Advances and Innovations in Glancing Angle Deposition and Related Nanostructures

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: 27 October 2025 | Viewed by 1607

Special Issue Editors


E-Mail Website
Guest Editor
Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
Interests: nanostructure/thin film fabrication and characterization; metamaterials and plasmonic nanostructures; chemical and biological sensors; nano-photocatalysts; antimicrobial materials; nanomotors and their applications
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
Interests: Surface enhanced Raman spectroscopy; glancing angle deposition; Ag nanowire; nanoindentation; nano mechanics; biopotential

E-Mail Website
Guest Editor
School of Physical Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
Interests: thin films; nanostructured thin films; glancing angle deposition (GLAD); oblique angle deposition; hot water treatment; nanotechnology; energy storage/production; fuel cells; solar cells; batteries; supercapacitors; antibacterial surfaces; biomedical applications; water purification

Special Issue Information

Dear Colleagues,

Glancing Angle Deposition (GLAD) is a sophisticated nanofabrication technique that is used to design three-dimensional and other types of nanostructures. In GLAD, the substrate is tilted at a controlled angle relative to the incoming vapor or ion flux and can be rotated azimuthally. This unique deposition method, in combination with templates and/or deposition configurations, allows for the creation of complex and precisely engineered nanostructures with a wide range of morphologies. The resulting films exhibit novel mechanical, electrical, magnetic, optical, and chemical properties, making GLAD a versatile and powerful tool for broad applications in optical coatings, sensors, catalysis, microelectronics, photonic devices, biomedical devices, energy devices, MEMS/NEMS devices, etc. The focus of this Special Issue on Nanomaterials is to highlight the following fields:

  • Understanding GLAD growth mechanisms;
  • Novel structures and materials fabricated by GLAD;
  • The characterization of GLAD materials and structures;
  • The physics and chemical properties of GLAD structures;
  • Various applications of GLAD materials and structures.

We welcome original article and review submissions.

Prof. Dr. Yiping Zhao
Prof. Dr. Jitendra P. Singh
Prof. Dr. Tansel Karabacak
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oblique angle deposition
  • glancing angle deposition
  • nanostructures
  • thin films
  • nanoengineering
  • surface morphology
  • optical coatings
  • sensors
  • catalysis
  • microelectronics
  • photonic devices
  • biomedical applications
  • energy devices
  • MEMS/NEMS
  • vapor deposition
  • nanostructuring
  • controlled growth
  • substrate engineering
  • nanostructured surfaces
  • deposition techniques
  • thin-film growth
  • simulations
  • numerical calculations

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 10381 KiB  
Article
Photocatalytic Response of Flash-Lamp-Annealed Titanium Oxide Films Produced by Oblique-Angle Deposition
by Raúl Gago, Slawomir Prucnal, Francisco Javier Palomares, Leopoldo Álvarez-Fraga, Ana Castellanos-Aliaga and David G. Calatayud
Nanomaterials 2025, 15(9), 662; https://doi.org/10.3390/nano15090662 (registering DOI) - 26 Apr 2025
Viewed by 85
Abstract
We report the photocatalytic (PC) response of titanium oxide (TiOx) films grown by reactive DC magnetron sputtering under oblique-angle-deposition (OAD) and subjected to post-deposition flash-lamp-annealing (FLA). Under ballistic growth conditions, OAD yields TiOx films with either compact or inclined columnar [...] Read more.
We report the photocatalytic (PC) response of titanium oxide (TiOx) films grown by reactive DC magnetron sputtering under oblique-angle-deposition (OAD) and subjected to post-deposition flash-lamp-annealing (FLA). Under ballistic growth conditions, OAD yields TiOx films with either compact or inclined columnar structure as the deposition incidence angle (α) with respect to the substrate normal varies from zero to grazing. On the one hand, films produced for α ≤ 45° display a compact and opaque structure comprising the formation of nanocrystalline cubic titanium monoxide (c-TiO) phase. On the other hand, films grown at larger α (≥60°) display tilted columns with amorphous structure, yielding highly porous films and an increased transparency for α > 75°. For TiOx films grown at large α, FLA induces phase transformation to nanocrystalline anatase from the amorphous state. In contrast to as-grown samples, FLA samples display PC activity as assessed by bleaching of methyl orange dye. The best PC performance is attained for an intermediate situation (α = 60–75°) between compact and columnar structures. The obtained photoactivity is discussed in terms of the different microstructures obtained by OAD and posterior phase formation upon FLA. Full article
Show Figures

Graphical abstract

17 pages, 4524 KiB  
Article
Resultant Incidence Angle: A Unique Criterion for Controlling the Inclined Columnar Nanostructure of Metallic Films
by Aurélien Besnard, Hamidreza Gerami, Marina Raschetti and Nicolas Martin
Nanomaterials 2025, 15(8), 620; https://doi.org/10.3390/nano15080620 - 18 Apr 2025
Viewed by 172
Abstract
The original Glancing Angle Deposition (GLAD) technique was developed using the evaporation process, i.e., in high vacuum, with a nearly punctual source, and with the substrate aligned with the source axis. In this specific case, the substrate tilt angle can be assumed to [...] Read more.
The original Glancing Angle Deposition (GLAD) technique was developed using the evaporation process, i.e., in high vacuum, with a nearly punctual source, and with the substrate aligned with the source axis. In this specific case, the substrate tilt angle can be assumed to be equal to the impinging incidence angle of evaporated atoms. With the sputtering process, the deposition pressure is higher, sources are larger, and substrates are not intrinsically aligned with the source. As a result, deviations from the growth models applied for evaporation are reported, and the substrate tilt angle is no longer relevant for describing the impinging atomic flux. To control the inclined nanostructure of metallic films, a relevant description of the atomic flux is required, applicable across all deposition configurations. In this work, transport simulation is used to determine the resultant incidence angle, a unique criterion relevant to each specific deposition condition. The different representations of the flux are described and discussed, and some typical examples of the resultant angles are presented. Ten elements are investigated: three hcp transition metals (Ti, Zr, and Hf), six bcc transition metals (V, Nb, Ta, Cr, Mo, and W), and one fcc post-transition metal (Al). Full article
Show Figures

Graphical abstract

8 pages, 3953 KiB  
Article
Oblique Deposited Ultra-Thin Silver Films on Polymer Gratings for Sensitive SERS Performance
by Yi-Jun Jen and Meng-Jie Lin
Nanomaterials 2024, 14(23), 1871; https://doi.org/10.3390/nano14231871 - 22 Nov 2024
Viewed by 766
Abstract
A small amount of silver was obliquely deposited onto a polymer subwavelength grating to form a metasurface that comprised silver split-tubes. An ultra-thin silver film with a monitor-controlled thickness of 20 nm at the corner of each ridge of the grating provided the [...] Read more.
A small amount of silver was obliquely deposited onto a polymer subwavelength grating to form a metasurface that comprised silver split-tubes. An ultra-thin silver film with a monitor-controlled thickness of 20 nm at the corner of each ridge of the grating provided the most sensitive surface-enhanced Raman scattering (SERS) measurements. An excitation laser beam that was incident from the substrate provided similar or better SERS enhancement than did the general configuration with the laser beam incident directly on the surface of the nanostructure. Near-field simulations were conducted to model the localized electric field enhancement and to quantify the SERS performance, demonstrating the effectiveness of this novel deposition method. Full article
Show Figures

Figure 1

Back to TopTop