Previous Issue
Volume 15, June-1
 
 

Nanomaterials, Volume 15, Issue 12 (June-2 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
3 pages, 1686 KiB  
Correction
Correction: Khan et al. Influence of Zn+2 Doping on Ni-Based Nanoferrites; (Ni1−x ZnxFe2O4). Nanomaterials 2019, 9, 1024
by Sadaf Bashir Khan, Syed Irfan and Shern-Long Lee
Nanomaterials 2025, 15(12), 878; https://doi.org/10.3390/nano15120878 - 6 Jun 2025
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

9 pages, 2297 KiB  
Article
Surface Plasmon Resonance Sensors Using Optical Vortices
by George A. Bulzan and Daniela Dragoman
Nanomaterials 2025, 15(12), 877; https://doi.org/10.3390/nano15120877 - 6 Jun 2025
Abstract
This study investigates the change in both the angular position and width of the reflectance minimum of an SPR sensor in the Kretschmann configuration when optical vortices instead of plane waves are used for illumination. An analytical expression of the reflectance is obtained [...] Read more.
This study investigates the change in both the angular position and width of the reflectance minimum of an SPR sensor in the Kretschmann configuration when optical vortices instead of plane waves are used for illumination. An analytical expression of the reflectance is obtained for incident Laguerre–Gaussian beams, considering only the first-order approximation of the Fresnel reflection coefficient in a Taylor series. Numerical simulations reveal that the detection performance of SPR sensors is practically unaffected if optical vortices of this type are used as sources, even if the topological charges of the vortices are quite large. On the other hand, the use of optical vortices in SPR sensors could be very advantageous for positioning and manipulating analyte molecules on the surface of the sensor. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

26 pages, 6034 KiB  
Review
Progress and Challenges of Three-Dimensional/Two-Dimensional Bilayered Perovskite Solar Cells: A Critical Review
by Ashraful Hossain Howlader and Ashraf Uddin
Nanomaterials 2025, 15(12), 876; https://doi.org/10.3390/nano15120876 - 6 Jun 2025
Abstract
Three-dimensional/two-dimensional bilayered perovskite solar cells have recently become popular for ensuring high efficiency and promising long-term stability. The 3D/2D bilayered perovskite thin film is mainly used in regular (n-i-p)-type perovskite solar cells. In this review, our discussion also focuses on the regular kind [...] Read more.
Three-dimensional/two-dimensional bilayered perovskite solar cells have recently become popular for ensuring high efficiency and promising long-term stability. The 3D/2D bilayered perovskite thin film is mainly used in regular (n-i-p)-type perovskite solar cells. In this review, our discussion also focuses on the regular kind of perovskite solar cells. In a 3D/2D bilayered perovskite thin film, the 2D perovskite layer works as a capping layer on top of the 3D perovskite thin film. The 2D capping layer heals the surface and bulk defects of the 3D perovskite thin film. The 2D layer interfaces between the 3D perovskite and hole transport layers. The 2D layer also acts as a shield against moisture and heat. This layer also inhibits ion migration between layers (3D perovskite and back contact). This review lists and investigates different organic precursors deposited as a 2D capping layer on top of the 3D perovskite thin film to explore their impact on the solar cell’s efficiency and stability. The possible challenges and remedies in growing a 2D capping layer on top of the 3D perovskite thin film are also discussed. Full article
(This article belongs to the Special Issue Metal Halide Perovskites-Based Optoelectronics: From Lab to Fab)
Show Figures

Figure 1

13 pages, 4627 KiB  
Article
Boosting Photoresponse Performance and Stability of Photoelectrochemical Photodetectors by Chemical Bath Depositing Multilayer MoS2 on ZnO Electrode
by Jingyao Ma, Jiawei Wang, Xin Shi, Tianqi Sun and Pengpeng Dai
Nanomaterials 2025, 15(12), 875; https://doi.org/10.3390/nano15120875 - 6 Jun 2025
Abstract
ZnO nanorods are promising nanomaterials for photoelectrochemical photodetectors (PEC PDs). However, the weak photocurrent density, delayed response, and low stability of ZnO are major drawbacks for their applications. To address these challenges, we integrated multilayer MoS2 nanosheets with ZnO nanorods using a [...] Read more.
ZnO nanorods are promising nanomaterials for photoelectrochemical photodetectors (PEC PDs). However, the weak photocurrent density, delayed response, and low stability of ZnO are major drawbacks for their applications. To address these challenges, we integrated multilayer MoS2 nanosheets with ZnO nanorods using a chemical bath deposition method. The resulting ZnO/MoS2 heterojunction achieved a photocurrent density of 1.02 mA/cm2 (~20 times higher than that of bare ZnO), ultrafast response times (90/150 ms), and 92% stability retention over 3600 s. These enhancements originated from suppressed charge recombination and accelerated water oxidation kinetics. Our work provides another possible energy-saving route toward developing high-efficiency and stable ZnO-based photoanodes for practical applications in PEC PDs. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop