Safety and Toxicity of Carbon Nanotubes, Nanoparticles and Other Nanomaterials: 2nd Edition

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Biology and Medicines".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 2249

Special Issue Editor

Special Issue Information

Dear Colleagues,

The extraordinary physicochemical properties of engineered nanomaterials and nanoparticles (herein referred to as NMPs) gives them a multitude of uses. Different NMPs can also have different toxicities. NMPs are very lightweight and easily inhaled. The biopersistence of inhaled NMPs can lead to persistent inflammation in the lungs, which in turn can lead to respiratory disorders and neoplasia. In addition to inhalation, humans can be exposed to NMPs via dermal contact and via the ingestion of NMPs in food and water. The risks to human health and the environment posed by NMPs are of concern because of their numerous industrial applications and the use of NMPs in a wide range of commercial products. However, the elimination of currently used NMPs would likely have an immense negative impact on human society. Nonetheless, the risks posed by NMPs cannot be ignored. Therefore, hazardous NMPs need to be identified, and risk assessment studies need to be carried out. If risk assessments determine that an NMP can be safely used, appropriate regulations should be put into place that ensure the safe manufacture and use of the NMP.

The goal of this Special Issue is to highlight the latest research on the toxicology and safe use of nanomaterials and nanoparticles. We invite original research articles and reviews on human exposure to nanomaterials and nanoparticles, the toxicities of different types of nanomaterials and nanoparticles, and workplace and user safety measures that can be applied to ensure the safe manufacture and use of these extremely valuable materials.

Dr. David B. Alexander
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inhalation toxicity of nanomaterials/nanoparticles
  • dermal toxicity of nanomaterials/nanoparticles
  • oral toxicity of nanomaterials/nanoparticles
  • biopersistance of nanomaterials/nanoparticles
  • human exposure to nanomaterials/nanoparticles
  • workplace safety
  • users’ safety

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 10248 KB  
Article
Comparative Carcinogenicity of Double-Walled Carbon Nanotubes of Different Lengths Administered by Intratracheal Installation into Rat Lungs
by Omnia Hosny Mohamed Ahmed, Dina Mourad Saleh, William T. Alexander, Hiroshi Takase, Yuhji Taquahashi, Motoki Hojo, Ai Maeno, Katsumi Fukamachi, Min Gi, Akihiko Hirose, Shuji Tsuruoka, Satoru Takahashi, Hiroyuki Tsuda and Aya Naiki-Ito
Nanomaterials 2025, 15(18), 1402; https://doi.org/10.3390/nano15181402 - 11 Sep 2025
Viewed by 184
Abstract
We previously carried out an in vivo 2-year study to assess the potential toxicity/carcinogenicity of double-walled carbon nanotubes (DWCNTs) in a rat lung. We found that administration of DWCNTs by intratracheal–intrapulmonary spraying (TIPS) at a dose of 0.5 mg/rat induced the development of [...] Read more.
We previously carried out an in vivo 2-year study to assess the potential toxicity/carcinogenicity of double-walled carbon nanotubes (DWCNTs) in a rat lung. We found that administration of DWCNTs by intratracheal–intrapulmonary spraying (TIPS) at a dose of 0.5 mg/rat induced the development of lung tumors in 7 of 24 treated rats while 1 of 21 untreated rats and 1 of 25 vehicle treated rats developed lung tumors. In the current study, we administered DWCNTs of different lengths, 1.5 µm, 7 µm, and 15 µm, to rats by TIPS to investigate the possible effect of the length of this thin, flexible CNT on toxicity/carcinogenicity in rat lungs. Rats were administered DWCNTs with lengths of 1.5 µm (D1.5), 7 µm (D7), and 15 µm (D15) by TIPS once every other day over the course of two weeks for a total of eight administrations. The total dose administered was approximately 22 × 1012 fibers per rat, corresponding to 0.0504 mg for D1.5, 0.232 mg for D7, and 0.504 mg for D15. Another group of rats was administered 0.5 mg MWCNT-7, a known carcinogen. Animals were killed at weeks 6 and 104 (4 and 102 weeks after the final TIPS administration). The mean survival time of the rats in the untreated, vehicle, D1.5, D7, and D15 groups was 99 to 104 weeks. One rat in the D1.5 group and one rat in the D15 group died before week 75. The remaining rats in the untreated, vehicle, D1.5, D7, and D15 groups were included in the final assessment of lung toxicity/carcinogenicity. In contrast, 11 rats in the MWCNT-7 group died before week 75 due to the development of malignant mesothelioma. Due to the much shorter survival time of the rats treated with MWCNT-7, accurate assessment of lung proliferative lesions in this group was not possible. At week 6, an increase in alveolar macrophages and granulation tissue foci in the alveoli was observed in all DWCNT administered groups. The alveolar epithelial cell PCNA index was also significantly increased in the D7 and D15 groups. Increases in alveolar macrophages, granulation tissue foci, and the alveolar epithelial cell PCNA index were observed in all DWCNT-treated groups at the final sacrifice. The incidences of lung tumors were 0/13, 0/12, 4/12, 3/8, and 2/10 in the untreated, vehicle, D1.5, D7, and D15 groups, respectively. In agreement with our previous study, the DWCNTs tested in the present study were carcinogenic in the rat lung. In addition, we present evidence that DWCNT fiber length may possibly have an effect on DWCNT-induced carcinogenicity in rat lungs. Full article
Show Figures

