Stomata were mostly distributed only on the abaxial side, but on both sides in Cymbidium mastersii, which exhibited a rare amphistomatic type. The stomatal complex was uniformly tetracytic in 11 species, while it was observed to be anomocytic in C. floribundum. (3) Anatomically, two distinct midrib configurations were identified, a shallow V-shape and V-shape. The mesophyll cells were homogeneous in 10 species, with the exception of a layer of parenchyma cells resembling palisade cells occurring in C. lancifolium and C. qiubeiense. The thickness of the cuticle varied between species, with the adaxial surface covered by a thicker cuticle than the abaxial surface and displaying either a smooth or corrugated surface. A fiber bundle was observed in six species, but absent in the other six. In the former group, the fiber bundle occurred adjacent to both epidermal cells in C. mastersii and C. hookerianum, while it was adjacent to the abaxial epidermis in four other species. The stegmata, with conical, spherical silica bodies, were associated with fiber bundles and mesophyll in seven species, but absent in the other five (C. kanran, C. defoliatum, C. floribundum, C. lancifolium, and C. serratum). Three kinds of crystals were identified, namely the terete bundle, the long tube bundle, and the raphide. (4) It was suggested that some of these variable features could be selected and used for the delimitation of the species and taxonomy of Cymbidium. In addition, a key to the 12 Cymbidium species based on their leaf morpho-anatomic features was proposed, which could lead to a better understanding of the taxonomy and conservation of Orchidaceae. Full article
(This article belongs to the Special Issue Plant Taxonomy, Phylogeny, and Evolution)
Show Figures

Figure 1

19 pages, 1421 KiB  
Review
Root Exudates Mediate the Production of Reactive Oxygen Species in Rhizosphere Soil: Formation Mechanisms and Ecological Effects
by Xuqin Wang, Yalei Liu, Xiaoyan Tian, Juan Guo, Yaning Luan and Dengzhi Wang
Plants 2025, 14(9), 1395; https://doi.org/10.3390/plants14091395 - 6 May 2025
Viewed by 496
Abstract
Reactive oxygen species (ROS), as redox messengers, play an important role in regulating plant growth, sensing biotic and abiotic stresses, and integrating different environmental signals. As the microenvironment of the interaction between root, soil and microorganism, the rhizosphere is the hotspot of ROS [...] Read more.
Reactive oxygen species (ROS), as redox messengers, play an important role in regulating plant growth, sensing biotic and abiotic stresses, and integrating different environmental signals. As the microenvironment of the interaction between root, soil and microorganism, the rhizosphere is the hotspot of ROS production and action. Root exudates are an important medium for communication between roots and the soil environment, and they have a significant regulatory effect on the production of ROS in the rhizosphere. At the same time, the formation of rhizosphere ROS is determined by the coupling of various biotic and abiotic factors, and it is also affected by environmental stresses such as temperature, humidity, and disease. This review summarizes how root exudates affect plant growth and induce plant defense mechanisms by regulating the generation and distribution of ROS. It also discusses the role of ROS in promoting the decomposition of soil organic matter, nutrient cycling, and pollutant degradation and transformation. In-depth study of the regulation mechanism of root exudates on ROS not only helps to reveal the molecular mechanism of plant adaptation to environmental stress but also provides theoretical support and practical guidance for sustainable agricultural development and ecological environment protection. Full article
(This article belongs to the Special Issue The Role of Reactive Oxygen Species in Plant Signaling Pathways)
Show Figures

Figure 1

16 pages, 2602 KiB  
Article
Antioxidant, Anti-Inflammatory, and Antiproliferative Activity of a Callus Culture of Prionosciadium dissectum (Apiaceae)
by Antonio Bernabé-Antonio, Jessica Nayelli Sánchez-Carranza, José Antonio Silva-Guzmán, Antonio Romero-Estrada, Samantha Guadalupe Pérez-Rodríguez, Francisco Cruz-Sosa, Mariana Sánchez-Ramos and Aurelio Nieto-Trujillo
Plants 2025, 14(9), 1394; https://doi.org/10.3390/plants14091394 - 6 May 2025
Viewed by 360
Abstract
Traditionally, medicinal plants have served as the main resource for treating various human health conditions. Prionosciadium dissectum is a plant used in traditional medicine in the southern region of Jalisco, Mexico, to treat inflammatory respiratory problems. However, this species has not undergone pharmacological [...] Read more.
Traditionally, medicinal plants have served as the main resource for treating various human health conditions. Prionosciadium dissectum is a plant used in traditional medicine in the southern region of Jalisco, Mexico, to treat inflammatory respiratory problems. However, this species has not undergone pharmacological or biotechnological studies that validate these popular uses. The aim of this study was to induce calluses on P. dissectum leaves and then evaluate the antioxidant, anti-inflammatory, and antiproliferative activity of their extracts. The best callus induction was obtained using Murashige and Skoog (MS) culture medium with 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg/L kinetin (KIN). Extracts of hexane, dichloromethane, and methanol were obtained from the dry biomass, and the highest yield was obtained with methanol. The total phenolic content and antioxidant activity of the methanolic extracts were quantified. The methanolic extract showed 26.5 ± 0.4 mg equivalents of gallic acid/g extract, while, for antioxidant activity, it demonstrated IC50 values of 49.4 ± 0.2 and 10.0 ± 0.0 μg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ((2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS), respectively. Regarding anti-inflammatory potential, the extracts did not significantly affect cell viability in RAW 264.7 macrophages. In contrast, it was clear that all extracts significantly decreased nitric oxide (NO) production at concentrations of 5–40 µg/mL. Additionally, extracts evaluated in human cancer cell lines only had a significant inhibitory effect at 100 µg/mL after 48 h, mainly with dichloromethane extract. This first biotechnological study indicates that P. dissectum cell cultures may produce compounds that favor the biological activities evaluated; however, it is necessary to carry out more in-depth evaluations of its extracts. This study is the basis for future research to enable the sustainable use of this valuable resource. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

19 pages, 13853 KiB  
Article
Identification and Chemical Control of Stem Canker Pathogen of Idesia polycarpa
by Jian Feng, Qiupeng Yuan, Xuzhong Chen, Lisha Fang, Tao Zhang, Zhen Liu, Yanmei Wang, Xiaodong Geng, Qifei Cai and Zhi Li
Plants 2025, 14(9), 1393; https://doi.org/10.3390/plants14091393 - 5 May 2025
Viewed by 307
Abstract
Idesia polycarpa is an important woody oilseed tree crucial for ensuring China’s grain and oil security. The expansion of I. polycarpa plantations has been accompanied by an increase in pests and diseases, with canker disease recently observed in two forests in Henan Province. [...] Read more.
Idesia polycarpa is an important woody oilseed tree crucial for ensuring China’s grain and oil security. The expansion of I. polycarpa plantations has been accompanied by an increase in pests and diseases, with canker disease recently observed in two forests in Henan Province. Field surveys revealed a disease incidence of 70.12% among 328 surveyed trees, indicating a substantial threat to plantation health. The most virulent pathogen, strain SQ5, was identified as Botryosphaeria dothidea through molecular sequencing and morphological analyses. Strain SQ5 showed an optimum growth temperature of 25 °C and a mycelial lethal temperature of 60 °C. The pathogen thrives in acidic conditions and is promoted by light, with the ability to utilize various carbon and nitrogen sources. In vitro toxicity assessments identified four effective fungicides: 70% thiophanate-methyl (EC50 = 0.0169 µg/mL), 43% tebuconazole (EC50 = 0.0219 µg/mL), 20% octylamine acetate (EC50 = 0.0271 µg/mL), and 40% difenoconazole (EC50 = 0.0954 µg/mL). Field trials demonstrated that 43% tebuconazole (average efficacy = 35.29%) and 40% difenoconazole (average efficacy = 23.53%) exhibited superior control of I. polycarpa canker. This study represents the first systematic analysis of I. polycarpa canker and its control measures, laying a foundation for further research and field management strategies. Given the significance of I. polycarpa in Chinese forestry, this underscores the need for effective management strategies to sustain its productivity and mitigate risks associated with expanding plantations. Full article
(This article belongs to the Special Issue Sexual and Asexual Reproduction in Forest Plants)
Show Figures

Figure 1

17 pages, 4500 KiB  
Article
Increasing the Proportion of Broadleaf Species in Mixed Conifer-Broadleaf Forests Improves Understory Plant Composition and Promotes Soil Carbon Fixation
by Zixing Li, Xinghao Wang, Yuan Huang, Xinrong Yang, Ran Wang and Mengtao Zhang
Plants 2025, 14(9), 1392; https://doi.org/10.3390/plants14091392 - 5 May 2025
Viewed by 350
Abstract
Understory vegetation is an important component of forest ecosystems, and the supply of nutrients in the soil is related to the growth and development of soil microorganisms and understory plants. The effects of different tree species composition ratios in the forest on the [...] Read more.
Understory vegetation is an important component of forest ecosystems, and the supply of nutrients in the soil is related to the growth and development of soil microorganisms and understory plants. The effects of different tree species composition ratios in the forest on the process of soil microbial community assembly are not clear in the existing studies, and the factors influencing the differences in the abundance of understory plants under different forest canopy compositions and their mechanisms of action have not yet been clearly explained. In this study, two types of pure forests (PFP and PFQ) and two types of mixed forests (MF and MPQ) were selected from the Zhongcun Forestry, and the soil characteristics, soil microbial community assembly process, and understory plant community abundance, composition, and β-diversity were analyzed for the different forest types. The results showed that changes in the proportion of broadleaf and coniferous species in the forest could lead to changes in the community assembly process of soil fungi, and that the fungal assembly process in the mixed forest was mainly related to dispersal limitation. Compared with pure forests that were exclusively coniferous or exclusively broadleaf, mixed coniferous and broadleaf forests had a higher abundance of understory plants and a more stable forest community composition. In mixed forests, forests with a large proportion of broadleaf arbors had more available resources in the soil, soil pH was closer to neutral, and soil C was less likely to be lost compared to forests with a large proportion of conifers. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Graphical abstract

18 pages, 2432 KiB  
Article
NAC Transcription Factor GmNAC035 Exerts a Positive Regulatory Role in Enhancing Salt Stress Tolerance in Plants
by Wanting Shi, Sixin Ye, Yiting Xin, Hongmiao Jin, Meiling Hu, Yueping Zheng, Yihua Zhan, Hongbo Liu, Yi Gan, Zhifu Zheng and Tian Pan
Plants 2025, 14(9), 1391; https://doi.org/10.3390/plants14091391 - 5 May 2025
Viewed by 367
Abstract
Soybean, a globally significant and versatile crop, serves as a vital source of both oil and protein. However, environmental factors such as soil salinization pose substantial challenges to its cultivation, adversely affecting both yield and quality. Enhancing the salt tolerance of soybeans can [...] Read more.
Soybean, a globally significant and versatile crop, serves as a vital source of both oil and protein. However, environmental factors such as soil salinization pose substantial challenges to its cultivation, adversely affecting both yield and quality. Enhancing the salt tolerance of soybeans can mitigate yield losses and promote the development of the soybean industry. Members of the plant-specific transcription factor family NAC play crucial roles in plant adaptation to abiotic stress conditions. In this study, we screened the soybean GmNAC family genes potentially involved in the salt stress response and identified 18 GmNAC genes that may function during the early stages of salt stress. Among these, the GmNAC035 gene exhibited a rapid increase in expression within one hour of salt treatment, with its expression being induced by abscisic acid (ABA) and methyl jasmonate (MeJA), suggesting its significant role in the soybean salt stress response. We further elucidated the role of GmNAC035 in soybean salt tolerance. GmNAC035, a nuclear-localized transcriptional activator, enhances salt tolerance when overexpressed in Arabidopsis, reducing oxidative damage and boosting the expression of stress-responsive genes. It achieves this by regulating key stress response pathways, including the SOS pathway, calcium signaling, and ABA signaling. These findings highlight the potential of GmNAC035 as a genetic engineering target to improve crop salt tolerance. Full article
(This article belongs to the Special Issue Crop Functional Genomics and Biological Breeding—2nd Edition)
Show Figures

