Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors
Abstract
:1. Introduction
2. Fundamentals of SPR and Plasmonic Nanoantennas
2.1. Fundamentals of Surface Plasmon Resonance (SPR)
2.2. Plasmonic Nanoantennas: Principles and Types
2.3. Integration of Plasmonic Nanoantennas into SPR Systems
2.4. Advantages of Graphene in Plasmonic Nanoantennas
3. Graphene-Based Plasmonic Nanoantennas in Biosensing
3.1. Graphene-Gold Hybrid Structures
3.2. Mechanisms of Single Enhancement and Sensitivity Improvement
3.3. Fabrication Techniques and Material Design
3.3.1. Chemical Synthesis and Surface Functionalization
3.3.2. Self-Assembly and 3D Structural Engineering
3.3.3. Lithographic Patterning and Photonic Integration
3.3.4. Data-Driven Design and Simulation
3.3.5. Graphene Integration with Non-Metallic Materials
4. Biosensing Applications of Graphene-Based Plasmonic Nanoantennas
4.1. Biomolecular Detection
4.2. Disease Biomarkers and Diagnostics
4.3. Pathogen and Virus Detection
4.4. Multiplexing and Point-of-Care (PoC)
4.5. Comparative Performance Analysis
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sangwan, A.; Jornet, J.M. Beamforming optical antenna arrays for nano-bio sensing and actuation applications. Nano Commun. Netw. 2021, 29, 100363. [Google Scholar] [CrossRef]
- Gopalan, K.K.; Paulillo, B.; Mackenzie, D.M.; Rodrigo, D.; Bareza, N.; Whelan, P.R.; Shivayogimath, A.; Pruneri, V. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Lett. 2018, 18, 5913–5918. [Google Scholar] [CrossRef]
- Huang, Y.H.; Ho, H.P.; Wu, S.Y.; Kong, S.K. Detecting phase shifts in surface plasmon resonance: A review. Adv. Opt. Technol. 2012, 2012, 471957. [Google Scholar] [CrossRef]
- Sirenko, Y.K.; Strom, S. Modern Theory of Gratings. Resonant Scattering: Analysis Techniques and Phenomena; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef]
- Malerba, M.; Alabastri, A.; Miele, E.; Zilio, P.; Patrini, M.; Bajoni, D.; Messina, G.C.; Dipalo, M.; Toma, A.; Proietti Zaccaria, R.; et al. 3D vertical nanostructures for enhanced infrared plasmonics. Sci. Rep. 2015, 5, 16436. [Google Scholar] [CrossRef]
- Venugopalan, P.; Kumar, S. Highly Sensitive Plasmonic Sensor with Au Bow Tie Nanoantennas on SiO2 Nanopillar Arrays. Chemosensors 2023, 11, 121. [Google Scholar] [CrossRef]
- Bludov, Y.V.; Peres, N.M.; Vasilevskiy, M.I. Excitation of localized graphene plasmons by a metallic slit. Phys. Rev. B 2020, 101, 075415. [Google Scholar] [CrossRef]
- Lassiter, J.B.; Sobhani, H.; Fan, J.A.; Kundu, J.; Capasso, F.; Nordlander, P.; Halas, N.J. Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability. Nano Lett. 2010, 10, 3184–3189. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; Bethge, J. Near-field dynamics at a metallic transmission grating with femtosecond illumination: A theoretical study. Phys. Rev. B 2018, 98, 085428. [Google Scholar] [CrossRef]
- Du, G.; Yu, F.; Lu, Y.; Kai, L.; Chen, C.; Yang, Q.; Hou, X.; Chen, F. Ultrafast Dynamics of Extraordinary Optical Transmission through Two-Slit Plasmonic Antenna. Nanomaterials 2023, 13, 2284. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Yuan, X.; Wang, Y.; Yue, X.; Wang, L.; Zhang, J.; Wang, J. Plasmonic Nanostructure Biosensors: A Review. Sensors 2023, 23, 8156. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, W.; Xing, F. Graphene optical biosensors. Int. J. Mol. Sci. 2019, 20, 2461. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, D.; Limaj, O.; Janner, D.; Etezadi, D.; García de Abajo, F.J.; Pruneri, V.; Altug, H. Mid-infrared plasmonic biosensing with graphene. Science 2015, 349, 165–168. [Google Scholar] [CrossRef]
- Thongrattanasiri, S.; Koppens, F.H.; García de Abajo, F.J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 2012, 108, 047401. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, Y.; Qiu, Y.; Wu, H.; Qin, W.; Liao, Y.; Yu, Q.; Cheng, H. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens. Bioelectron. 2020, 168, 112569. [Google Scholar] [CrossRef]
- Gao, Z.; Shi, Y.; Li, M.; Song, J.; Liu, X.; Wang, X.; Yang, F. Tunable extraordinary optical transmission with graphene in terahertz. ACS Omega 2021, 6, 29746–29751. [Google Scholar] [CrossRef]
- Low, T.P. Avouris, Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano 2014, 8, 1086–1101. [Google Scholar] [CrossRef]
- Daher, M.G.; Taya, S.A.; Almawgani, A.H.M.; Hindi, A.T.; Colak, I.; Patel, S.K. Optical biosensor based on surface plasmon resonance nanostructure for the detection of mycobacterium tuberculosis bacteria with ultra-high efficiency and detection accuracy. Plasmonics 2023, 18, 2195–2204. [Google Scholar] [CrossRef]
- Patel, S.K.; Alsalman, O.; Taya, S.A.; Parmar, J. Skin cancer detection using tunable graphene SPR optical sensor designed using circular ring resonator. Plasmonics 2023, 18, 2415–2426. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, S.; Kumar, A.; Sharan, P. Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection. Front. Mater. 2023, 9, 1106251. [Google Scholar] [CrossRef]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Capelli, D.; Scognamiglio, V.; Montanari, R. Surface plasmon resonance technology: Recent advances, applications and experimental cases. TrAC Trends Anal. Chem. 2023, 163, 117079. [Google Scholar] [CrossRef]
- Ritchie, R.H. Plasma losses by fast electrons in thin films. Phys. Rev. Lett. 1957, 106, 874. [Google Scholar] [CrossRef]
- Boardman, A.D. Electromagnetic Surface Modes; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1982. [Google Scholar]
- Habib, A.; Zhu, X.; Fong, S.; Yanik, A.A. Active plasmonic nanoantenna: An emerging toolbox from photonics to neuroscience. Nanophotonics 2020, 9, 3805–3829. [Google Scholar] [CrossRef]
- Xue, H.; Liu, K.; Sun, C. Plasmonics for biosensing. Materials 2019, 12, 1411. [Google Scholar] [CrossRef]
- Liu, N.; Tang, M.L.; Hentschel, M.; Giessen, H.; Alivisatos, A.P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636. [Google Scholar] [CrossRef]
- Fischer, H.; Martin, O.J. Engineering the optical response of plasmonic nanoantennas. Opt. Express 2008, 16, 9144–9154. [Google Scholar] [CrossRef]
