Applications of Functional Nanomaterials in Biomedical Science

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Biology and Medicines".

Deadline for manuscript submissions: 5 December 2025 | Viewed by 5864

Special Issue Editors

Special Issue Information

Dear Colleagues,

In recent decades, many efforts have been focused on the discovery of various types of nanomaterials. In addition to basic research on the synthesis of nanoconstructs, the goal of such research has been to identify nanoparticles applicable in various fields, including technology (catalysis), medicine (drug delivery), etc. As a result of the increasing number of potential applications, the demand for novel nanomaterials is growing rapidly.

This Special Issue on “Applications of Functional Nanomaterials in Biomedical Science” aims to showcase the most recent advances in nanomaterials’ synthesis and characterization, as well as their technological applications. This Special Issue welcomes original research articles and reviews. Research areas may include all types of nanomaterials used in the development of medical applications, including, but not limited to, therapeutics (anticancer, antibacterial, toxicology, etc.), diagnostics (imaging, etc.), and nanodevices.

We look forward to receiving your contributions.

Prof. Dr. Goran Kaluđerović
Dr. Nebojša Pantelić
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomedical science
  • drug delivery
  • therapeutics
  • anticancer
  • antibacterial
  • toxicology
  • diagnostics
  • imaging
  • tissue engineering

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 918 KiB  
Article
TiO2 Nanoparticles Loaded with Polygonum cuspidatum Extract for Wound Healing Applications: Exploring Their Hemolytic, Antioxidant, Cytotoxic, and Antimicrobial Properties
by Gabriela Fletes-Vargas, Rogelio Rodríguez-Rodríguez, Natalha Vicentina Pinto, Kelly Cristina Kato, Guilherme Carneiro, Ana Paula Rodrigues, Helen Rodrigues-Martins and Hugo Espinosa-Andrews
Nanomaterials 2025, 15(12), 926; https://doi.org/10.3390/nano15120926 - 14 Jun 2025
Cited by 1 | Viewed by 599
Abstract
The dry roots of Polygonum cuspidatum contain resveratrol, a compound known for its antimicrobial and protective effects against oxidative stress, which is associated with impaired wound healing. In this study, titanium dioxide nanoparticles (TiO2NPs) were loaded with a P. cuspidatum extract [...] Read more.
The dry roots of Polygonum cuspidatum contain resveratrol, a compound known for its antimicrobial and protective effects against oxidative stress, which is associated with impaired wound healing. In this study, titanium dioxide nanoparticles (TiO2NPs) were loaded with a P. cuspidatum extract (TiO2-loaded extract NPs), and the resveratrol release profile, hemocompatibility, antioxidant, cytotoxic, and antimicrobial activities were evaluated. The results demonstrated that TiO2-loaded extract NPs exhibited antioxidant activity for DPPH (Inhibitory Concentration 50 (IC50) = 62.31 mg Trolox Equivalent (TE)/mL) and ABTS+ (IC50 = 4.8 mg TE/mL) assays, along with suitable hemocompatibility (3.02% at 10 mg/mL), in comparison with bulk TiO2 NPs. Additionally, temperature influenced the resveratrol release over time. The P. cuspidatum extract alone showed strong antibacterial activity, with a Minimal Inhibitory Concentration (MIC) of 5 µg/mL, TiO2-loaded extract NPs showed MIC values about 50 mg/mL, while bulk TiO2 NPs exhibited no antibacterial effect against the tested strains. In contrast, the P. cuspidatum extract, the TiO2-loaded extract NPs, and the bulk TiO2 NPs did not demonstrate antifungal activity against Candida albicans and C. glabrata. Moreover, TiO2-loaded extract NPs showed no cytotoxicity against the L-929 cell line at concentrations ranging from 1.5 to 150 µg/mL, unlike TiO2 NPs, which exhibited high cytotoxic concentrations between 9.4 and 300 µg/mL. These findings suggest that TiO2-loaded extract NPs effectively control the release of resveratrol and hold promises for applications in skin management and wound healing. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Figure 1

21 pages, 2746 KiB  
Article
(Alkyl-ω-ol)triphenyltin(IV)-Loaded Mesoporous Silica as Biocompatible Potential Neuroprotectors: Evaluation of Inhibitory Activity Against Enzymes Associated with the Pathophysiology of Alzheimer’s Disease
by Kristina Milisavljević, Žiko Milanović, Jovana Matić, Marko Antonijević, Vladimir Simić, Miljan Milošević, Marijana Kosanić and Goran N. Kaluđerović
Nanomaterials 2025, 15(12), 914; https://doi.org/10.3390/nano15120914 - 12 Jun 2025
Viewed by 576
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by synaptic dysfunction and neuronal loss due to the accumulation of amyloid-β peptides and tau proteins. In the pursuit of novel neuroprotective strategies, organotin(IV) compounds have garnered attention due to their unique chemical and [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by synaptic dysfunction and neuronal loss due to the accumulation of amyloid-β peptides and tau proteins. In the pursuit of novel neuroprotective strategies, organotin(IV) compounds have garnered attention due to their unique chemical and biological properties. This study evaluates the inhibitory potential of two triphenyltin(IV) derivatives—(3-propan-1-ol)triphenyltin(IV) (Ph3SnL1) and (4-butan-1-ol)triphenyltin(IV) (Ph3SnL2)—in both free form and immobilized into mesoporous silica SBA-15~Cl, targeting acetylcholinesterase (AChE), a key enzyme involved in AD pathophysiology. The SBA-15~Cl|Ph3SnL2 nanostructures exhibited the most potent inhibitory activity against AChE (IC50 = 0.58 μM), significantly outperforming the standard drug galantamine. Molecular docking, molecular dynamics simulations, and MM/GBSA and MM/PBSA analyses confirmed the stability and selectivity of interactions with AChE, primarily driven by hydrophobic interactions. Compound transport was also simulated using a multi-scale 3D mouse brain model to evaluate brain tissue distribution and blood–brain barrier permeability. The results highlight the strong potential of SBA-15-loaded organotin(IV) compounds as biocompatible neuroprotective agents for novel treatments of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Figure 1