Figure 1

39 pages, 1666 KiB  
Review
Medicinal Plants Against Dental Caries: Research and Application of Their Antibacterial Properties
by Marcela Alejandra Gloria-Garza, Gustavo Raúl Reyna-Martínez, Zacarías Jiménez-Salas, Eduardo Campos-Góngora, Miroslava Kačániová, Diana Elena Aguirre-Cavazos, Minerva Bautista-Villarreal, Catalina Leos-Rivas and Joel Horacio Elizondo-Luevano
Plants 2025, 14(9), 1390; https://doi.org/10.3390/plants14091390 - 5 May 2025
Viewed by 519
Abstract
Dental caries remains one of the most widespread global health concerns, significantly affecting both oral and overall health. Conventional treatments typically rely on chemical-based products which, although effective, are often associated with undesirable side effects such as tooth staining, altered taste, and the [...] Read more.
Dental caries remains one of the most widespread global health concerns, significantly affecting both oral and overall health. Conventional treatments typically rely on chemical-based products which, although effective, are often associated with undesirable side effects such as tooth staining, altered taste, and the development of antimicrobial resistance. As a response, plant-based natural alternatives have gained attention as promising strategies for the prevention and management of dental caries. This review highlights the antibacterial properties of medicinal plants and their potential applications in dentistry, with a particular focus on their activity against a broad range of bacteria and microorganisms involved in oral diseases. Numerous plant extracts and bioactive compounds—including polyphenols, flavonoids, and essential oils—have demonstrated antimicrobial, anti-inflammatory, and antioxidant properties that contribute to maintaining oral health. Although in vitro and in vivo studies support their therapeutic potential, clinical trials assessing long-term efficacy and safety remain scarce. Future research should prioritize the standardization of extraction methods, dosage, and formulations to facilitate the integration of these natural alternatives into conventional dental care practices. Full article
(This article belongs to the Special Issue Biological Activities of Plant Extracts, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 2413 KiB  
Article
Bacillus Bio-Organic Fertilizer Altered Soil Microorganisms and Improved Yield and Quality of Radish (Raphanus sativus L.)
by Yingbin Qi, Zhen Wu, Yachen Wang, Rong Zhou, Liwang Liu, Yan Wang, Jiying Zhao and Fangling Jiang
Plants 2025, 14(9), 1389; https://doi.org/10.3390/plants14091389 - 5 May 2025
Viewed by 366
Abstract
Excessive use of fertilizers will not only cause the enrichment of soil N nutrients, soil secondary salinization, soil acidification, and an imbalance of the soil microbial community structure, but will also lead to the nitrate content of vegetables and the ground water exceeding [...] Read more.
Excessive use of fertilizers will not only cause the enrichment of soil N nutrients, soil secondary salinization, soil acidification, and an imbalance of the soil microbial community structure, but will also lead to the nitrate content of vegetables and the ground water exceeding the standard. The application of bio-organic fertilizer could reduce the amount of mineral fertilizer used. However, the effects of nitrogen reduced with different bio-organic fertilizers on soil chemical properties, microbial community structure, and the yield and quality of radish are not clear. In a field experiment, we designed six fertilization treatments: no fertilization (CK), conventional fertilization (T1), a total nitrogen reduction of 20% (T2), and a total nitrogen reduction of 20% with “No. 1”, “Seek” or “Jiajiapei” bio-organic fertilizers. The results showed that nitrogen reduction of 20% with Bacillus bio-organic fertilizer (N1) significantly increased the organic matter, pH, total nitrogen content, and the relative abundance of Bacillus and Streptomyce in the soil compared with T1. RDA analysis showed that the pH, organic matter content, invertase and fluorescein diacetate enzyme activity of the soil were significantly correlated with the soil microbial community structure. In addition, the yield and Vc content in radish were increased with the application of bio-organic fertilizers, while on the contrary, the nitrate and cellulose content were decreased, and the N1 treatment showed the best effect. Moreover, the yield had a significant positive correlation with Bacillus. Overall, nitrogen reduction with bio-organic fertilizers, especially full-effective “No. 1” enriched with Bacillus, could alter the soil microbial community structure and effectively improve soil fertility, which in turn enhanced the yield and quality of radish. An application of Bacillus bio-organic fertilizer was an effective strategy to improve soil quality and vegetable safety. Full article
Show Figures

Figure 1

18 pages, 9557 KiB  
Article
Cell Wall Invertase 4 Governs Sucrose–Hexose Homeostasis in the Apoplast to Regulate Wood Development in Poplar
by Jing Lu, Qiao Ren, Qilin Wang, Yaqi Wen, Yanhong Wang, Ruiqi Liang, Dingxin Ran, Yifeng Jia, Xinyu Zhuo, Jiangtao Luo, Xianqiang Wang and Keming Luo
Plants 2025, 14(9), 1388; https://doi.org/10.3390/plants14091388 - 4 May 2025
Viewed by 306
Abstract
In perennial trees, wood development is a carbon-demanding process, pivotal for secondary cell wall (SCW) formation and xylem development. Sugars, functioning both as carbon substrates and signaling molecules, orchestrate cambial proliferation and xylem differentiation. However, few molecular candidates involved in the sugar-mediated regulation [...] Read more.
In perennial trees, wood development is a carbon-demanding process, pivotal for secondary cell wall (SCW) formation and xylem development. Sugars, functioning both as carbon substrates and signaling molecules, orchestrate cambial proliferation and xylem differentiation. However, few molecular candidates involved in the sugar-mediated regulation of wood development have been characterized. Cell wall invertases (CWINs), a subclass of the invertase enzyme family localized in the apoplastic space, catalyze the irreversible hydrolysis of sucrose into glucose and fructose, thereby governing carbon allocation in sink tissues. Here, PtoCWIN4 shows preferential expression in the stem of Populus tomentosa and has a high efficiency in sucrose cleavage activity. We demonstrated that the knockout of PtoCWIN4 results in stunted growth, aberrant branching patterns, and compromised secondary xylem formation. In contrast, mutant lines displayed enhanced SCW thickness accompanied by elevated cellulose and hemicellulose accumulation. Following this, the knockout of PtoCWIN4 led to impaired carbon partitioning from sucrose to hexose metabolites during wood development, corroborating the enzyme’s role in sustaining sucrose hydrolysis. Collectively, these findings establish PtoCWIN4 as a master regulator of sucrose-to-hexose conversion, a metabolic gateway critical for balancing structural biomass production and developmental growth during wood formation. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

15 pages, 3267 KiB  
Article
In-Depth Exploration of the Coloration Mechanism of Iris dichotoma Pall. via Transcriptomic and Metabolomic Analyses
by Yalin Yu, Xiaojing Qiang, Fan Huang, Xiuzheng Huang and Lei Liu
Plants 2025, 14(9), 1387; https://doi.org/10.3390/plants14091387 - 4 May 2025
Viewed by 334
Abstract
Iris dichotoma Pall., renowned for its high ornamental value, is frequently cultivated in flowerbeds and courtyards, endowing garden landscapes with unique allure. Dark-hued flowers are widely regarded as more aesthetically appealing. This study utilized the petals of two distinct Iris dichotoma Pall. phenotypes [...] Read more.
Iris dichotoma Pall., renowned for its high ornamental value, is frequently cultivated in flowerbeds and courtyards, endowing garden landscapes with unique allure. Dark-hued flowers are widely regarded as more aesthetically appealing. This study utilized the petals of two distinct Iris dichotoma Pall. phenotypes as research materials to investigate the underlying mechanism of flower color formation. The purple-flowered Iris dichotoma Pall. was designated as Group P, and the white-flowered one as Group W. A comprehensive integrative analysis of the transcriptome and metabolome of the two petal types was carried out. Metabolomic analysis revealed that the contents of several anthocyanin derivatives, including delphinidin, petunidin, malvidin, peonidin, and procyanidin, were significantly higher in purple petals compared to white petals, with delphinidin exhibiting the highest content. The transcriptomic analysis detected 6731 differentially expressed genes (DEGs) between the white and purple petal types. Specifically, 3596 genes showed higher expression levels in purple petals, while 3135 genes exhibited lower expression levels in purple petals compared to white petals. Ten phenylalanine ammonia-lyase (PAL) genes, two chalcone synthase (CHS) genes, one anthocyanidin reductase (ANR) gene, one 4-coumarate-CoA ligase (4CL) gene, one dihydroflavonol 4-reductase (DFR) gene, one flavanone 3′-hydroxylase (F3′H) gene, and one flavonol synthase (FLS) gene were identified; they all had purple petals displaying higher expression levels than white petals. This research uncovers the potential formation mechanism of anthocyanins in the two Iris dichotoma Pall. types, thereby furnishing a theoretical foundation for floral breeding endeavors. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

11 pages, 3223 KiB  
Article
Effects of Elicitation on Abeliophyllum distichum Leaf Callus and Changes in Verbascoside Content
by Daeho Choi, Yong-Woo Park, Jungmok Kang, Eun-Suk Jung and Hwayong Lee
Plants 2025, 14(9), 1386; https://doi.org/10.3390/plants14091386 - 4 May 2025
Viewed by 331
Abstract
Abeliophyllum distichum is a monotypic species in the family Oleaceae that contains a range of phenolic compounds and components such as coumaric acid, catechin, and verbascoside, the latter of which is a major candidate of commercial interest. In this study, we assessed the [...] Read more.
Abeliophyllum distichum is a monotypic species in the family Oleaceae that contains a range of phenolic compounds and components such as coumaric acid, catechin, and verbascoside, the latter of which is a major candidate of commercial interest. In this study, we assessed the potential for producing verbascoside using callus culture. To enhance callus productivity in this regard, we evaluated the efficacy of treatment with the elicitors salicylic acid (SA) and methyl jasmonate (MeJA) based on changes in verbascoside content with callus development using Petri dish cultures. Whereas the initial content of verbascoside in A. distichum callus was approximately 50 mg/g, in response to treatment with 50 μM MeJA, we detected an increase to approximately 97.05 mg/g. In contrast, treatment with SA had no significant effects on verbascoside content. In addition, we found that the fresh weight of callus receiving elicitor treatment was lower than that of control callus. Conversely, however, in bioreactor cultures, the fresh weight of callus following treatment with 50μM MeJA for 1 week was higher than that of control callus, and the content of verbascoside in callus treated with 50 μM MeJA was higher than that in control callus. Our findings in this study thus indicate that with appropriate elicitation, the production of verbascoside by A. distichum callus pieces can be enhanced. Full article
Show Figures

Figure 1

14 pages, 2121 KiB  
Article
Ursane Triterpenes and Norisoprenoids from Anchusa italica Retz. and Their Chemotaxonomic Significance
by Linchuang Shen, Bingchen Han, Zhiliang Ma, Xianju Huang, Guangzhong Yang, Yanfeng Zeng, Maochuan Liao, Ruixi Gao and Jun Li
Plants 2025, 14(9), 1385; https://doi.org/10.3390/plants14091385 - 3 May 2025
Viewed by 228
Abstract
A total of 31 compounds were isolated from the ethyl acetate and n-butanol fractions of Anchusa italica Retz., which contained one ursane triterpenoid, 2α,3β,19α-trihydroxy-23-formyl-urs-12-en-28,21β-olide (1), and five norisoprenoids: (2R,6R [...] Read more.
A total of 31 compounds were isolated from the ethyl acetate and n-butanol fractions of Anchusa italica Retz., which contained one ursane triterpenoid, 2α,3β,19α-trihydroxy-23-formyl-urs-12-en-28,21β-olide (1), and five norisoprenoids: (2R,6R,9S)-9-hydroxy-4-megastigmen-3-one-2-O-β-D-glucopyranoside (3); (2R,6S,9S)-9-hydroxy-megastigman-4,7-dien-3-one-2-O-β-D-glucopyranoside (4); (+)-isololiolide β-D-glucopyranoside (5); (2S,8R)-loliolide β-D-glucopyranoside (6a); and (2R,8S)-loliolide β-D-glucopyranoside (6b). It also contained 25 known compounds (2 and 7–30). The chemical structures of the compounds, inclusive of their absolute configurations, were ascertained using spectroscopic methods such as NMR, HR-MS, and quantum chemical calculations (computational NMR and ECD), in combination with relevant literature data. Moreover, the chemotaxonomic significance of the isolated substances was discussed, with compounds 1, 2, and 7–13 potentially broadening the application of triterpenes as taxonomic markers for the classification of the genus Anchusa. Full article
(This article belongs to the Special Issue Isolation and Structure Elucidation of Plant Bioactive Compounds)
Show Figures