- Koenderink, A.F.; Alù, A.; Polman, A. Nanophotonics: Shrinking light-based technology. Science 2015, 348, 516–521. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Li, S.; Ding, F.; Li, N.; Meng, S.; Li, R.; Qi, J.; Liu, Q.; Liu, G.L. Plasmonic nano-arrays for ultrasensitive bio-sensing. Nanophotonic 2018, 7, 1517–1531. [Google Scholar] [CrossRef]
- Mehta, B.; Benkstein, K.; Semancik, S.; Mona, E.Z. Gas sensing with bare and graphene-covered optical nano-antenna structures. Sci. Rep. 2016, 6, 21287. [Google Scholar] [CrossRef]
- McPhillips, J.; Murphy, A.; Jonsson, M.P.; Hendren, W.R.; Atkinson, R.; Höök, F.; Zayats, A.V.; Pollard, R.J. High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 2010, 4, 2210–2216. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Ren, Z.; Wei, J.; Liu, W.; Zhou, J.; Lee, C. Zero-bias long-wave infrared nanoantenna-mediated graphene photodetector for polarimetric and spectroscopic sensing. Adv. Opt. Mater. 2023, 11, 2202867. [Google Scholar] [CrossRef]
- Klinghammer, S.; Uhlig, T.; Patrovsky, F.; Bohm, M.; Schütt, J.; Pütz, N.; Baraban, L.; Eng, L.M.; Cuniberti, G. Plasmonic biosensor based on vertical arrays of gold nanoantennas. ACS Sens. 2018, 3, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, A.; Jornet, J.M. Joint communication and bio-sensing with plasmonic nano-systems to prevent the spread of infectious diseases in the internet of nano-bio things. IEEE J. Sel. Areas Commun. 2022, 40, 3271–3284. [Google Scholar] [CrossRef]
- Ye, M.; Crozier, K.B. Metasurface with metallic nanoantennas and graphene nanoslits for sensing of protein monolayers and submonolayers. Opt. Express. 2020, 28, 18479–18492. [Google Scholar] [CrossRef]
- Chen, K.; Guo, P.; Dao, T.D.; Shi, Q.L.; Satoshi, I.; Tadaaki, N.; Robert, P.H.C. Protein-functionalized indium-tin oxide nanoantenna arrays for selective infrared biosensing. Adv. Opt. Mater. 2017, 5, 1700091. [Google Scholar] [CrossRef]
- Zhou, H.; Ren, Z.; Li, D.; Xu, C.; Mu, X.; Lee, C. Dynamic construction of refractive index-dependent vibrations using surface plasmon-phonon polaritons. Nat. Commun. 2023, 14, 7316. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Xu, H.; Yang, Q.; Luo, Z.; Li, C.; Kai, L.; Meng, Y.; Zhang, J.; Liang, J.; et al. Microstructured liquid metal based embedded-type sensor array for curved pressure mapping. Adv. Sci. 2024, 12, 2413233. [Google Scholar] [CrossRef]
- Calderon, J.; Alvarez, J.; Martinez-Pastor, J.; Hill, D. Bowtie plasmonic nanoantenna arrays for polarimetric optical biosensing. Proc. SPIE Front. Biol. Detect. 2014, 8933, 89330I. [Google Scholar]
- Alavirad, M.; Roy, L.; Berini, P. Optimization of plasmonic nanodipole antenna arrays for sensing applications. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 7–14. [Google Scholar]
- Kvasnicka, P.; Homola, J. Optical sensor based on spectroscopy of localized surface plasmons on metallic nanoparticles: Sensitivity considerations. Biointerphases 2008, 3, FD4–FD11. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233–5237. [Google Scholar] [CrossRef]
- Zalyubovskiy, S.J.; Bogdanova, M.; Deinega, A.; Lozovik, Y.; Pris, A.D.; An, K.H.; Hall, W.P.; Potyrailo, R.A. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index changes and its comparison to conventional surface plasmon resonance sensor. J. Opt. Soc. Am. A 2012, 29, 994–1002. [Google Scholar] [CrossRef]
- Päivänranta, B.; Merbold, H.; Giannini, R.; Büchi, L.; Gorelick, S.; David, C.; Löffler, J.F.; Feurer, T.; Ekinci, Y. High Aspect Ratio Plasmonic Nanostructures for Sensing Applications. ACS Nano 2011, 5, 6374–6382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Jornet, J.M.; Akyildiz, I.F.; Wu, Z.P. Mutual coupling reduction for ultra-dense multi-band plasmonic nano-antenna arrays using graphene-based frequency selective surface. IEEE Access 2019, 7, 33214–33225. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O.; Ghosal, C.; Zahn, D.R.T.; Tegenkamp, C. Confinement Induced Strain Effects in Epitaxial Graphene. Carbon 2025, 234, 120002. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Tegenkamp, C. Exploring Graphene–Substrate Interactions: Plasmonic Excitation in Sn-Intercalated Epitaxial Graphene. 2D Mater. 2024, 11, 025013. [Google Scholar] [CrossRef]
- Kataria, S.; Wagner, P.; Passi, V.; Lemme, M.C. Chemical Vapor Deposited Graphene: From Synthesis to Applications. arXiv 2021, arXiv:2103.14880. [Google Scholar] [CrossRef]
- Kruskopf, M.; Pakdehi, D.M.; Pierz, K.; Wundrack, S.; Stosch, R.; Dziomba, T.; Götz, M.; Baringhaus, J.; Aprojanz, J.; Tegenkamp, C.; et al. Comeback of Epitaxial Graphene for Electronics: Large-Area Growth of Bilayer-Free Graphene on SiC. arXiv 2016, arXiv:1606.01709. [Google Scholar] [CrossRef]
- Cui, L.; Wang, J.; Sun, M. Graphene plasmon for optoelectronics. Rev. Phys. 2021, 6, 100054. [Google Scholar] [CrossRef]
- Li, K.; Stockman, M.I.; Bergman, D.J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 2003, 91, 227402. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Uddin, N.; Yang, Q.; Du, G.; Chen, F.; Li, H.; Hou, X. Active Tuning of Hybrid Plasmonics in Graphene-Covered Metallic Nano-trench. Tech. Phys. Lett. 2020, 46, 526–531. [Google Scholar] [CrossRef]
- Uddin, N.; Yang, Q.; Du, G.; Chen, F.; Lankanath, D.; Li, H.; Hou, X. Trapping Nanospheres within Graphene-Based Heterogeneous Plasmonic Nano-Trench. J. Opt. 2020, 22, 105002. [Google Scholar] [CrossRef]
- Dash, S.; Patnaik, A.; Kaushik, B.K. Performance enhancement of graphene plasmonic nanoantennas for THz communication. IET Microw. Antennas Propag. 2019, 13, 71–75. [Google Scholar]
- Huang, S.; Song, C.; Zhang, G.; Yan, H. Graphene plasmonics: Physics and potential applications. Nanophotonics 2017, 6, 1191–1204. [Google Scholar] [CrossRef]
- Kumar, C.; Raghuwanshi, S.K.; Kumar, S. Comprehensive characterization of a graphene-based plasmonic patch antenna for terahertz applications. In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVII; SPIE: Bellingham, WA, USA, 2024; Volume 12885, pp. 192–196. [Google Scholar]
- Rakheja, S.; Sengupta, P.; Shakiah, S.M. Design and circuit modeling of graphene plasmonic nanoantennas. IEEE Access 2020, 8, 129562–129575. [Google Scholar] [CrossRef]
- Ullah, Z.; Witjaksono, G.; Nawi, I.; Tansu, N.; Irfan Khattak, M.; Junaid, M. A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications. Sensors 2020, 20, 1401. [Google Scholar] [CrossRef]
- Yanase, Y.; Hiragun, T.; Ishii, K.; Kawaguchi, T.; Yanase, T.; Kawai, M.; Sakamoto, K.; Hide, M. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis. Sensors 2014, 14, 4948–4959. [Google Scholar] [CrossRef]
- Xu, R.; Wang, D.; Zhang, H.; Xie, N.; Lu, S.; Qu, K. Simultaneous Detection of Static and Dynamic Signals by a Flexible Sensor Based on 3D Graphene. Sensors 2017, 17, 1069. [Google Scholar] [CrossRef]
- Ravindran, N.; Kumar, S.; M, Y.; S, R.; C A, M.; S, N.T.; C K, S. Recent Advances in Surface Plasmon Resonance (SPR) Biosensors for Food Analysis: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 1055–1077. [Google Scholar] [CrossRef]
- Tene, T.; Bellucci, S.; Arias Arias, F.; Carrera Almendariz, L.S.; Flores Huilcapi, A.G.; Vacacela Gomez, C. Role of Graphene in Surface Plasmon Resonance-Based Biosensors. Sensors 2024, 24, 4670. [Google Scholar] [CrossRef] [PubMed]
- Negahdari, R.; Rafiee, E.; Kordrostami, Z. A Sensitive Biosensor Based on Plasmonic-Graphene Configuration for Detection of COVID-19 Virus. Plasmonics 2023, 18, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Schnell, M.; García-Etxarri, A.; Huber, A.J.; Crozier, K.; Aizpurua, J.; Hillenbrand, R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photonics 2009, 3, 287–291. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Q.; Zhang, C.; Tian, M.; Meng, Y.; Kai, L.; Hu, T.; Chen, S.; Chen, F. Bioinspired, Anti-Fogging and De-Icing Transparent Surfaces with Flexible Property. Appl. Mater. Today 2024, 39, 102325. [Google Scholar] [CrossRef]
- Wu, C.M.; Jian, Z.C.; Joe, S.F.; Chang, L.B. High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sens. Actuators B Chem. 2003, 92, 133–136. [Google Scholar] [CrossRef]
- Endo, T.; Yamamura, S.; Nagatani, N.; Morita, Y.; Takamura, Y.; Tamiya, E. Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction. Sci. Technol. Adv. Mater. 2005, 6, 491–500. [Google Scholar] [CrossRef]
- Benounis, M.; Jaffrezic, N.; Martelet, C.; Dumazet-Bonnamour, I.; Lamartine, R. High sensitive surface plasmon resonance (SPR) sensor based on modified calix (4) arene self-assembled monolayer for Cadmium ions detection. Mater. Trans. 2015, 56, 539–544. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Liu, Z.; Schlather, A.; Ajayan, P.M.; Koppens, F.H.; Nordlander, P.; Halas, N.J. Plasmon-Induced Doping of Graphene. ACS Nano 2012, 6, 10222–10228. [Google Scholar] [CrossRef]
- Kavitha, S.; Saxena, R.S.; Singh, A.; Kumari, K.; Aneesh, M. Hexagonal-shaped graphene quantum plasmonic nano-antenna sensor. Sci. Rep. 2023, 13, 19219. [Google Scholar] [CrossRef]
- Matsuo, Y.; Aoki, Y. Synthetic document images with diverse shadows for deep shadow removal networks. Sensors 2024, 24, 654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, Q.; Zhang, C.; Li, H.; Zhao, H.; Chen, F. A review of liquid metal-based flexible electronics achieved by ultrafast lasers. Appl. Mater. Today 2024, 41, 102505. [Google Scholar] [CrossRef]
- Butt, M.A. Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications, A Comprehensive Review. Biosensors 2025, 15, 35. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, Y.; Tan, S.P.H.; Bi, R.; Olivo, M. Olivo, Molecular fingerprint detection using Raman and infrared spectroscopy technologies for cancer detection: A progress review. Biosensors 2023, 13, 557. [Google Scholar] [CrossRef] [PubMed]
- Behrouzi, K.; Wu, Z.; Lin, L.; Kante, B. Single plasmonic exceptional point nanoantenna coupled to a photonic integrated circuit sensor. Photon. Res. 2025, 13, 632–641. [Google Scholar] [CrossRef]
- Pang, H.; Cho, H.J.; Likamwa, P.L. On-chip surface plasmon resonance sensor. J. Nanosci. Nanotechnol. 2008, 8, 4968–4971. [Google Scholar] [CrossRef] [PubMed]
- Shukla, N.; Chetri, P.; Boruah, R.; Gogoi, A.; Ahmed, G.A. Surface plasmon resonance biosensors based on Kretschmann configuration: Basic instrumentation and applications. In Recent Advances in Plasmonic Probes: Theory and Practice; Springer International Publishing: Cham, Switzerland, 2022; pp. 191–222. [Google Scholar]
- Ahn, H.; Song, H.; Choi, J.R.; Kim, K. A localized surface plasmon resonance sensor using double-metal-complex nanostructures and a review of recent approaches. Sensors 2017, 18, 98. [Google Scholar] [CrossRef]
- Li, L.; Wu, S.; Jin, M.; Zheng, Y.; Liu, Y. Graphene-enhanced dielectric-metal hybrid structure for high-performance LSPR sensing. Opt. Express 2024, 32, 37466–37479. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Y. Graphene-based hybrid films for plasmonic sensing. Nanoscale 2015, 7, 14561–14576. [Google Scholar] [CrossRef]
- Ansell, D. Graphene for Enhanced Metal Plasmonics. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2015. [Google Scholar]
- Lin, I.T. Optoelectronic Properties and Plasmonic Devices of Graphene. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2016. [Google Scholar]
- Fei, Z. Nano-plasmonic phenomena in graphene. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; p. 3127. [Google Scholar]
- Makeeva, G.S. Electronic Control of Directional Properties of Reconfigurable Plasmonic Graphene-Based Antenna Arrays with Frequency Scanning in the Mid-IR Range. Tech. Phys. Lett. 2024, 50, 408–418. [Google Scholar] [CrossRef]
- De Santana, E.P.; Stock, D.; Wang, Z.; Wang, K.T.; Abadal, S.; Lemme, M.; Bolívar, P.H. Tunable Plasmonic Graphene Antenna Array for Communications at THz Frequencies. In Proceedings of the 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, QC, Canada, 17–22 September 2023; pp. 1–2. [Google Scholar]
- Suessrneier, C.; Abadal, S.; Banszerus, L. Analysis of a plasmonic graphene antenna for microelectronic applications. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018; pp. 1–2. [Google Scholar]
- Dash, S.; Patnaik, A. Graphene plasmonic bowtie antenna for UWB THz application. In Proceedings of the 2018 Twenty Fourth National Conference on Communications (NCC), Hyderabad, India, 25–28 February 2018; pp. 1–4. [Google Scholar]
- Wang, X.; Meng, H.; Deng, S.; Lao, C. A nanoscale refractive index sensor based on periodically modulated graphene metamaterial. In Proceedings of the 17th International Conference on Optical Communications and Networks (ICOCN2018), Zhuhai, China, 16–19 November 2018; Volume 11048, pp. 580–585. [Google Scholar]
- Ogawa, S.; Fukushima, S.; Shimatani, M. Graphene plasmonics in sensor applications: A review. Sensors 2020, 20, 3563. [Google Scholar] [CrossRef]
- Zhang, J.; Hong, Q.; Zou, J.; He, Y.; Yuan, X.; Zhu, Z.; Qin, S. Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor. Micromachines 2020, 11, 268. [Google Scholar] [CrossRef]
- Hosseininejad, S.E.; Alarcón, E.; Komjani, N.; Abadal, S.; Lemme, M.C.; Bolívar, P.H.; Cabellos-Aparicio, A. Surveying of pure and hybrid plasmonic structures based on graphene for terahertz antenna. In Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication, New York, NY, USA, 28–30 September 2016; pp. 1–6. [Google Scholar]
- da Silva, W.C.; Paiva, R.R.; de Sousa, G.T.; da Costa, K.Q. Graphene-based terahertz plasmonic sensor. In Proceedings of the 2019 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aveiro, Portugal, 10–14 November 2019; pp. 1–3. [Google Scholar]
- Huang, Y.; Zhong, S.; Yao, H.; Cui, D. Tunable terahertz plasmonic sensor based on graphene/insulator stacks. IEEE Photonics J. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Ma, T.; Yao, B.; Zheng, Z.; Liu, Z.; Ma, W.; Chen, M.; Ren, W. Engineering graphene grain boundaries for plasmonic multi-excitation and hotspots. ACS Nano 2022, 16, 9041–9048. [Google Scholar] [CrossRef]
- Shameli, M.A.; Safian, R. Waveguide-fed graphene-based hybrid plasmonic patch antenna. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1604–1608. [Google Scholar]
- Rodriguez-Lopez, P.; Antezza, M. Graphene conductivity: Kubo model versus QFT-based model. arXiv 2024, arXiv:2403.02279. [Google Scholar]
- Ijeomah, G.; Samsuri, F.; Zawawi, M.A.M.; Obite, F. Carbon Nanotube-Graphene hybrid: Recent Synthesis Methodologies and Applications. Int. J. Eng. Technol. Sci. 2017, 4, 72–91. [Google Scholar] [CrossRef]
- Azevedo, J.D.; Queirós, T.; Camarneiro, F.; Lopes, M.J.; Freitas, J.; Purwidyantri, A.; Prakash, P.S.; Chandrasekhar, S.; Schmidt, T.-L.; Alpuim, P.; et al. Hybrid DNA Origami–Graphene Platform for Electrically-Gated Nanoscale Motion. Adv. Mater. Interfaces 2025, 12, 2400617. [Google Scholar] [CrossRef]
- Chen, C.S.; Li, M.H.; Lin, S.H.; Chiu, Y.S.; Chen, H.; Wang, D.Y.; Han, J. Broadband Photo/Gas Dual Sensors Enabled by ZnO Nanorod/Graphene Hybrid Structures. IEEE Sens. J. 2024, 24, 7482–7489. [Google Scholar] [CrossRef]
- Ahmad, Z.; Muljarov, E.A.; Oh, S.S. Extended frequency range of transverse-electric surface plasmon polaritons in graphene. Phys. Rev. B 2021, 104, 085426. [Google Scholar] [CrossRef]
- Du, G.; Lu, Y.; Lankanath, D.; Hou, X.; Chen, F. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas. Nanomaterials 2021, 11, 759. [Google Scholar] [CrossRef]
- Dash, S.; Patnaik, A. Dual band reconfigurable plasmonic antenna using bilayer graphene. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 921–922. [Google Scholar]
- Lin, Q.; Zhao, N.; Yao, K.; Jiang, Z.; Tian, B.; Shi, P.; Chen, F. Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation. Sensors 2018, 18, 4071. [Google Scholar] [CrossRef]
- Tamagnone, M.; Perruisseau-Carrier, J. Predicting input impedance and efficiency of graphene reconfigurable dipoles using a simple circuit model. arXiv 2014, arXiv:1402.1527. [Google Scholar] [CrossRef]
- Sharma, A.; Vishwakarma, D.K. Circularly polarized graphene antenna for THz applications. In Proceedings of the 2021 IEEE 18th India Council International Conference (INDICON), Guwahati, India, 19–21 December 2021; pp. 1–5. [Google Scholar]
- Biswas, R.V.; Arifin, F. Highly Directive Graphene Based Hybrid Plasmonic Nanoantenna for Terahertz Applications. AJSE 2022, 21, 54–62. [Google Scholar] [CrossRef]
- Kavitha, S.; Mishra, S.K.; Singh, A.; Singh, S.C. 4 × 4 graphene nano-antenna array for plasmonic sensing applications. Discov. Appl. Sci. 2024, 6, 465. [Google Scholar] [CrossRef]
- Alharbi, R.; Irannejad, M.; Yavuz, M. A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance. Sensors 2019, 19, 862. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Goswami, A.; Sil, M. Nanobiotechnology: Traditional re-interpreting personalized medicine through targeted therapies and regenerative solutions. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025. [Google Scholar] [CrossRef]
- Lankanath Karunasena, D.A.D.; Du, G.; Yang, Q.; Iqbal, G.; Uddin, N.; Hou, X.; Chen, F. Stable Plasmonic Nano-Trapping Using a Hybrid Gold-Graphene V-Trench with an Extremely Deep Potential Well. Opt. Mater. Express 2021, 11, 4107–4117. [Google Scholar] [CrossRef]
- Du, G.; Lu, Y.; Uddin, N.; Lankanath, D.; Hou, X.; Chen, F. Giant Electric Field Enhancement for Plasmonic Imaging via Graphene-Based Nanoslit Optical Superlens. Opt. Mater. Express 2020, 10, 3051–3059. [Google Scholar] [CrossRef]
- Tamagnone, M.; Gomez-Diaz, J.S.; Mosig, J.R.; Perruisseau-Carrier, J. Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl. Phys. Lett. 2012, 101, 214102. [Google Scholar] [CrossRef]
- George, W. Hanson. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 064302; [Google Scholar] [CrossRef]
- Kavitha, S.; Sairam, K.V.S.S.; Singh, A. Graphene plasmonic nano-antenna for terahertz communication. SN Appl. Sci. 2022, 4, 114. [Google Scholar] [CrossRef]
- Iyer, G.R.; Wang, J.; Wells, G.; Guruvenket, S.; Payne, S.; Bradley, M.; Borondics, F. Large-Area, Freestanding, Single-Layer Graphene–Gold: A Hybrid Plasmonic Nanostructure. ACS Nano 2014, 8, 6353–6362. [Google Scholar] [CrossRef]