21 pages, 8454 KiB  
Article
Multifunctional Nanoparticles as Radiosensitizers to Overcome Hypoxia-Associated Resistance in Cancer Radiotherapy
by Ming-Hong Chen, Hon-Pan Yiu, Yu-Chi Wang, Tse-Ying Liu and Chuan Li
Nanomaterials 2025, 15(1), 37; https://doi.org/10.3390/nano15010037 - 29 Dec 2024
Cited by 1 | Viewed by 1112
Abstract
Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl [...] Read more.
Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated. PFH-based oxygen carriers can augment oxygenation within tumor tissues, thereby mitigating radioresistance. Concurrently, oxygenation can cause deoxyribonucleic acid (DNA) damage via oxygen fixation and consequently suppress cancer cell proliferation. Moreover, these pH-sensitive nanodroplets allow higher cellular uptake with minimal cytotoxicity. Two distinctive mechanisms of SPIO@PFH-CHC nanodroplets were found in this study. The SPIO nanoparticles of the SPIO@PFH-CHC nanodroplets can generate hydroxyl radicals (HO) and other reactive oxygen species (ROS), which is vital to chemodynamic therapy (CDT) via the Fenton reaction. Meanwhile, the higher X-ray absorption among these nanodroplets leads to a local energy surge and causes more extensive deoxyribonucleic acid (DNA) damage via oxygen fixation. This study demonstrates that low cytotoxic SPIO@PFH-CHC nanodroplets can be an efficient radiosensitizer for radiation therapy. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Figure 1

Review

Jump to: Research

38 pages, 3471 KiB  
Review
State of Art and Perspective of Calcium Phosphate-Based Coatings Coupled with Bioactive Compounds for Orthopedic Applications
by Matteo Montesissa, Viviana Tommasini, Katia Rubini, Marco Boi, Nicola Baldini and Elisa Boanini
Nanomaterials 2025, 15(15), 1199; https://doi.org/10.3390/nano15151199 - 5 Aug 2025
Viewed by 281
Abstract
The aim of this review is to investigate the possibility of fabricating coatings functionalized with bioactive molecules. These coatings are interesting when applied to biomedical devices, particularly in the orthopedic field. In fact, the application of calcium phosphate-based coatings on the surface of [...] Read more.
The aim of this review is to investigate the possibility of fabricating coatings functionalized with bioactive molecules. These coatings are interesting when applied to biomedical devices, particularly in the orthopedic field. In fact, the application of calcium phosphate-based coatings on the surface of implanted devices is an effective strategy to increase their osteoinductive and osseointegrative properties. Several coating fabrication technologies are presented, including chemical deposition and physical methods. The application of bioactive molecules in combination with calcium phosphate coatings may improve their osteointegrative, antibacterial, and antitumor properties, therefore increasing the performance of implantable devices. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Figure 1

42 pages, 7458 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Viewed by 655
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

24 pages, 10552 KiB  
Review
Nano-Oncologic Vaccine for Boosting Cancer Immunotherapy: The Horizons in Cancer Treatment
by Chao Chen, Yue Xu, Hui Meng, Hongyi Bao, Yong Hu, Chunjian Li and Donglin Xia
Nanomaterials 2025, 15(2), 122; https://doi.org/10.3390/nano15020122 - 16 Jan 2025
Cited by 1 | Viewed by 2144
Abstract
Nano-oncologic vaccines represent a groundbreaking approach in the field of cancer immunotherapy, leveraging the unique advantages of nanotechnology to enhance the effectiveness and specificity of cancer treatments. These vaccines utilize nanoscale carriers to deliver tumor-associated antigens and immunostimulatory adjuvants, facilitating targeted immune activation [...] Read more.
Nano-oncologic vaccines represent a groundbreaking approach in the field of cancer immunotherapy, leveraging the unique advantages of nanotechnology to enhance the effectiveness and specificity of cancer treatments. These vaccines utilize nanoscale carriers to deliver tumor-associated antigens and immunostimulatory adjuvants, facilitating targeted immune activation and promoting robust antitumor responses. By improving antigen presentation and localizing immune activation within the tumor microenvironment, nano-oncologic vaccines can significantly increase the efficacy of cancer immunotherapy, particularly when combined with other treatment modalities. This review highlights the mechanisms through which nano-oncologic vaccines operate, their potential to overcome existing limitations in cancer treatment, and ongoing advancements in design. Additionally, it discusses the targeted delivery approach, such as EPR effects, pH response, ultrasonic response, and magnetic response. The combination therapy effects with photothermal therapy, radiotherapy, or immune checkpoint inhibitors are also discussed. Overall, nano-oncologic vaccines hold great promise for changing the landscape of cancer treatment and advancing personalized medicine, paving the way for more effective therapeutic strategies tailored to individual patient needs. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Figure 1

Back to TopTop