Figure 1

21 pages, 2770 KiB  
Article
Effects of Nitrogen Application Rate on Nitrogen Uptake and Utilization in Waxy Sorghum Under Waxy Sorghum–Soybean Intercropping Systems
by Can Wang, Siyu Chen, Fangli Peng, Qiang Zhao, Jie Gao, Lingbo Zhou, Guobing Zhang and Mingbo Shao
Plants 2025, 14(9), 1384; https://doi.org/10.3390/plants14091384 - 3 May 2025
Viewed by 256
Abstract
Waxy sorghum–soybean intercropping is a sustainable and intensive farming system in southwest China. However, there is limited knowledge about the effects of intercropped soybean combined with nitrogen application on nitrogen uptake and utilization in waxy sorghum. A two-year (2023 and 2024) field experiment [...] Read more.
Waxy sorghum–soybean intercropping is a sustainable and intensive farming system in southwest China. However, there is limited knowledge about the effects of intercropped soybean combined with nitrogen application on nitrogen uptake and utilization in waxy sorghum. A two-year (2023 and 2024) field experiment was carried out using a randomized complete block design with three planting patterns and three nitrogen application rates to explore the responses of grain yield formation and nitrogen uptake, accumulation, transportation, metabolism physiology, and utilization of waxy sorghum for intercropped soybean combined with nitrogen application. Planting patterns included sole cropped waxy sorghum (SCW), sole cropped soybean (SCS), and waxy sorghum intercropped with soybean (WSI), and nitrogen application rates included zero nitrogen (N0), medium nitrogen (N1), and high nitrogen (N2). Results showed that the dry matter accumulation amount, nitrogen content, nitrogen accumulation amount, nitrogen transportation amount, nitrogen transportation rate, contribution rate of nitrogen transportation to grains, nitrogen metabolizing enzymes activities (including nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthetase, glutamate dehydrogenase, and glutamic-pyruvic transaminase), and active substances contents (including soluble sugar, soluble protein, and free amino acid) in various organs of waxy sorghum among planting patterns and nitrogen application rates were in the order of WSI > SCW and N1 > N2 > N0, respectively. In addition, the nitrogen uptake efficiency, nitrogen agronomy efficiency, nitrogen apparent efficiency, nitrogen recovery efficiency, nitrogen partial factor productivity, and nitrogen contribution rate of waxy sorghum among planting patterns and nitrogen application rates were in the sequence of WSI > SCW and N1 > N2, respectively. The changes in above traits resulted in the WSI-N1 treatment obtaining the highest grain yield (6020.66 kg ha−1 in 2023 and 6159.81 kg ha−1 in 2024), grain weight per spike (65.22 g in 2023 and 64.51 g in 2024), 1000-grain weight (23.14 g in 2023 and 23.18 g in 2024) of waxy sorghum, and land equivalent ratio (1.41 in 2023 and 1.44 in 2024). Overall, waxy sorghum intercropped with soybean combined with medium nitrogen application (220 kg ha−1 for waxy sorghum and 18 kg ha−1 for soybean) can help enhance the nitrogen uptake and utilization of waxy sorghum by improving nitrogen metabolizing enzymes’ activities and active substances’ contents, thereby promoting its productivity. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

20 pages, 3721 KiB  
Article
In Vitro Production of Smilax brasiliensis Seedlings, Callus Induction, Chemical Profile, and Assessment of Antioxidant Activity
by Paula Avelar Amado, Ana Hortência Fonsêca Castro, Lucas Santos Azevedo, Mariana Guerra de Aguilar, Lúcia Pinheiro Santos Pimenta and Luciana Alves Rodrigues dos Santos Lima
Plants 2025, 14(9), 1383; https://doi.org/10.3390/plants14091383 - 3 May 2025
Viewed by 259
Abstract
This study aimed to assess the production of Smilax brasiliensis seedlings in an in vitro environment and their adaptation to natural conditions, as well as the callus induction, the chemical profile of calli extracts, and their antioxidant potential. The seedlings were obtained from [...] Read more.
This study aimed to assess the production of Smilax brasiliensis seedlings in an in vitro environment and their adaptation to natural conditions, as well as the callus induction, the chemical profile of calli extracts, and their antioxidant potential. The seedlings were obtained from S. brasiliensis seeds germinated in Murashige and Skoog (MS) medium. The germination rate was 33%, and about 22% of the seeds produced whole seedlings. Three-month-old seedlings were acclimatized for two months, resulting in an 80% survival rate and improved physiological characteristics. Callus induction was initiated from leaf explants obtained from seedlings and plant growth regulators (PGRs), with and without light exposure. Calli extracts were obtained using methanol; phenolic compound and flavonoid quantification were performed, and the chemical profile was determined by nuclear magnetic resonance (1H NMR). For comparison, methanol extract from S. brasiliensis leaves collected in Brazilian Cerrado were also analyzed. Antioxidant activity was assessed using the 2,2-diphenyl-1-picryl-hydrazyl method and the ferric-reducing antioxidant power assay. All samples exhibited antioxidant activity according to the methods employed. Furthermore, 1H NMR revealed metabolic profile changes in the calli extracts compared to the leaf extract. This study yielded promising results, suggesting that in vitro culture could improve productivity and conserve the species, although changes were observed in the metabolic profile of S. brasiliensis. Full article
Show Figures