Graphical abstract

16 pages, 2807 KB  
Article
Evaluating the Impact of Carbon Nanoparticles on the Interfacial Properties of the Pulmonary Surfactant Film
by Yingxue Geng, Qun Zhao, Junfeng Wang, Yan Cao, Yunshan Wang, Wenshi Gou, Linfeng Zhang and Senlin Tian
Nanomaterials 2025, 15(16), 1244; https://doi.org/10.3390/nano15161244 - 14 Aug 2025
Viewed by 369
Abstract
The interaction between carbon nanoparticles (CNs) and Langmuir monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as a model pulmonary surfactant (PS) film was studied to shed light on the physicochemical bases underlying the potential adverse effects associated with pollutant inhalation. The results indicated that the surface [...] Read more.
The interaction between carbon nanoparticles (CNs) and Langmuir monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as a model pulmonary surfactant (PS) film was studied to shed light on the physicochemical bases underlying the potential adverse effects associated with pollutant inhalation. The results indicated that the surface pressure–area isotherms of the DPPC monolayers shifted toward lower molecular areas, and the compression modulus was reduced in the presence of CNs, hindering the ability of the DPPC monolayers to reduce the surface tension. The relaxation process of the DPPC monolayers were influenced, and the surface morphology and the continuity of the monolayers were destroyed by the penetration of CNs into the DPPC monolayers. The molecular dynamics simulation revealed that particle incorporation into the DPPC monolayers reduced the packing density of the DPPC molecules, worsening the mechanical performance of the monolayers. This effect was attributed to the strong binding trend between the CNs and the DPPC molecules. These results demonstrated that CNs could alter the relaxation mechanisms of the PS film, and this may cause a modification of the inhaled particle transport at the PS film and contribute to adverse health effects in the respiratory system of workers involved in the CN production process. Full article
Show Figures

Graphical abstract

16 pages, 5821 KB  
Article
Synthesis, Characterization, and Toxicity Evaluation of Size-Dependent Iron-Based Metal–Organic Frameworks
by Zhang Liu, Huaiyu Deng, Yuanzhi Zheng, Yuan Tian, Yanting Zhang, Renz Marion Garcia, Sheena Anne Henson Garcia and King Lun Yeung
Nanomaterials 2025, 15(12), 927; https://doi.org/10.3390/nano15120927 - 14 Jun 2025
Viewed by 664
Abstract
Iron-based metal–organic frameworks (Fe-MOFs) are promising for biomedical and environmental applications due to their porosity, tunable chemistry, and biocompatibility. This study examines how particle size, morphology, and ligand composition affect the properties and cytotoxicity of MIL-101(Fe) and MIL-88A. MIL-101(Fe) (octahedral) and MIL-88A (rod-like) [...] Read more.
Iron-based metal–organic frameworks (Fe-MOFs) are promising for biomedical and environmental applications due to their porosity, tunable chemistry, and biocompatibility. This study examines how particle size, morphology, and ligand composition affect the properties and cytotoxicity of MIL-101(Fe) and MIL-88A. MIL-101(Fe) (octahedral) and MIL-88A (rod-like) were synthesized with a controlled size (~200 nm to ~5 μm). Both showed a high crystallinity and stability. Cytotoxicity assays in A549 cells revealed size- and structure-dependent effects: smaller particles of MIL-88A caused greater toxicity (32.5% viability) than MIL-101(Fe) (66.1% viability at 100 μg/mL), while larger particles were less toxic. MIL-88A also induced higher reactive oxidative species (ROS) levels and degraded more rapidly, releasing more Fe ions. Toxicity predication analysis indicated the higher inherent toxicity of MIL-88A’s ligand (fumaric acid) compared to MIL-101(Fe)’s terephthalic acid. These results demonstrate that structural and chemical factors collectively influence Fe-MOFs’ biocompatibility and highlight the importance of rational design for safer MOF applications. Full article
Show Figures

Graphical abstract

23 pages, 2027 KB  
Article
Development and Evaluation of a Novel Self-Etch Dental Adhesive Incorporating Graphene Oxide–Zirconia (GO-ZrO2) and Hydroxyapatite–Zinc (HA-Zn) for Enhanced Bond Strength, Biocompatibility, and Long-Term Stability
by Norbert Erich Serfözö, Marioara Moldovan, Doina Prodan and Nicoleta Ilie
Nanomaterials 2025, 15(11), 803; https://doi.org/10.3390/nano15110803 - 27 May 2025
Viewed by 652
Abstract
The aim of this study was to develop an experimental self-etch dental adhesive (SE) by synthesizing graphene oxide–functionalized zirconia (GO-ZrO2) and hydroxyapatite–functionalized zinc (HA-Zn) as inorganic powders together with bis-GMA (0–2) (bisphenol A-glycidyl methacrylate) oligomers as main components of the organic [...] Read more.
The aim of this study was to develop an experimental self-etch dental adhesive (SE) by synthesizing graphene oxide–functionalized zirconia (GO-ZrO2) and hydroxyapatite–functionalized zinc (HA-Zn) as inorganic powders together with bis-GMA (0–2) (bisphenol A-glycidyl methacrylate) oligomers as main components of the organic matrix. The adhesive was compared to the current gold standard adhesive Clearfill SE Bond 2 (CSE) using cytotoxicity assays, shear bond strength (SBS) tests, and resin–dentin interface analyses. Cytotoxicity assays with human gingival fibroblasts (HGF-1) revealed reduced cell viability at early time points but indicated favourable biocompatibility and potential cell proliferation at later stages. SBS values for the experimental adhesive were comparable to CSE after 24 h of storage while aging did not significantly affect its bond strength. However, SBS exhibited more consistent resin tag formation and higher Weibull modulus values post-aging. A scanning electron microscopy (SEM) analysis highlighted differences in resin tag formation, suggesting the experimental adhesive relies more on chemical bonding than micromechanical interaction. The experimental adhesive demonstrated promising potential clinical properties and bond durability due to the integration of GO-ZrO2 and HA-Zn fillers into the adhesive. Full article
Show Figures

Graphical abstract

Back to TopTop