- Du, Z.; Hu, B.; Cyril, P.; Liu, J.; Wang, Y. High sensitivity plasmonic sensor using hybrid structure of graphene stripe combined with gold gap-ring. Mater. Res. Express 2017, 4, 105013. [Google Scholar] [CrossRef]
- Du, G.; Lu, Y.; Dayantha, L.; Hou, X.; Chen, F. Molecular-Scale Plasmon Trapping via a Graphene-Hybridized Tip-Substrate System. Materials 2022, 15, 4627. [Google Scholar] [CrossRef]
- Bai, X.; Gou, X.; Zhang, J.; Liang, J.; Yang, L.; Wang, S.; Hou, X.; Chen, F. A Review of Smart Superwetting Surfaces Based on Shape-Memory Micro/Nanostructures. Small 2023, 19, 2206463. [Google Scholar] [CrossRef]
- García de Abajo, F.J. Graphene nanophotonics. Science 2013, 339, 917–918. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Kansara, V.; Patel, M. Exploring the role of graphene-metal hybrid nanomaterials as Raman signal enhancers in early-stage cancer detection. Talanta 2025, 283, 127185. [Google Scholar] [CrossRef]
- Zhu, X.; Shi, L.; Schmidt, M.S.; Boisen, A.; Hansen, O.; Zi, J.; Xiao, S.; Mortensen, N.A. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays. Nano Lett. 2013, 13, 4690–4696. [Google Scholar] [CrossRef]
- Kostadinova, T.; Politakos, N.; Trajcheva, A.; Blazevska-Gilev, J.; Tomovska, R. Effect of graphene characteristics on morphology and performance of composite noble metal-reduced graphene oxide SERS substrate. Molecules 2021, 26, 4775. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.; Li, H.; Yang, Q.; Wang, H.; Shan, C.; Zhang, J.; Hou, X.; Chen, F. Femtosecond Laser-Induced Supermetalphobicity for Design and Fabrication of Flexible Tactile Electronic Skin Sensor. ACS Appl. Mater. Interfaces 2022, 14, 38328–38338. [Google Scholar] [CrossRef]
- Ooi, K.J.; Tan, D.T. Nonlinear Graphene Plasmonics. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170433. [Google Scholar] [CrossRef]
- Cynthia, S.; Ahmed, R.; Islam, S.; Ali, K.; Hossain, M. Graphene based hyperbolic metamaterial for tunable mid-infrared biosensing. RSC Adv. 2021, 11, 7938–7945. [Google Scholar] [CrossRef]
- Jiang, L.; Zeng, S.; Ouyang, Q.; Dinh, X.Q.; Coquet, P.; Qu, J.; Yong, K.T. Graphene–TMDC–Graphene Hybrid Plasmonic Metasurface for Enhanced Biosensing: A Theoretical Analysis. Phys. Status Solidi A 2017, 214, 1700563. [Google Scholar] [CrossRef]
- Balci, S.; Balci, O.; Kakenov, N.; Atar, F.B.; Kocabas, C. Dynamic tuning of plasmon resonance in the visible using graphene. Opt. Lett. 2016, 41, 1241–1244. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y. Fabrication Techniques of Graphene Nanostructures; Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO). Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef]
- Gul, W.; Akbar Shah, S.R.; Khan, A.; Ahmad, N.; Ahmed, S.; Ain, N.; Khan, R. Synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) and their application as nano-fillers to improve the physical and mechanical properties of medium density fiberboard. Front. Mater. 2023, 10, 1206918. [Google Scholar] [CrossRef]
- Chiu, N.F.; Chen, C.C.; Yang, C.D.; Kao, Y.S.; Wu, W.R. Enhanced plasmonic biosensors of hybrid gold nanoparticle-graphene oxide-based label-free immunoassay. Nanoscale Res. Lett. 2018, 13, 152. [Google Scholar] [CrossRef]
- Leem, J.; Wang, M.C.; Kang, P.; Nam, S. Mechanically self-assembled, three-dimensional graphene–gold hybrid nanostructures for advanced nanoplasmonic sensors. Nano Lett. 2015, 15, 7684–7690. [Google Scholar] [CrossRef]
- Feinstein, M.D.; Almeida, E. Hybridization of graphene-gold plasmons for active control of mid-infrared radiation. Sci. Rep. 2024, 14, 6733. [Google Scholar] [CrossRef]
- Phunklang, S.; Wongsa, F.; Krachodnok, P. High-Gain InP-Based Hybrid Plasmonic Nanoantennas Design Using SiO2–Graphene–Au Stacked Waveguide. In Proceedings of the 2024 International Conference on Power, Energy and Innovations (ICPEI), Nakhon Ratchasima, Thailand, 16–18 October 2024; IEEE: New York, NY, USA, 2024; pp. 124–128. [Google Scholar]
- Attariabad, A.; Pourziad, A.; Bemani, M. A tunable and compact footprint plasmonic metasurface integrated graphene photodetector using modified omega-shaped nanoantennas. Opt. Laser Technol. 2022, 147, 107660. [Google Scholar] [CrossRef]
- Phan, A.D.; Nguyen, C.V.; Linh, P.T.; Huynh, T.V.; Lam, V.D.; Le, A.T.; Wakabayashi, K. Deep Learning for the Inverse Design of Mid-Infrared Graphene Plasmons. Crystals 2020, 10, 125. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. PbS Nanostructures: A Review of Recent Advances. Mater. Today Sustain. 2023, 21, 100305. [Google Scholar] [CrossRef]
- Khani, S.; Hayati, M. Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. Sci. Rep. 2022, 12, 5246. [Google Scholar] [CrossRef]
- Nurrohman, D.T.; Chiu, N.F. A review of graphene-based surface plasmon resonance and surface-enhanced raman scattering biosensors: Current status and future prospects. Nanomaterials 2021, 11, 216. [Google Scholar] [CrossRef]
- Hanifa Lestari, T.F.; Irkham, I.; Pratomo, U.; Gaffar, S.; Zakiyyah, S.N.; Rahmawati, I.; Hartati, Y.W. Label-free and label-based electrochemical detection of disease biomarker proteins. ADMET DMPK 2024, 12, 463–486. [Google Scholar]
- Jafari, B.; Gholizadeh, E.; Jafari, B.; Zhoulideh, M.; Adibnia, E.; Ghafariasl, M.; Golmohammadi, S. Highly sensitive label-free biosensor: Graphene/CaF2 multilayer for gas, cancer, virus, and diabetes detection with enhanced quality factor and figure of merit. Sci. Rep. 2023, 13, 16184. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016, 34, 7–25. [Google Scholar] [CrossRef]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sens. Actuators B Chem. 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Wang, J. Nanomaterial-based electrochemical biosensors. Analyst 2005, 130, 421–426. [Google Scholar] [CrossRef]
- Harvey, D.T. Analytical Chemistry 2.1; Creative Commons License; LibreTexts; DePauw University: Greencastle, IN, USA, 2016; Available online: https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Analytical_Chemistry_2.1_(Harvey) (accessed on 10 June 2025).