Figure 1

20 pages, 2846 KiB  
Article
Full-Tree Biomass, Root Carbon Stock, and Nutrient Use Efficiency Across Ages in Eucalyptus Stands Under Seedling and Coppice Systems
by Gardenia Gonçalves de Oliveira, Túlio Barroso Queiroz, Bronson P. Bullock, José Carlos Coelho, Rodrigo Eiji Hakamada and Iraê Amaral Guerrini
Plants 2025, 14(9), 1382; https://doi.org/10.3390/plants14091382 - 3 May 2025
Viewed by 305
Abstract
The establishment of forest stands after harvest requires an understanding of biomass and nutrient dynamics to support management decisions and ensure system productivity and sustainability. This study evaluated biomass and nutrient accumulation in Eucalyptus urophylla aged 2 to 5 years under planting and [...] Read more.
The establishment of forest stands after harvest requires an understanding of biomass and nutrient dynamics to support management decisions and ensure system productivity and sustainability. This study evaluated biomass and nutrient accumulation in Eucalyptus urophylla aged 2 to 5 years under planting and coppicing systems. A total of 1152 trees were assessed across eight treatments, combining four ages and two management systems. Aboveground biomass was estimated using 10 trees per treatment, while root biomass was assessed in 8 trees at ages 3 and 5. Nutrient concentrations were determined using three intermediate-diameter class trees per treatment. Biomass data were analyzed using Tukey’s test (5%), and biomass expansion factors (BEF) and the root-to-shoot ratio (R) were used to estimate root carbon. Total biomass was higher in the coppicing system (153 Mg ha−1) compared to the planting system (119 Mg ha−1), with greater root accumulation and carbon sequestration (≈17.2 t C ha−1). The biological use coefficient (BUC) increased with age, except for Mn. Planted stands showed higher BUC for N and P, while coppiced stands were more efficient in Mg use. These results reinforce the need for distinct fertilization strategies for each system, aiming at productivity, nutrient efficiency, and carbon stock enhancement. Full article
Show Figures

Graphical abstract

16 pages, 3991 KiB  
Article
Non-Target Metabolomics Reveals Changes in Metabolite Profiles in Distant Hybrid Incompatibility Between Paeonia sect. Moutan and P. lactiflora
by Wenqing Jia, Yingyue Yu, Zhaorong Mi, Yan Zhang, Guodong Zhao, Yingzi Guo, Zheng Wang, Erqiang Wang and Songlin He
Plants 2025, 14(9), 1381; https://doi.org/10.3390/plants14091381 - 3 May 2025
Viewed by 253
Abstract
Peonies are globally renowned ornamental plants, and distant hybridization is a key method for breeding new varieties, though it often faces cross-incompatibility challenges. The metabolic mechanisms underlying the crossing barrier between tree peony (Paeonia sect. Moutan) and herbaceous peony ( [...] Read more.
Peonies are globally renowned ornamental plants, and distant hybridization is a key method for breeding new varieties, though it often faces cross-incompatibility challenges. The metabolic mechanisms underlying the crossing barrier between tree peony (Paeonia sect. Moutan) and herbaceous peony (P. lactiflora) remain unclear. To identify key metabolites involved in cross-incompatibility, we performed a cross between P. ostii ‘Fengdanbai’ (female parent) and P. lactiflora ‘Red Sara’ (male parent) and analyzed metabolites in the stigma 12 h after pollination using UPLC-MS. We identified 1242 differential metabolites, with 433 up-regulated and 809 down-regulated, including sugars, nucleotides, amino acids, lipids, organic acids, benzenoids, flavonoids, and alkaloids. Most differential metabolites were down-regulated in hybrid stigmas, potentially affecting pollen germination and pollen tube growth. Cross-pollinated stigma exhibited lower levels of high-energy nutrients (such as amino acids, nucleotides, and tricarboxylic acid cycle metabolites) compared to self-pollinated stigma, which suggests that energy deficiency is a contributing factor to the crossing barrier. Additionally, cross-pollination significantly impacted KEGG pathways such as nucleotide metabolism, purine metabolism, and vitamin B6 metabolism, with most metabolites in these pathways being down-regulated. These findings provide new insights into the metabolic basis of cross-incompatibility between tree and herbaceous peonies, offering a foundation for overcoming hybridization barriers in peony breeding. Full article
(This article belongs to the Special Issue Omics in Horticultural Crops)
Show Figures

Figure 1

24 pages, 7743 KiB  
Article
Physiological Response of Olive Trees Under Xylella fastidiosa Infection and Thymol Therapy Monitored Through Advanced IoT Sensors
by Claudia Cagnarini, Paolo De Angelis, Dario Liberati, Riccardo Valentini, Valentina Falanga, Franco Valentini, Crescenza Dongiovanni, Mauro Carrieri and Maria Vincenza Chiriacò
Plants 2025, 14(9), 1380; https://doi.org/10.3390/plants14091380 - 2 May 2025
Viewed by 363
Abstract
Since its first detection in 2013, Xylella fastidiosa subsp. pauca (Xfp) has caused a devastating Olive Quick Decline Syndrome (OQDS) outbreak in Southern Italy. Effective disease surveillance and treatment strategies are urgently needed to mitigate its impact. This study investigates the [...] Read more.
Since its first detection in 2013, Xylella fastidiosa subsp. pauca (Xfp) has caused a devastating Olive Quick Decline Syndrome (OQDS) outbreak in Southern Italy. Effective disease surveillance and treatment strategies are urgently needed to mitigate its impact. This study investigates the short-term (1.5 years) effects of thymol-based treatments on infected olive trees of the susceptible cultivar Cellina di Nardò in two orchards in Salento, Apulia region. Twenty trees per trial received a 3% thymol solution either alone or encapsulated in a cellulose nanoparticle carrier. Over two years, sap flux density and canopy-transmitted solar radiation were monitored using TreeTalker sensors, and spectral greenness indices were calculated. Xfp cell concentrations in plant tissues were quantified via qPCR. Neither thymol treatment halted disease progression nor significantly reduced bacterial load, though the Xfp cell concentration reduction increased over time in the preventive trial. Symptomatic trees exhibited increased sap flux density, though the treatment mitigated this effect in the curative trial. Greenness indices remained lower in infected trees, but the response to symptom severity was delayed. These findings underscore the need for longer-term studies, investigation of synergistic effects with other phytocompounds, and integration of real-time sensor data into adaptive disease management protocols. Full article
Show Figures

