Physiological and Genetic Mechanisms of Abiotic Stress Tolerance in Crops, Third Edition

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Crop Physiology and Crop Production".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 2844

Special Issue Editors

China National Rice Research Institute, Hangzhou 310006, China
Interests: abiotic stress tolerance; GWAS; rice molecular breeding
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
China National Rice Research Institute, Hangzhou 310006, China
Interests: crop abiotic stress resistance; crop nutrient utilization; rice breeding
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Agronomy, Hunan Agricultural University, Changsha 410128, China
Interests: crop biotechnology; genomics; molecular mechanism of crop salt tolerance; ion transporters
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Abiotic stress caused by either natural or human activities has become a great threat to sustainable agricultural production in the world, such as drought, salinity, high or low temperature, nutrient deficiency, and heavy metal stresses. It is a big challenge to produce enough crop food to feed the growing global population. Abiotic stresses seriously affect crop growth and development, eventually leading to yield loss. Under abiotic stress condition, crops may suffer from osmotic and oxidative stress, photosynthetic and metabolic damage, nutrient imbalance, and ion toxicity. To deal with these stresses, crops have developed a series of tolerance mechanisms, including osmotic adjustment through compatible solutes in the cytoplasm, reactive oxygen species (ROS) scavenging system through anti-oxidative enzymes, and nutrient homeostasis through membrane channels and transporters. However, the progress in developing tolerant crops is significantly hampered by the complexity of the physiological and genetic mechanisms of abiotic stress tolerance.

Dr. Peng Zhang
Dr. Hanhua Tong
Prof. Dr. Dezhi Wu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • crop physiology
  • gene mining
  • genetic regulation
  • metabolomics
  • molecular response
  • proteomics
  • transcriptomics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 1108 KiB  
Article
Effects of Modified Biochar on Growth, Yield, and Quality of Brassica chinensis L. in Cadmium Contaminated Soils
by Guojun Pan, Shufang Geng, Liangliang Wang, Jincheng Xing, Guangping Fan, Yan Gao, Xin Lu and Zhenhua Zhang
Plants 2025, 14(4), 524; https://doi.org/10.3390/plants14040524 - 8 Feb 2025
Cited by 1 | Viewed by 879
Abstract
Cadmium (Cd) pollution in farmland soil leads to excessive Cd in vegetables, which can be transferred to humans through the food chain, posing a significant threat to human health, and requires urgent measures to combat it. Modified biochar may have the potential to [...] Read more.
Cadmium (Cd) pollution in farmland soil leads to excessive Cd in vegetables, which can be transferred to humans through the food chain, posing a significant threat to human health, and requires urgent measures to combat it. Modified biochar may have the potential to remediate Cd pollution in farmland soils. In this experiment, bulk biochar (YC) derived from reed straw or modified biochar by ball milling (Q) either alone or combined with a combination of several passivation agents {potassium hydroxide (K), attapulgite (A), calcium magnesium phosphate fertilizer (M), and polyacrylamide (P)} was applied to soils polluted with Cd, to investigate the growth, yield, and quality of pakchoi (Brassica chinensis L.). The results showed that bulk biochar (YC) provided pakchoi with plenty of nitrogen, phosphorus, and potassium, while passivation agents enhance macronutrient accumulation. Compared to YC, modified biochar improved pakchoi yields and nutritional quality. Among them, concentrations of nitrates in pakchoi significantly decreased by 51.8% and 51.0%, while vitamin C levels increased by 29.6% and 19.0%, respectively, in QKAMP and QKAM treatments. The contents of Cd in pakchoi significantly decreased by 21.6% and 18.6%, respectively, in QKAMP and QKAM treatments. The implementation of QKAMP led to the cadmium contents in edible vegetables being lower than the maximum stipulated content as defined by the national standard, but QKAM failed to accomplish it. In conclusion, QKAMP effectively reduced the bioavailability of Cd in the middle to slightly Cd-polluted alkaline soils, making it a suitable soil amendment to improve the yield and quality and mitigate Cd accumulation in vegetables. Full article
Show Figures