- Swami, S.; Kayenat, F.; Wajid, S. SPR biosensing: Cancer diagnosis and biomarkers quantification. Microchem. J. 2024, 197, 109792. [Google Scholar] [CrossRef]
- Biomarkers Definitions Working Group; Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Zeger, S.L. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar]
- Chiu, N.F. The current status and future promise of SPR biosensors. Biosensors 2022, 12, 933. [Google Scholar] [CrossRef] [PubMed]
- Michalski, A.; Cox, J.; Mann, M. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC- MS/MS. J. Proteome Res. 2011, 10, 1785–1793. [Google Scholar] [CrossRef]
- Hewitt, S.M.; Dear, J.; Star, R.A. Discovery of protein biomarkers for renal diseases. J. Am. Soc. Nephrol. 2004, 15, 1677–1689. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Yánez-Sedeño, P.; Pingarrón, J.M. Electrochemical bioaffinity sensors for salivary biomarkers detection. TrAC Trends Anal. Chem. 2017, 86, 14–24. [Google Scholar] [CrossRef]
- Bellassai, N.; D’Agata, R.; Jungbluth, V.; Spoto, G. Surface plasmon resonance for biomarker detection: Advances in non-invasive cancer diagnosis. Front. Chem. 2019, 7, 570. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Lee, C.K.; Lin, C.T. Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes. Biosens. Bioelectron. 2018, 103, 130–137. [Google Scholar] [CrossRef]
- Shanmugam, N.R.; Muthukumar, S.; Chaudhry, S.; Anguiano, J.; Prasad, S. Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers. Biosens. Bioelectron. 2017, 89, 764–772. [Google Scholar] [CrossRef]
- Das, S.; Devireddy, R.; Gartia, M.R. Surface plasmon resonance (SPR) sensor for cancer biomarker detection. Biosensors 2023, 13, 396. [Google Scholar] [CrossRef]
- Li, X.; Jiang, M.; Cheng, J.; Ye, M.; Zhang, W.; Jaffrezic-Renault, N.; Guo, Z. Signal multi-amplified electrochemical biosensor for voltammetric determination of tau-441 protein in biological samples using carbon nanomaterials and gold nanoparticles to hint dementia. Microchim. Acta 2020, 187, 302. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhong, Y.; Gui, J.; Wang, X.; Zhuang, X.; Weng, J. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers. Int. J. Nanomed. 2018, 13, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Parmar, J.; Patel, S.K.; Katkar, V.; Natesan, A. Graphene-based refractive index sensor using machine learning for detection of mycobacterium tuberculosis bacteria. IEEE Trans. NanoBiosci. 2023, 22, 92–98. [Google Scholar] [CrossRef]
- Taya, S.A.; Daher, M.G.; Almawgani, A.H.; Hindi, A.T.; Zyoud, S.H.; Colak, I. Detection of virus SARS-CoV-2 using a surface plasmon resonance device based on BiFeO3-graphene layers. Plasmonics 2023, 18, 1441–1448. [Google Scholar] [CrossRef]
- Tene, T.; Guevara, M.; Romero, P.; Guapi, A.; Gahramanli, L.; Vacacela Gomez, C. SARS-CoV-2 detection by surface plasmon resonance biosensors based on graphene-multilayer structures. Front. Phys. 2024, 12, 1503400. [Google Scholar] [CrossRef]
- Elsayed, H.A.; Wekalao, J.; Mehaney, A.; Haifa, E.A.; Mostafa, R.A.; Ali, H.; Wail, A.Z. Graphene Metasurfaces Biosensor for COVID-19 Detection in the Infrared Regime. Sci. Rep. 2025, 15, 8573. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, D.M.; An, S.Y.; Kim, D.H.; Kim, D.E. Fluorometric detection of influenza viral RNA using graphene oxide. Anal. Biochem. 2018, 561, 66–69. [Google Scholar] [CrossRef]
- Wekalao, J.; Patel, S.K.; Al-zahrani, F.A. Graphene metasurfaces-based surface plasmon resonance biosensor for virus detection with sensitivity enhancement using perovskite materials. Plasmonics 2018, 20, 2493–2508. [Google Scholar] [CrossRef]
- Kim, J. A Study on the Energy-Harvesting Device with a Magnetic Spring for Improved Durability in High-Speed Trains. Micromachines 2021, 12, 830. [Google Scholar] [CrossRef]
- Wallace, S.; Kartau, M.; Kakkar, T.; Davis, C.; Szemiel, A.; Samardzhieva, I.; Karimullah, A.S. Multiplexed biosensing of proteins and virions with disposable plasmonic assays. ACS Sens. 2023, 8, 3338–3348. [Google Scholar] [CrossRef]
- Prattis, I.; Hui, E.; Gubeljak, P.; Schierle, G.S.K.; Lombardo, A.; Occhipinti, L.G. Graphene for biosensing applications in point-of-care testing. Trends Biotechnol. 2021, 39, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Dhinakaran, V.; Vigneswari, K.; Lavanya, M.; Shree, M.V. Point-of-care applications with graphene in human life. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; Volume 91, pp. 235–262. [Google Scholar]
- Li, X.; Gong, P.; Zhao, Q.; Zhou, X.; Zhang, Y.; Zhao, Y. Plug-In Optical Fiber SPR Biosensor for Lung Cancer Gene Detection with Temperature and pH Compensation. Sens. Actuators B Chem. 2022, 359, 131596. [Google Scholar] [CrossRef]
- Peeters, B.; Safdar, S.; Daems, D.; Goos, P.; Spasic, D.; Lammertyn, J. Solid-Phase PCR-Amplified DNAzyme Activity for Real-Time FO-SPR Detection of the MCR-2 Gene. Anal. Chem. 2020, 92, 10783–10791. [Google Scholar] [CrossRef]
- Pollet, J.; Delport, F.; Janssen, K.P.; Jans, K.; Maes, G.; Pfeiffer, H.; Lammertyn, J. Fiber optic SPR biosensing of DNA hybridization and DNA–protein interactions. Biosens. Bioelectron. 2009, 25, 864–869. [Google Scholar] [CrossRef]