Graphical abstract

18 pages, 2013 KiB  
Article
Tessaria absinthioides (Hook. & Arn.) DC. Determines Inhibition of Tumor Growth and Metastasis In Vitro and In Vivo in Murine Melanoma
by Lourdes Inés Pascual, Sebastián Real, Arianna Sosa-Lochedino, Fiorella Campo Verde Arbocco, María Belén Hapon and Carlos Gamarra-Luques
Plants 2025, 14(9), 1379; https://doi.org/10.3390/plants14091379 - 2 May 2025
Viewed by 371
Abstract
Melanoma is one of the deathliest cancers worldwide and its incidence is reaching epidemic proportions. It is characterized by intrinsic chemo-resistance, low response rates to treatment and high metastatic potential. Because of this, new therapeutic options are permanently required. Tessaria absinthioides (Hook. & [...] Read more.
Melanoma is one of the deathliest cancers worldwide and its incidence is reaching epidemic proportions. It is characterized by intrinsic chemo-resistance, low response rates to treatment and high metastatic potential. Because of this, new therapeutic options are permanently required. Tessaria absinthioides (Hook. & Arn.) DC. is a traditional medicinal plant, with antioxidant, selective cytotoxicity and anti-colorectal cancer evidence-based properties. This study aims to demonstrate the antitumoral and antimetastatic effects of T. absinthioides decoction (DETa), correlating in vitro and in vivo activities in a murine melanoma model. DETa was assayed on B16F0 murine non-metastatic cells to determine cytotoxicity and clonogenicity; while, in the B16F10 metastatic siblings, adhesion, wound healing migration and Boyden chamber invasion were studied. The ex vivo intestinal-sac model was used to quantify DETa bioavailability. Meanwhile, in C57BL6/wt mice, DETa was orally administered to evaluate its antitumoral and antimetastatic activities. DETa induced cytotoxicity in a dose- and time-dependent manner, affecting the long-term clonogenic survival, as well as the processes of adhesion and migration. Then, the intestinal absorption of DETa phenolics was proven, while the systemic anti-tumoral and anti-metastatic activities of DETa were confirmed. Results demonstrated that DETa has antimelanoma activity promoting this botanical compound as a relevant agent for cancer research and treatment. Full article
(This article belongs to the Special Issue Toxicity and Anticancer Activities of Natural Products from Plants)
Show Figures

Graphical abstract

12 pages, 2485 KiB  
Communication
Effect of Photosynthetic Photon Flux Density on Paprika Seedling Growth Using Rockwool Block
by Jong Hyang Bae and Baul Ko
Plants 2025, 14(9), 1378; https://doi.org/10.3390/plants14091378 - 1 May 2025
Viewed by 278
Abstract
This study was conducted to investigate the effects of different levels of photosynthetic photon flux density on the growth of paprika seedlings cultivated in rockwool blocks. The seedling height and internode length were significantly shorter in LED light treatments than in sunlight, and [...] Read more.
This study was conducted to investigate the effects of different levels of photosynthetic photon flux density on the growth of paprika seedlings cultivated in rockwool blocks. The seedling height and internode length were significantly shorter in LED light treatments than in sunlight, and there was no difference among the PPFDs of LED light. On the other hand, leaf number and area of seedlings were significantly higher and wider, respectively, in sunlight than in 150 μmol·m−2·s−1 treatments. The influence levels on the dry weight were 20% lighter than those on the fresh weight. The higher the PPFD of LED light, the better the seedling quality. The leaf area and dry weight of seedlings in 200 μmol·m−2·s−1 treatments were 582 cm2/plant and 2.01 g/plant, respectively, higher by 35% and 70%, respectively, than in 100 μmol·m−2·s−1 treatments. The leaf area (Y1) had a significant dependence on PPFD (x), as Y1 = 75.3x + 368 (R2 = 0.9307 **). Also, the dry weight (Y2) of the seedlings showed a linear regression equation, as Y2 = 0.415x + 0.811 (R2 = 0.9674 **). The chlorophyll content based on the SPAD value significantly increased as the light intensity increased to 50 μmol·m−2·s−1. When the results were synthesized, the seedling quality was lower in the natural light conditions than in the 150 μmol·m−2·s−1 treatments. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