Figure 1

18 pages, 7504 KiB  
Article
Effects of Nitrogen Fertilizer Types and Planting Density on the Yield and Nitrogen Use Efficiency of Salt-Tolerant Rice Under Salt Stress Conditions
by Tingcheng Zhao, Jianbo Wang, Rongyi Li, Pengfei Zhang, Xiayu Guo, Yucheng Qi, Yusheng Li, Shenghai Cheng, Junchao Ji, Aibin He and Zhiyong Ai
Plants 2025, 14(4), 501; https://doi.org/10.3390/plants14040501 - 7 Feb 2025
Viewed by 857
Abstract
Soil salinization poses a serious threat to global food security, as high Na+ contents in soils hinder nitrogen use efficiency (NUE), affecting the growth and yield of crop plants. The present study aims to explore the effects of different nitrogen fertilizer types [...] Read more.
Soil salinization poses a serious threat to global food security, as high Na+ contents in soils hinder nitrogen use efficiency (NUE), affecting the growth and yield of crop plants. The present study aims to explore the effects of different nitrogen fertilizer types viz., NO3 (N1) and NH4+ (N2) and planting densities, viz., D1: 30 × 10 cm, D2: 20 × 20 cm, and D3: 30 × 20 cm, on growth and development, nitrogen absorption and utilization, and yield formation. The salt-tolerant rice variety ‘Jingliangyou 3261’ was exposed to 0.3% salt irrigation water. Results revealed that N2 substantially improved the rice yield by increasing the number of effective panicles and the rate of grain-setting compared to N1. In addition, the N2 also increased leaf chlorophyll content, dry matter accumulation, antioxidant enzyme activity such as superoxide dismutase, peroxidase, and catalase activity and reduced the content of malondialdehyde. In comparison with N1, the N2 treatment resulted in an increase of 12.21%, 31.89%, and 37.53% in total nitrogen accumulation, nitrogen recovery efficiency (NRE), and nitrogen agronomic efficiency (NAE), respectively. This increase can be attributed to enhanced leaf nitrogen metabolic enzyme activity, including nitrate reductase and glutamine synthetase, and a more robust root system. Under N1 and N2 conditions, compared to D3, D1 resulted in an increase in the number of tillers but decreased the percentage of productive tillers, the grains per panicle, the grain-filling rate, and the thousand-grain weight, thereby reducing yield. Additionally, the D3 treatment also significantly improved NRE and NAE compared to the D1 treatment. Therefore, the rational selection of nitrogen fertilizer type (N2) and planting density (D3) is crucial for improving the yield and nitrogen use efficiency of salt-tolerant rice. This would broaden the scope of agricultural solutions for saline soils, potentially improving food security in regions where soil salinization is a widespread issue. Full article
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 2582 KiB  
Review
Recent Advances in Transcriptome Analysis Within the Realm of Low Arsenic Rice Breeding
by Guanrong Huang, Guoping Yu, Huijuan Li, Haipeng Yu, Zengying Huang, Lu Tang, Pengfei Yang, Zhengzheng Zhong, Guocheng Hu, Peng Zhang and Hanhua Tong
Plants 2025, 14(4), 606; https://doi.org/10.3390/plants14040606 - 17 Feb 2025
Viewed by 797
Abstract
Arsenic (As), a toxic element, is widely distributed in soil and irrigation water. Rice (Oryza sativa L.), the staple food in Southern China, exhibits a greater propensity for As uptake compared to other crops. Arsenic pollution in paddy fields not only impairs [...] Read more.
Arsenic (As), a toxic element, is widely distributed in soil and irrigation water. Rice (Oryza sativa L.), the staple food in Southern China, exhibits a greater propensity for As uptake compared to other crops. Arsenic pollution in paddy fields not only impairs rice growth but also poses a serious threat to food security and human health. Nevertheless, the molecular mechanism underlying the response to As toxicity has not been completely revealed until now. Transcriptome analysis represents a powerful tool for revealing the mechanisms conferring phenotype formation and is widely employed in crop breeding. Consequently, this review focuses on the recent advances in transcriptome analysis within the realm of low As breeding in rice. It particularly highlights the applications of transcriptome analysis in identifying genes responsive to As toxicity, revealing gene interaction regulatory modules and analyzing secondary metabolite biosynthesis pathways. Furthermore, the molecular mechanisms underlying rice As tolerance are updated, and the recent outcomes in low As breeding are summarized. Finally, the challenges associated with applying transcriptome analysis to low-As breeding are deliberated upon, and future research directions are envisioned, with the aim of providing references to expedite high-yield and low-arsenic breeding in rice. Full article
Show Figures

Figure 1

Back to TopTop