- Jiang, S.; Qian, S.; Zhu, S.; Lu, J.; Hu, Y.; Zhang, C.; Liu, S. A point-of-care testing device utilizing graphene-enhanced fiber optic SPR sensor for real-time detection of infectious pathogens. Biosensors 2023, 13, 1029. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lin, C. Sensitivity comparison of graphene-based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Mater. Res. Express 2019, 6, 056503. [Google Scholar] [CrossRef]
- Špringer, T.; Bocková, M.; Slabý, J.; Sohrabi, F.; Čapková, M.; Homola, J. Surface plasmon resonance biosensors and their medical applications. Biosens. Bioelectron. 2025, 117308. [Google Scholar] [CrossRef]
- Amontree, J.; Yan, X.; DiMarco, C.S.; Levesque, P.L.; Adel, T.; Pack, J.; Holbrook, M.; Cupo, C.; Wang, Z.; Sun, D.; et al. Reproducible Graphene Synthesis by Oxygen-Free Chemical Vapour Deposition. Nature 2024, 630, 636–642. [Google Scholar] [CrossRef]
- Devillers, M.; Ahmad, L.; Korri-Youssoufi, H.; Salmon, L. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma. Biosens. Bioelectron. 2017, 96, 178–185. [Google Scholar] [CrossRef]
- Al Mahmud, R.; Sagor, R.H.; Khan, M.Z.M. Surface plasmon refractive index biosensors: A review of optical fiber, multilayer 2D material and gratings, and MIM configurations. Opt. Laser Technol. 2023, 159, 108939. [Google Scholar] [CrossRef]
- Aghaei, F.; Golmohammadi, S.; Bahador, H.; Soofi, H. Design of a high-sensitivity graphene-silicon hybrid micro-disk in a square cavity whispering gallery mode biosensor. J. Nanopart. Res. 2023, 25, 76. [Google Scholar] [CrossRef]
- Keshavarz, A.; Zamani, N. Performance Enhancement of SPR Biosensors Based on Noble Metals–Graphene–WS2. Plasmonics 2020, 15, 2293–2305. [Google Scholar]
- Zakirov, N.; Zhu, S.; Bruyant, A.; Lérondel, G.; Bachelot, R.; Zeng, S. Sensitivity Enhancement of Hybrid Two-Dimensional Nanomaterials-Based Surface Plasmon Resonance Biosensor. Biosensors 2022, 12, 810. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Wang, Z.; Zhang, W.; Liu, X.; Li, M.; Li, G.; Zhang, B.; Singh, R. Optically Active Nanomaterials and Its Biosensing Applications A Review. Biosensors 2023, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.G.; Wu, F.; Yu, T.; Zheng, Z.; Andreeva, D.V.; Grigorenko, A.N. Metal–Dielectric–Graphene Hybrid Heterostructures with Enhanced Surface Plasmon Resonance Sensitivity Based on Amplitude and Phase Measurements. Plasmonics 2022, 17, 973–987. [Google Scholar] [CrossRef]
- Han, L.; He, X.; Ge, L.; Gong, Q.; Zhang, H. Comprehensive Study of SPR Biosensor Performance Based on Metal–ITO–Graphene/TMDC Hybrid Multilayer. Plasmonics 2019, 14, 2021–2030. [Google Scholar] [CrossRef]
- Vadlamani, B.S.; Uppal, T.; Verma, S.C.; Misra, M. Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors 2020, 20, 5871. [Google Scholar] [CrossRef]
- Wang, G.; Han, R.; Li, Q.; Han, Y.; Luo, X. Electrochemical biosensors capable of detecting biomarkers in human serum with unique long-term antifouling abilities based on designed multifunctional peptides. Analyt. Chem. 2020, 92, 7186–7193. [Google Scholar] [CrossRef]
- Anushkannan, N.K.; Wekalao, J.; Patel, S.K.; Al-Zahrani, F.A. Design of encoded and tunable graphene-gold metasurface-based surface plasmon resonance sensors for glucose detection in the terahertz regime. Plasmonics 2024, 19, 2827–2846. [Google Scholar] [CrossRef]
- Özdemir, Ş.K.; Rotter, S.; Nori, F.; Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 2019, 18, 783–798. [Google Scholar] [CrossRef]
- Alaeian, H.; Dionne, J.A. Parity-time-symmetric plasmonic metamaterials. Phys. Rev A 2014, 89, 033829. [Google Scholar] [CrossRef]
- Liang, G.; Huang, H.; Mohanty, A.; Shin, M.C.; Ji, X.; Carter, M.J.; Yu, N. Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics 2021, 15, 908–913. [Google Scholar] [CrossRef]
- Shu, X.; Li, A.; Hu, G.; Wang, J.; Alù, A.; Chen, L. Fast encirclement of an exceptional point for highly efficient and compact chiral mode converters. Nat. Commun. 2022, 13, 2123. [Google Scholar] [CrossRef]
- Suvarnaphaet, P.; Pechprasarn, S. Graphene-based materials for biosensors: A review. Sensors 2017, 17, 2161. [Google Scholar] [CrossRef]
- Lv, W.; Liu, C.; Ma, Y.; Wang, X.; Luo, J.; Ye, W. Multi-hydrogen bond assisted SERS detection of adenine based on multifunctional graphene oxide/poly (diallyldimethyl ammonium chloride)/Ag nanocomposites. Talanta 2019, 204, 372–378. [Google Scholar] [CrossRef]
- Patel, S.K.; Parmar, J.; Kosta, Y.P.; Charola, S.; Zakaria, R.B.; Nguyen, T.K.; Dhasarathan, V. Graphene-based highly sensitive refractive index biosensors using C-shaped metasurface. IEEE Sens. J. 2020, 99, 6359–6366. [Google Scholar] [CrossRef]
- Patel, S.K.; Parmar, J.; Ladumor, M.; Ahmed, K.; Nguyen, T.K.; Dhasarathan, V. Numerical simulation of a highly directional optical leaky wave antenna using diamond-shaped graphene perturbations. Appl. Opt. 2020, 59, 2225–2230. [Google Scholar] [CrossRef] [PubMed]
- Shakya, A.K.; Ramola, A.; Singh, S.; Vidyarthi, A. Optimized design of plasmonic biosensor for cancer detection: Core configuration and nobel material coating innovation. Plasmonics. 2024, 20, 1789–1810. [Google Scholar] [CrossRef]
- Shan, C.; Zhang, C.; Liang, J.; Yang, Q.; Bian, H.; Yong, J.; Hou, X.; Chen, F. Femtosecond Laser Hybrid Fabrication of a 3D Microfluidic Chip for PCR Application. Opt. Express 2020, 28, 25716–25722. [Google Scholar] [CrossRef]
- Malkiel, I.; Mrejen, M.; Nagler, A.; Arieli, U.; Wolf, L.; Suchowski, H. Plasmonic Nanostructure Design and Characterization via Deep Learning. Light Sci. Appl. 2018, 7, 60. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Tegenkamp, C. Sn intercalation into the BL/SiC (0001) interface: A detailed SPA-LEED investigation. Surf. Interfaces 2022, 34, 102304. [Google Scholar] [CrossRef]
Type | Year | Enhancement | Structure | Biosensing Application | Tunable Parameters | Reference | Max Sensitivity (nm/RIU) |
---|---|---|---|---|---|---|---|
Dipole | 2003 | Moderate | Two metallic nanorods with a gap | SPR, SERS, fluorescence-based detection | Rod length, gap size, dielectric environment | [53] | ~1000–2000 |
Bowtie | 2010 | Very high | Triangular metallic pair with nanogap | Single-molecule SPR, SERS | Tip sharpness, triangle angle, substrate | [63] | ~6000 |
Hybrid (Au-graphene) | 2012 | High + Tunable | Au-metal combined with 2D layer | Mid-IR SPR, dynamic biosensing, low-noise SPP | Graphene doping, metal shape, hybrid geometry | [55] | ~10,000 |
Nanoantenna Arrays | 2012 | Strong coupling effect | Periodic array arrangements | Multiplexed diagnostics, integrated lab-on-chip systems | Array pitch, material combinations, symmetry | [71] | ~8000 |
Slit/ aperture | 2023 | High (EOT) | Sub-wavelength Slits in metal | Transmission-based SPR, POC detection | Slit width, film thickness, periodicity | [11] | ~4000 |
Graphene Quantum Nanoantenna | 2023 | Very high (Quantum plasmon) | Hexagonal graphene nano patch on dielectric | Quantum plasmonic, mid-IR detection, integrated chips | Hexagon radius, chemical potential, dielectric substrate | [72] | ~12,000 |
Nanoantenna & nanoradars | 2024 | Programmable &steerable | Coupled metal–dielectric phase arrays | Reconfigurable biosensing, neural recording | Antenna pitch, phase control, graphene bias | [73] | ~15,000 |
Integration Strategy | Advantages | Disadvantages | References |
---|---|---|---|
On-chip SPR with nanoantennas | Compact design, real-time sensing, compatible with lab-on-chip systems | Fabrication complexity, optical losses in integrated waveguides | [35] |
Kretschmann configuration with nanoarrays | Combining propagating and localized SPR, high sensitivity | Limited reusability, complex prism alignment required | [36] |
Waveguide-integrated nanoantennas | Efficient light coupling, small footprint, compatible with silicon photonics | Requires precise refractive index matching, smaller sensing volume | [37] |
Graphene-integrated hybrid nanoantennas | Electrically tunable, high sensitivity, enhanced surface chemistry | Material stability, integration challenges, fabrication precision | [38] |
Parameter | Conventional metals | Graphene Plasmonic Antennas | Supporting Equation/Figure | Reference |
---|---|---|---|---|
Field confinement | ~10× reduction | ~100× reduction | [78] | |
Miniaturization | Limited by | 5× to 22× smaller | Size and bandwidth diagrams | [79] |
Bandwidth | Narrow (freq-fixed) | Ultra-wideband (e.g., 340% for bowtie) | Simulated S-parameters | [54] |
Electrical Tunability | None | Continuous via , | Shift in resonance figures | [80] |
Sensitivity (nm/RIU) | 1000–2000 | Up to 7000 | Sensor performance plots | [81] |
FOM (figure of merit) | <20 | 60–300 (Hybrids up to 383) | Sensitivity metric figures | [82] |
Integration versatility | Moderate | Extensive (polymers, semiconductors, 3D hybrids) | Micrographs, substrate image | [41] |
Radiation Efficiency | 1–10% (small size) | 5–85% (design dependent) | Efficiency simulations | [73] |
Working Electrode | Bioreceptor | Target Biomarker | Disease Application | Detection Limit | Reference |
---|---|---|---|---|---|
Gold electrode | D-fructose 6-phosphate | Phosphoglucose isomerase | Cancer in human plasma | 6.6 × 10−15 M | [148] |
Screen-printed gold | Molecularly imprinted polymer | Myoglobin | Cardiovascular disease | 2.1 × 10−3 ng/mL | [151] |
Gold disk | Anti-tau antibody | Tau-441 | Dementia | 4.6 × 10−16 M | [130] |
Gold electrode | EGFR antibody | EGFR antigen | Breast cancer | 6.9 × 10−3 ng/mL | [152] |
Gold electrode | TNT-α antibody | TNT-α protein | Inflammation | 10−12 M | [153] |
ZnO | α-cTnT and α-cTnI antibodies | Troponin T& I | Myocardial infarction | 10−3 ng/mL | [128] |
Graphene-gold grating | Thiolated cellular prion protein (PrPC) peptide probe | amyloid-beta oligomers (AβO) | Alzheimer’s disease | 10−13 M–10−11 M | [131] |
Titanium foil | Co-TiO2 nanotubes | SARS-CoV-2 S-RBD protein | SARS-CoV-2 | 7 × 10−10 M | [154] |
Graphene/ CaF2 multilayer | miRNA-21 aptamer | MicroRNA-21 | Breast cancer | 2.3 × 10−15 M | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, W.; Wang, Y.; Du, G.; Yang, Q.; Chen, F. Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors. Nanomaterials 2025, 15, 943. https://doi.org/10.3390/nano15120943
Ahmad W, Wang Y, Du G, Yang Q, Chen F. Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors. Nanomaterials. 2025; 15(12):943. https://doi.org/10.3390/nano15120943
Chicago/Turabian StyleAhmad, Waqas, Yihuan Wang, Guangqing Du, Qing Yang, and Feng Chen. 2025. "Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors" Nanomaterials 15, no. 12: 943. https://doi.org/10.3390/nano15120943
APA StyleAhmad, W., Wang, Y., Du, G., Yang, Q., & Chen, F. (2025). Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors. Nanomaterials, 15(12), 943. https://doi.org/10.3390/nano15120943