33 pages, 2775 KiB  
Article
Phytochemical Profile and Biological Activities of Rtanj’s Hypericum perforatum Infusion Tea and Methanolic Extracts: Insights from LC-MS/MS and HPTLC–Bioautography
by Sofija Kilibarda, Marko D. Jović, Danijel D. Milinčić, Sandra Vuković, Jelena Đ. Trifković, Mirjana B. Pešić and Aleksandar Ž. Kostić
Plants 2025, 14(9), 1377; https://doi.org/10.3390/plants14091377 - 1 May 2025
Viewed by 443
Abstract
This study aimed to examine wild-growing Hypericum perforatum L. tea (Hyperici herba) collected from Rtanj Mountain (Serbia). This research includes the following approaches: phytochemical and antioxidant characterization of H. perforatum infusion tea to determine its realistic composition (What do we consume [...] Read more.
This study aimed to examine wild-growing Hypericum perforatum L. tea (Hyperici herba) collected from Rtanj Mountain (Serbia). This research includes the following approaches: phytochemical and antioxidant characterization of H. perforatum infusion tea to determine its realistic composition (What do we consume when drinking the tea?), as well as a detailed examination of methanol(ic) extracts as the optimal extraction system. Due to the broad spectrum of both polar and nonpolar metabolites, 80% methanolic and pure methanol extracts were prepared for ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC Q-ToF) characterization through untargeted metabolomics analysis. Given the high diversity of compounds identified, the 80% methanolic extract was selected for further antioxidant examination and bioautographic characterization, including an antimicrobial activity assessment. UHPLC Q-ToF analysis identified 35 phenolics in the methanolic extract, compared to 25 metabolites in the infusion tea. The main differences were observed in flavonol/flavan-3-ol aglycones, xantones, and coumestans, which are more nonpolar compounds found only in the methanol(ic) system. Notably, specific H. perforatum metabolites were entirely absent in the infusion tea. Specifically, pseudohypericin, pseudoprotohypricin, and adhyperfirin were detected in the pure methanol extract, whereas hyperfirin was present in both methanol(ic) extracts. Additionally, eight furano-polycyclic polyprenylated acilphloroglucinols (FPPAPs) were identified in the methanol(ic) extracts as possible products of the thermal degradation and/or oxidation of hypericin/hyperforin. Both the infusion tea and methanolic extracts exhibited excellent antioxidant properties, with variations depending on the applied assay. High-performance thin-layer chromatography (HPTLC) analysis also confirmed the presence of a wide spectrum of phytochemical classes. Bioautography confirmed a promising activity of methanolic extracts against both Staphylococcus aureus and Klebsiella pneumoniae. Full article
Show Figures

Figure 1

17 pages, 2810 KiB  
Article
The Involvement of Glycerophospholipids in Susceptibility of Maize to Gibberella Root Rot Revealed by Comparative Metabolomics and Mass Spectrometry Imaging Joint Analysis
by Qing Wang, Zi’an Zhao, Xin Li and Xiquan Gao
Plants 2025, 14(9), 1376; https://doi.org/10.3390/plants14091376 - 1 May 2025
Viewed by 319
Abstract
Gibberella root rot (GRR), caused by Fusarium graminearum, is one of the major threats to maize production. However, the mechanism underlying maize’s response to GRR is not fully understood. Multi-omics study incorporating metabolomics reveals insights into maize–pathogen interactions. Using metabolomics and mass [...] Read more.
Gibberella root rot (GRR), caused by Fusarium graminearum, is one of the major threats to maize production. However, the mechanism underlying maize’s response to GRR is not fully understood. Multi-omics study incorporating metabolomics reveals insights into maize–pathogen interactions. Using metabolomics and mass spectrometry imaging (MSI), maize inbred lines with GRR resistance (W438) and susceptibility (335M) were deployed to characterize specific metabolites associated with GRR. Analysis of significantly altered metabolites suggested that glycerophospholipid metabolism was highly associated with GRR resistance or susceptibility. Furthermore, the distinct accumulation of lysophosphatidylethanolamine (lysoPE) and lysophosphatidylcholine (lysoPC) from glycerophospholipid metabolism, along with the significant up-regulation of phospholipase (PLA) gene in the susceptible line, suggested that high levels of lysoPC and lysoPE contributed to GRR susceptibility. Meanwhile, genes encoding lysophospholipase (LPLA), the detoxification enzymes of lysoPC, were significantly activated in both genotypes. However, the significantly higher expression of LPLAs in the resistant line corresponded to a significant increase in the content of non-toxic sn-glycero-3-phosphocholine, whereas this increase was not observed in the susceptible line. MSI analysis revealed the involvement of other potential phospholipids in GRR susceptibility. Taken together, maintaining an appropriate concentration of lysophospholipids is crucial for their role in the signaling pathway that triggers GRR resistance without causing damage to maize roots. Full article
(This article belongs to the Special Issue Identification of Resistance of Maize Germplasm Resources to Disease)
Show Figures

Figure 1

14 pages, 6410 KiB  
Article
Phytoplankton Communities in the Eastern Tropical Pacific Ocean off Mexico and the Southern Gulf of California During the Strong El Niño of 2023/24
by María Adela Monreal-Gómez, Ligia Pérez-Cruz, Elizabeth Durán-Campos, David Alberto Salas-de-León, Carlos Mauricio Torres-Martínez and Erik Coria-Monter
Plants 2025, 14(9), 1375; https://doi.org/10.3390/plants14091375 - 1 May 2025
Viewed by 301
Abstract
This paper analyzes phytoplankton communities in the Eastern Tropical Pacific Ocean off Mexico (ETPOM) and the Southern Gulf of California (SGC) during the strong El Niño event of 2023/24. A multidisciplinary research cruise was conducted in the winter of 2024, during which high-resolution [...] Read more.
This paper analyzes phytoplankton communities in the Eastern Tropical Pacific Ocean off Mexico (ETPOM) and the Southern Gulf of California (SGC) during the strong El Niño event of 2023/24. A multidisciplinary research cruise was conducted in the winter of 2024, during which high-resolution hydrographic data and water samples for phytoplankton cell determinations were collected at 33 sites. Additionally, satellite data were obtained to evaluate sea surface temperature and chlorophyll-a levels. A total of 269 phytoplankton species were identified, comprising one hundred and fifty diatoms, one hundred and twelve dinoflagellates, five silicoflagellates, one ciliate and one cyanobacteria. The dominant species included the diatom Pseudo-nitzschia pseudodelicatissima, the dinoflagellate Gyrodinium fusiforme, the silicoflagellate Octactis octonaria, and the ciliate Mesodinium rubrum. The cyanobacterium Trichodesmium hildebrandtii was also identified. In terms of total abundances, diatoms were the most prevalent, with 224,900 cells L−1, followed by dinoflagellates at 104,520 cells L−1, ciliates at 20,980 cells L−1, cyanobacteria at 1760 cells L−1, and silicoflagellates at 1500 cells L−1. Notably, interesting differences emerged in species richness and abundance when comparing both regions. These results enhance our understanding of phytoplankton dynamics associated with strong El Niño events. The ETPOM remains a region that requires further monitoring through in situ observations. Full article
(This article belongs to the Special Issue Phytoplankton Community Structure and Succession)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop